
1

Necessity of Systematic &
Automated Testing Techniques

- Fight the Complexity of SW
Moonzoo Kim

SWTV Group CS Dept. KAIST

2

Testing is a Complex and
Challenging task!!!
Object-Oriented Programming, Systems Languages, and
Applications, Seattle, Washington, November 8, 2002

• “… When you look at a big commercial software company like
Microsoft, there's actually as much testing that goes in as
development. We have as many testers as we have developers.
Testers basically test all the time, and developers basically are
involved in the testing process about half the time…”

• “… We've probably changed the industry we're in. We're not in
the software industry; we're in the testing industry, and writing
the software is the thing that keeps us busy doing all that testing.”

• “…The test cases are unbelievably expensive; in fact, there's
more lines of code in the test harness than there is in the
program itself. Often that's a ratio of about three to one.”

http://images.google.com/imgres?imgurl=http://thomashawk.com/hello/209/1017/1024/hdtv%20gates.jpg&imgrefurl=http://thomashawk.com/2004_12_01_archive.html&h=580&w=1024&sz=55&hl=en&start=1&tbnid=Dw8ojcvZl9h4gM:&tbnh=85&tbnw=150&prev=/images?q=bill-gates&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://thomashawk.com/hello/209/1017/1024/hdtv%20gates.jpg&imgrefurl=http://thomashawk.com/2004_12_01_archive.html&h=580&w=1024&sz=55&hl=en&start=1&tbnid=Dw8ojcvZl9h4gM:&tbnh=85&tbnw=150&prev=/images?q=bill-gates&svnum=10&hl=en&lr=

/ 4

Software v.s. Magic Circle (마법진)

3/58

• Written by a software
developers line by line

• Requires programming
expertise

• SW executes complicated
tasks which are far more
complex than the code
itself

• The software often
behaves in unpredicted
ways and crash occurs

• Written by a human
magician line by line

• Requires magic spell
knowledge

• Summoned monsters
are far more powerful
than the magic spell
itself

• The summoned demon
is often uncontrollable
and disaster occurs

네이버웹툰 “그 판타지세계에서사는법“ by 촌장

Ex. Testing a Triangle Decision Program

Moonzoo Kim /114

Input : Read three integer values from the command line.
The three values represent the length of the sides of a
triangle.

Output : Tell whether the triangle is
• 부등변삼각형 (Scalene) : no two sides are equal
• 이등변삼각형(Isosceles) : exactly two sides are equal
• 정삼각형 (Equilateral) : all sides are equal

Create a Set of Test Cases for this program
(3,4,5), (2,2,1), (1,1,1) ?

Precondition (Input Validity) Check

Moonzoo Kim /115

• Condition 1: a > 0, b > 0, c > 0
• Condition 2: a < b + c

– Ex. (4, 2, 1) is an invalid triangle
– Permutation of the above condition

• a < b +c
• b < a + c
• c < a + b

• What if b + c exceeds 232 (i.e. overflow)?
– long v.s. int v.s. short. v.s. char

• Developers often fail to consider implicit
preconditions
– Cause of many hard-to-find bugs

Moonzoo Kim /116

• # of test cases
required?
① 4
② 10
③ 50
④ 100

• # of feasible unique
execution paths?
• 11 paths
• guess what test

cases needed

“Software Testing
a craftsman’s
approach” 2nd ed
by P.C.Jorgensen
(no check for
positive inputs)

More Complex Testing Situations (1/3)

Moonzoo Kim /117

• Software is constantly changing
– What if “integer value” is relaxed to “floating value” ?

• Round-off errors should be handled explicitly

– What if new statements S1 … Sn are added to check
whether the given triangle is 직각삼각형 (a right
angle triangle)?

• Will you test all previous tests again?
• How to create minimal test cases to check the changed

parts of the target program

More Complex Testing Situations (2/3)

Moonzoo Kim /118

• Regression testing is essential
– How to select statements/conditions affected by the

revision of the program?
– How to create test cases to cover those

statements/conditions?
– How to create efficient test cases?

• How to create a minimal set of test cases (i.e. # of test
cases is small)?

• How to create a minimal test case (i.e. causing minimal
execution time)?

– How to reuse pre-existing test cases?

More Complex Testing Situations (3/3)

Moonzoo Kim /119

• However, conventional coverage is not complete
– Ex. Int adder(int x, int y) { return 3;}

• Test case (x=1,y=2) covers all statements/branches of the
target program and detects no error

• In other words, all variable values must be explored for
complete results

• Formal verification aims to guarantee
completeness
– Model checking analyzes all possible x, y values

through 264 (=232 x 232) cases
– However, model checking is more popular for

debugging, not verification

Concurrency

10/11

• Concurrent programs have very high complexity
due to non-deterministic scheduling

• Ex. int x=0, y=0, z =0;
void p() {x=y+1; y=z+1; z= x+1;}
void q() {y=z+1; z=x+1; x=y+1;}
– Total 20 interleaving scenarios

= (3+3)!/(3!x3!)

