Logic Coverage

Moonzoo Kim
School of Computing
KAIST

The original slides are taken from Chap. 8 of Intro. to SW Testing 2^{nd} ed by Ammann and Offutt

Covering Logic Expressions

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Coverage Criteria Subsumption

Logic Predicates and Clauses

- A predicate is an expression that evaluates to a boolean value
- Predicates can contain
 - boolean variables
 - non-boolean variables that contain >, <, ==, >=, <=, !=</p>
 - boolean function calls
- Internal structure is created by logical operators
 - ¬ the *negation* operator
 - \blacksquare \land the *and* operator
 - ∨ − the *or* operator
 - \rightarrow the *implication* operator
 - ⊕ the *exclusive or* operator
 - ← the equivalence operator
- A clause is a predicate with no logical operators

Examples

- $(a < b) \lor f(z) \land D \land (m >= n*o)$
- Four clauses:
 - (a < b) relational expression</p>
 - f (z) boolean-valued function
 - D boolean variable
 - (m >= n*o) relational expression
- Most predicates have few clauses
- Sources of predicates
 - Decisions in programs
 - Guards in finite state machines
 - Decisions in UML activity graphs
 - Requirements, both formal and informal
 - SQL queries

Testing and Covering Predicates

- We use predicates in testing as follows:
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses

Abbreviations:

- P is the set of predicates
- p is a single predicate in P
- C is the set of clauses in P
- c is a single clause in C

Predicate and Clause Coverage

The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC): For each p in P, TR contains two requirements: p evaluates to true, and p evaluates to false.

a.k.a. "decision coverage" in literature

- When predicates come from conditions on edges, this is equivalent to edge coverage
- PC does not evaluate all the clauses, so ...

Clause Coverage (CC): For each c in C, TR contains two requirements: c evaluates to true, and c evaluates to false.

a.k.a. "condition coverage" in literature

Predicate Coverage Example

((a < b) ∨ D) ∧ (m >= n*o) predicate coverage

Predicate = true

```
a = 5, b = 10, D = true, m = 1, n = 1, o = 1
= (5 < 10) \times true \wedge (1 >= 1*1)
= true \times true \wedge TRUE
= true
```

Predicate = false

```
a = 10, b = 5, D = false, m = 1, n = 1, o = 1
= (10 < 5) \times false \wedge (1 >= 1*1)
= false \times false \wedge TRUE
= false
```


Clause Coverage Example

((a < b) ∨ D) ∧ (m >= n*o) Clause coverage

$$(a < b) = true$$
 $(a < b) = false$ $(a < b) = false$ $a = 5, b = 10$ $a = 10, b = 5$ $a = 10, b = 5$ $a = 10, b = 5$ $a = 1, a = 1, b = 1$ $a = 1, a = 1, a$

Problems with PC and CC

- PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation
- CC does not always ensure PC
 - That is, we can satisfy CC without causing the predicate t o be both true and false
 - \blacksquare Ex. $x > 3 \rightarrow x > 1$
 - Two test cases { x=4, x=0} satisfy CC but not PC
- Condition/decision coverage is a hybrid metric composed by CC union PC

Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC): For each p in P, TR has test requirements for the clauses in C_p to evaluate to each possible combination of truth values.

	a < b	D	m >= n*o	$((a < b) \lor D) \land (m >= n*o)$
1	T	T	T	T
2	T	T	${f F}$	${f F}$
3	T	F	${f T}$	T
4	T	F	${f F}$	${f F}$
5	${f F}$	T	${f T}$	${f T}$
6	${f F}$	T	\mathbf{F}	${f F}$
7	${f F}$	F	${f T}$	${f F}$
8	${f F}$	F	${f F}$	${f F}$

Combinatorial Coverage

- This is simple, neat, clean, and comprehensive ...
- But quite expensive!
- 2^N tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions some confusing
- The general idea is simple:

Test each clause independently from the other clauses

- Getting the details right is hard
- What exactly does "independently" mean?
- The book presents this idea as "making clauses active" ...

Active Clauses

- Clause coverage has a weakness
 - The values do not always make a difference to a whole predicate
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination:

A clause C_i in predicate p, called the major clause, determines p if and only if the <u>values</u> of the remaining minor clauses C_j are such that changing C_i changes the value of p

This is considered to make the clause c_i active

Determining Predicates

$P = A \vee B$

if B = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

$P = A \wedge B$

if B = false, p is always false.

so if B = true, A determines p.

if A = true, B determines p.

- Goal: Find tests for each clause when the clause determines the value of the predicate
- This is formalized in several criteria that have subtle, but very important, differences

Active Clause Coverage

Active Clause Coverage (ACC): For each p in P and each major clause c_i in C_p , choose minor clauses c_j , $j \neq i$, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

- This is a form of MCDC, which is required by the Federal Avionics Administration (FAA) for safety critical software
- <u>Ambiguity</u>: Do the minor clauses have to have the same values when the major clause is true and false?

