
Graph Coverage Criteria

The original slides are taken from Chap. 7 of Intro. to SW Testing
2nd ed by Ammann and Offutt

Moonzoo Kim
School of Computing

KAIST

Hierarchy of Structural/graph Coverages

2/60

Simple Round Trip
Coverage

SRTCNode
Coverage

NC

Edge
Coverage

EC

Edge-Pair
Coverage

EPC

Prime Path Coverage
PPC

Complete Path
Coverage

CPC

Complete Round Trip
Coverage

CRTC

All-DU-Paths
Coverage

ADUP

All-uses Coverage
AUC

All-defs Coverage
ADC

Complete Value
Coverage

CVC (SW) Model checking

Concolic testing

Covering Graphs

 Graphs are the most commonly used structure for testing

 Graphs can come from many sources
 Target source code
 Control flow graphs
 Design structure
 FSMs and statecharts
 Use cases

 Tests usually are intended to “cover” the graph in some way

3

Definition of a Graph

 A set N of nodes, N is not empty

 A set N0 of initial nodes, N0 is not empty

 A set Nf of final nodes, Nf is not empty

 A set E of edges, each edge from one node to another
 (ni , nj), ni is predecessor, nj is successor

4

Three Example Graphs

5

0

21

3

N0 = { 0 }

Nf = { 3 }

0

21

3

N0 = { }

Nf = { 3 }

9

0

43

7

1

5

8

2

6

N0 = { 0, 1, 2 }

Nf = { 7, 8, 9 }

Not a
valid
graph

Paths in Graphs
 Path : A sequence of nodes – [n1, n2, …, nM]

 Each pair of nodes is an edge

 Length : The number of edges
 A single node is a path of length 0

 Subpath : A subsequence of nodes in p is a subpath of p
 Reach (n) : Subgraph that can be reached from n

6

97 8

0 1 2

43 5 6

Paths

[0, 3, 7]

[1, 4, 8, 5, 1]

[2, 6, 9]

Reach (0) = G’ whose
set of nodes is
{ 0, 3, 4, 7, 8, 5, 1, 9 }

Reach ({0, 2}) = G

Test Paths and SESEs
 Test Path : A path that starts at an initial node and ends at a final

node
 Test paths represent execution of test cases

 Some test paths can be executed by many tests
 Some test paths cannot be executed by any tests

 SESE graphs : All test paths start at a single node and end at
another node
 Single-entry, single-exit
 N0 and Nf have exactly one node

7

0

2

1

63

5

4
Double-diamond graph

Four test paths
[0, 1, 3, 4, 6]
[0, 1, 3, 5, 6]
[0, 2, 3, 4, 6]
[0, 2, 3, 5, 6]

Visiting and Touring
 Visit : A test path p visits node n if n is in p

A test path p visits edge e if e is in p
 Tour : A test path p tours subpath q if q is a subpath of p

8

Path [0, 1, 3, 4, 6]

Visits nodes 0, 1, 3, 4, 6

Visits edges (0, 1), (1, 3), (3, 4), (4, 6)

Tours subpaths (0, 1, 3), (1, 3, 4), (3, 4, 6), (0, 1, 3, 4), (1, 3, 4, 6)

Tests and Test Paths

 path (t) : The test path executed by test t

 path (T) : The set of test paths executed by the set of tests T

 Each test executes one and only one test path
 A location in a graph (node or edge) can be reached from another

location if there is a sequence of edges from the first location to
the second
 Syntactic reach : A subpath exists in the graph
 Semantic reach : A test exists that can execute that subpath

9

Tests and Test Paths

10

test 1

test 2

test 3

many-to-one

test 1

test 2

test 3

many-to-many Test Path 1

Test Path 2

Test Path 3

Non-deterministic software – a test can execute different test paths

Test
Path

Deterministic software – a test always executes the same test path

Testing and Covering Graphs (2.2)
 We use graphs in testing as follows :

 Developing a model of the software as a graph
 Requiring tests to visit or tour specific sets of nodes, edges or subpaths

11

• Test Requirements (TR) : Describe properties of test paths

• Test Criterion : Rules that define test requirements

• Satisfaction : Given a set TR of test requirements for a criterion C, a set of
tests T satisfies C on a graph if and only if for every test requirement in TR,
there is a test path in path(T) that meets the test requirement tr

• Structural Coverage Criteria : Defined on a graph just in terms of nodes
and edges

• Data Flow Coverage Criteria : Requires a graph to be annotated with
references to variables

Node and Edge Coverage

 Edge coverage is slightly stronger than node coverage

12

• NC and EC are only different when there is an edge and another
subpath between a pair of nodes (as in an “if-else” statement)

Node Coverage : TR = { 0, 1, 2 }
Test Path = [0, 1, 2]

Edge Coverage : TR = { (0,1), (0, 2), (1, 2) }
Test Paths = [0, 1, 2]

[0, 2]