– However, only 11 unique outcomes

p()

q()

x=y+1 y=z+1 z=x+1

x=y+1

y=z+1

z=x+1

Trail1: 2,2,3
Trail2: 3,2,4
Trail3: 3,2,3
Trail4: 2,4,3
Trail5: 5,4,6
Trail6: 5,4,3

Trail7: 2,1,3
Trail8: 2,3,3
Trail9: 4,3,5
Trail10: 4,3,2
Trail11: 2,1,2

11

An Example of Mutual Exclusion Protocol

char cnt=0,x=0,y=0,z=0;

void process() {
char me=_pid +1; /* me is 1 or 2*/

again:
x = me;
If (y ==0 || y== me) ;
else goto again;

z =me;
If (x == me) ;
else goto again;

y=me;
If(z==me);
else goto again;

/* enter critical section */
cnt++;
assert(cnt ==1);
cnt --;
goto again;

}
Mutual

Exclusion
Algorithm

Critical
section

Software
locks

Process 0

x = 1
If(y==0 || y == 1)

z = 1
If(x == 1)
y = 1
If(z == 1)
cnt++

Process 1
x = 2
If(y==0 || y ==2)
z = 2
If(x==2)

y=2
If (z==2)
cnt++

Counter
Example

Violation detected !!!

More Concurrency Bugs

• Data race bugs

12

• Atomicity bugs
class Account_DR {
double balance;
// INV:balance should be always non-negative

void withdraw(double x) {
1: if (balance >= x) {
2: balance = balance–x;}

...
}}

[Initially, balance:10]

-th1: withdraw(10)-

1: if(balance >= 10)

2: balance = 0 – 10;

-th2: withdraw(10)-

1: if(balance >= 10)

2: balance = 10-10;

(a) Buggy program code

(b) Erroneous execution

The invariant is violated as
balance becomes -10.

class Account_BR {
Lock m;
double balance;
// INV: balance should be non-negative

double getBalance() {
double tmp;

1: lock(m);
2: tmp = balance ;
3: unlock(m);
4: return tmp; }

void withdraw(double x){
/*@atomic region begins*/

11: if (getBalance() >= x){
12: lock(m);
13: balance = balance – x;
14: unlock(m); }

/*@atomic region ends*/
... }

-th2 : withdraw(10)-
...

12: lock(m);
13: balance=10–10;
14: unlock(m);

[Initially, balance:10]
-th1: withdraw(10)-

11:if(getBalance()>=10)
getBalance()
1:lock(m);
2:tmp = balance;
3:unlock(m);
4:return tmp;

12: lock(m);
13: balance=0 – 10;
14: unlock(m);

(a) Buggy program code

(b) Erroneous execution

The invariant is violated as
balance becomes -10.

operation block bi

Formal Analysis of Software as a Foundational and
Promising CS Research

• 2007 ACM Turing Awardees
– Prof. Edmund Clarke, Dr. Joseph

Sipfakis, Prof. E. Allen Emerson
– For the contribution of migrating

from pure model checking research
to industrial reality

• 2013 ACM Turing Awardee
– Dr. Leslie Lamport
– For fundamental contributions to the theory

and practice of distributed and concurrent
systems

• Happens-before relation, sequential consistency,
Bakery algorithm, TLA+, and LaTeX

13

14/58

Significance of Automated SW Testing to Fight SW
Complexity

• Software has become more ubiquitous and more
complex at the same time

• Human resources are becoming less reliable and more
expensive for highly complex software systems

• Computing resources are becoming ubiquitous and
free
– Tencent @ China provides 10TB storage free
– Amazon EC2 price: you can use thousands of CPUs @

0.057$/hr for 3.2Ghz Quad-core CPU
• Remaining task?

– To develop automated and scientific software analysis tools
to utilize computing resource effectively and efficiently

14

Summary

1. Software = a large set of unique executions
2. SW testing = to find an execution that violates

a given requirement among the large set
– A human brain is poor at enumerating all

executions of a target SW, but computer is good at
the task

3. Automated SW testing
= to enumerate and analyze the executions of
SW systematically (and exhaustively if possible)

15

	Necessity of Systematic & Automated Testing Techniques�- Fight the Complexity of SW
	슬라이드 번호 2
	Software v.s. Magic Circle (마법진)
	Ex. Testing a Triangle Decision Program
	Precondition (Input Validity) Check
	슬라이드 번호 6
	More Complex Testing Situations (1/3)
	More Complex Testing Situations (2/3)
	More Complex Testing Situations (3/3)
	Concurrency
	An Example of Mutual Exclusion Protocol�
	More Concurrency Bugs
	Formal Analysis of Software as a Foundational and Promising CS Research
	Significance of Automated SW Testing to Fight SW Complexity
	Summary