1

2

0

Covering Multiple Edges

 Edge-pair coverage requires pairs of edges, or subpaths of length 2

13

• The logical extension is to require all paths …

• Unfortunately, this is impossible if the graph has a loop, so a weak
compromise is to make the tester decide which paths:

Structural Coverage Example

14

Node Coverage
TRNC = { 0, 1, 2, 3, 4, 5, 6 }
Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 5, 4, 6]

6

0

2

1

3 4

Edge Coverage
TREC ={(0,1),(0,2),(1,2), (2,3), (2,4), (3,6), (4,5),(4,6), (5,4)}
Test Paths: [0, 1, 2, 3, 6] [0, 2, 4, 5, 4, 6]

Edge-Pair Coverage
TREPC = { [0,1,2], [0,2,3], [0,2,4], [1,2,3], [1,2,4], [2,3,6],

[2,4,5], [2,4,6], [4,5,4], [5,4,5], [5,4,6] }
Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 2, 3, 6]

[0, 2, 4, 5, 4, 5, 4, 6]

Complete Path Coverage
Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 1, 2, 4, 5, 4, 6] [
0, 1, 2, 4, 5, 4, 5, 4, 6] [0, 1, 2, 4, 5, 4, 5, 4, 5, 4, 6] …

5

Loops in Graphs
 If a graph contains a loop, it has an infinite number of paths

 Thus, CPC is not feasible to satisfy

 Attempts to “deal with” loops:
 1980s : Execute each loop, exactly once ([4, 5, 4] in previous example)
 1990s : Execute loops 0 times, once, more than once
 2000s : Prime paths

15

Simple Paths and Prime Paths
 Simple Path : A path from node ni to nj is simple, if no node appears

more than once, except possibly the first and last nodes are the
same
 No internal loops
 Includes all other subpaths
 A loop is a simple path

 Prime Path : A simple path that does not appear as a proper
subpath of any other simple path

16

Simple Paths : [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1],
[2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2],
[2, 3, 0, 1], [0, 1, 3], [0, 2, 3], [1, 3, 0], [2, 3, 0],
[3, 0, 1], [3, 0, 2], [0, 1], [0, 2], [1, 3], [2, 3], [3, 0],
[0], [1], [2], [3]

Prime Paths : [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1],
[2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2],
[2, 3, 0, 1]

1 2

0

3

Prime Path Coverage
 A simple, elegant and finite criterion that requires loops to be

executed as well as skipped

17

• Will tour all paths of length 0, 1, …
• That is, it subsumes node, edge, and edge-pair coverage

Prime Path Example
 The previous example has 38 simple paths
 Only nine prime paths

18

Prime Paths
[0, 1, 2, 3, 6]
[0, 1, 2, 4, 5]
[0, 1, 2, 4, 6]

[0, 2, 3, 6]
[0, 2, 4, 5]
[0, 2, 4, 6]

[5, 4, 6]
[4, 5, 4]
[5, 4, 5]

Execute loop
once

Execute loop
more than once

5

0

2

1

3 4

6

Execute loop
0 times

‘!’ means path
terminatesLen 2

[0, 1, 2]
[0, 2, 3]
[0, 2, 4]
[1, 2, 3]
[1, 2, 4]
[2, 3, 6] !
[2, 4, 6] !
[2, 4, 5] !
[4, 5, 4] *
[5, 4, 6] !
[5, 4, 5] *

Simple & Prime Path Example

19

5

0

2

1

3 4

6

Len 0
[0]
[1]
[2]
[3]
[4]
[5]
[6] !

Len 1
[0, 1]
[0, 2]
[1, 2]
[2, 3]
[2, 4]
[3, 6] !
[4, 6] !
[4, 5]
[5, 4]

‘*’ means path
cycles

Len 3
[0, 1, 2, 3]
[0, 1, 2, 4]
[0, 2, 3, 6] !
[0, 2, 4, 6] !
[0, 2, 4, 5] !
[1, 2, 3, 6] !
[1, 2, 4, 5] !
[1, 2, 4, 6] !

Len 4
[0, 1, 2, 3, 6] !
[0, 1, 2, 4, 6] !
[0, 1, 2, 4, 5] !

Prime Paths

Simple
paths

Note that paths w/o ! or * cannot be prime paths

Round Trips
 Round-Trip Path : A prime path that starts and ends at the same

node

20

• These criteria omit nodes and edges that are not in round trips
• That is, they do not subsume edge-pair, edge, or node coverage

Infeasible Test Requirements
 An infeasible test requirement cannot be satisfied

 Unreachable statement (dead code)
 A subpath that can only be executed if a contradiction occurs (X > 0 and X < 0)

21

Practical recommendation – Best Effort Touring
– Satisfy as many test requirements as possible without sidetrips
– Allow sidetrips to try to satisfy unsatisfied test requirements

• Most test criteria have some infeasible test requirements
• It is usually undecidable whether all test requirements are feasible
• When sidetrips are not allowed, many structural criteria have more

infeasible test requirements
• However, always allowing sidetrips weakens the test criteria

Touring, Sidetrips and Detours
 Prime paths do not have internal loops … test paths might

22

• Tour : A test path p tours subpath q if q is a subpath of p

• Tour With Sidetrips : A test path p tours subpath q with sidetrips
iff every edge in q is also in p in the same order
• The tour can include a sidetrip, as long as it comes back to the same node

• Tour With Detours : A test path p tours subpath q with detours iff
every node in q is also in p in the same order

Sidetrips and Detours Example

23

0 21 5

3

4

0 21 5

3

4

Touring with a
sidetrip

0 21 5

3

4

Touring with a
detour

1 2 5 6

3 4

1 2 5

3
4

a b c d

Touring without
sidetrips or
detours

24

Weaknesses of the Purely Structural Coverage

/* TC1: x= 1, y= 1;
TC2: x=-1, y=-1;*/

void foo(int x, int y)
{

if (x > 0)
x++;

else
x--;

if(y >0)
y++;

else
y--;

assert (x * y >= 0);
}

x>0

x++ x--

yes no

y>0

y++ y--

assert(x*y>=0)

Purely structural coverage (e.g., branch coverage) alone
cannot improve the quality of target software sufficiently

-> Advanced semantic testing should be accompanied

Final Remarks

25

1. Why are coverage criteria important for testing?

2. Why is branch coverage popular in industry?

3. Why is prime path coverage not used in practice?

4. Why is it difficult to reach 100% branch coverage of
real-world programs?

Data Flow Coverage

26

Data Flow Criteria

 Definition : A location where a value for a variable is stored into memory
 Use : A location where a variable’s value is accessed
 def (n) or def (e) : The set of variables that are defined by node n or edg

e e
 use (n) or use (e) : The set of variables that are used by node n or edge e

27

Goal: Try to ensure that values are computed and used correctly

0

2

1

63

5

4X = 42

Z = X-8

Z = X*2 Defs: def (0) = {X}

def (4) = {Z}

def (5) = {Z}

Uses: use (4) = {X}

use (5) = {X}

DU Pairs and DU Paths

 DU pair : A pair of locations (li, lj) such that a variable v is
defined at li and used at lj

 Def-clear : A path from li to lj is def-clear with respect to varia
ble v, if v is not given another value on any of the nodes or ed
ges in the path
 Reach : If there is a def-clear path from li to lj with respect to v,

the def of v at li reaches the use at lj
 du-path : A simple subpath that is def-clear with respect to v f

rom a def of v to a use of v
 du (ni, nj, v) – the set of du-paths from ni to nj

 du (ni, v) – the set of du-paths that start at ni

28

Touring DU-Paths

 A test path p du-tours subpath d with respect to v if p tours d and
the subpath taken is def-clear with respect to v

 Sidetrips can be used, just as with previous touring

 Three criteria
 Use every def
 Get to every use
 Follow all du-paths

29

Data Flow Test Criteria

30

• Then we make sure that every def reaches all possible uses

• Finally, we cover all the paths between defs and uses

• First, we make sure every def reaches a use

Data Flow Testing Example

31

0

2

1

63

5

4X = 42

Z = X-8

Z = X*2

All-defs for X

[0, 1, 3, 4]

All-uses for X

[0, 1, 3, 4]

[0, 1, 3, 5]

All-du-paths for X

[0, 1, 3, 4]

[0, 2, 3, 4]

[0, 1, 3, 5]

[0, 2, 3, 5]

Graph Coverage Criteria Subsumption

32

Simple Round
Trip Coverage

SRTCNode
Coverage

NC

Edge
Coverage

EC

Edge-Pair
Coverage

EPC

Prime Path
Coverage

PPC

Complete Path
Coverage

CPC

Complete Round
Trip Coverage

CRTC

All-DU-Paths
Coverage

ADUP

All-uses
Coverage

AUC

All-defs
Coverage

ADC

Assumptions for Data Flow Coverage
1.Every use is preceded by a def
2.Every def reaches at least one use
3.For every node with multiple outgoing edges,
at least one variable is used on each out edge,
and the same variables are used on each out edge.

	Graph Coverage Criteria�
	Hierarchy of Structural/graph Coverages
	Covering Graphs
	Definition of a Graph
	Three Example Graphs
	Paths in Graphs
	Test Paths and SESEs
	Visiting and Touring
	Tests and Test Paths
	Tests and Test Paths
	Testing and Covering Graphs (2.2)
	Node and Edge Coverage
	Covering Multiple Edges
	Structural Coverage Example
	Loops in Graphs
	Simple Paths and Prime Paths
	Prime Path Coverage
	Prime Path Example
	Simple & Prime Path Example
	Round Trips
	Infeasible Test Requirements
	Touring, Sidetrips and Detours
	Sidetrips and Detours Example
	슬라이드 번호 24
	Final Remarks
	Data Flow Coverage
	Data Flow Criteria
	DU Pairs and DU Paths
	Touring DU-Paths
	Data Flow Test Criteria
	Data Flow Testing Example
	Graph Coverage Criteria Subsumption