Resolving the Ambiguity

```
p = a \lor (b \land c)
Major clause : a
a = true, b = false, c = true
a = false, b = false, c = c = false
```

Is this allowed?

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria:
 - Minor clauses <u>do</u> need to be the same (RACC)
 - Minor clauses <u>do not</u> need to be the same but <u>force the predicate</u> to become both true and false (CACC)

Restricted Active Clause Coverage

Restricted Active Clause Coverage (RACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_i(c_i = false)$ for all c_i .

- This has been a common interpretation of MCDC by aviation developers
 - Often called "unique-cause MCDC"
- RACC often leads to <u>infeasible</u> test requirements

Correlated Active Clause Coverage

Correlated Active Clause Coverage (CACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j must <u>cause</u> p to <u>be</u> true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true) != p(c_i = false)$.

- A more recent interpretation
 - Also known as "Masking MCDC"
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage

CACC and **RACC**

	a	b	c	$a \wedge (b \vee c)$
1	Т	T	T	T
2	_ 	T	F	T
3	Т	F	T	T
5	F	T	T	${f F}$
6	F	T	F	$\int \mathbf{F}$
7	F	F	T	$\int \mathbf{F}$

	a	b	c	$a \wedge (b \vee c)$
1	T	T	T	T
5	F	T	T	${f F}$
2	Т	T	F	T
6	F	T	\mathbf{F}	${f F}$
3	Т	F	T	, T
7	F	F	T	\int F

major clause

major clause

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

RACC can only be satisfied by one of the three pairs above

Inactive Clause Coverage

- The active clause coverage criteria ensure that "major" clauses do affect the predicates
- Inactive clause coverage takes the opposite approach major clauses do not affect the predicates

Inactive Clause Coverage (ICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i does not determine p. TR has <u>four</u> requirements for each c_i :

- (1) c_i evaluates to true with p true
- (2) c_i evaluates to false with p true
- (3) c_i evaluates to true with p false, and
- (4) c_i evaluates to false with p false.

General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
 - c_i does not determine p, so cannot correlate with p
- Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , $j \neq i$, so that $c_i = i$ does not determine p. The values chosen for the minor clauses $c_j = i$ do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_j OR $c_j(c_i = true) = c_i(c_i = false)$ for all c_j .

Restricted Inactive Clause Coverage (RICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , $j \neq i$, so that $c_i \leq i$ does not determine p. The values chosen for the minor clauses $c_j \leq i$ must be the same when c_i is true as when c_i is false, that is, it is required that $c_i(c_i = true) = c_i(c_i = false)$ for all c_i .

Modified condition/decision coverage (MCDC)

- Standard requirement for safety critical systems such as avionics and automotive (e.g., DO 178B/C, ISO26262)
- Modified condition/decision coverage (MCDC) requires
 - Satisfying CC and DC, and
 - every condition in a decision should be shown to <u>independently</u> affect that decision's outcome
- Example: C = A | B
 - Which test cases are necessary to satisfy
 - Condition coverage
 - Decision coverage
 - Condition/decision coverage
 - MCDC coverage

	Α	В	С
TC1	T	T	T
TC2	T	F	T
TC3	F	T	T
TC4	F	F	F

Minimum Testing to Achieve MCDC [Chilenski and Miller'94]

- For C = A && B,
 - All conditions (i.e., A and B) should be true so that decision (i.e., C) becomes true
 - 1 test case required
 - Each and every input should be exclusively false so that decision becomes false.
 - 2 (or n for n-ary and) test cases required

For	C = A	П	B
-			

- All conditions (i.e., A and B) should be false so that decision (i.e., C) becomes false
 - 1 test case required
- Each and every input should be exclusively true so that decision becomes true.
 - 2 (or n for n-ary or) test cases required

	A	В	С
TC1	T	Т	T
TC2	T	F	F
TC3	F	Т	F
TC4	F	F	F

	Α	В	С
TC1	Т	T	T
TC2	Т	F	Т
TC3	F	Т	Т
TC4	F	F	F

Logic Coverage Criteria Subsumption

Making Clauses Determine a Predicate

- Finding values for minor clauses c_j is easy for simple predicates
- But how to find values for more complicated predicates ?
- Definitional approach:
 - $p_{c=true}$ is predicate p with every occurrence of c replaced by true
 - $p_{c=false}$ is predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{c=true}$ and $p_{c=false}$ with exclusive OR

$$p_c = p_{c=true} \oplus p_{c=false}$$

- After solving, p_c describes exactly the values needed for c to determine p
- Note that we have to calculate $_1p_c/_$ p=true and/or $_1p_c/_$ p=false to get values for minor clauses for Inactive Coverage Criteria

Examples

```
p = a ∨ b

p<sub>a</sub> = p<sub>a=true</sub> ⊕ p<sub>a=false</sub>
= (true ∨ b) XOR (false ∨ b)
= true XOR b
= ¬ b
```

```
p = a \wedge b
p_{a} = p_{a=true} \oplus p_{a=false}
= (true \wedge b) \oplus (false \wedge b)
= b \oplus false
= b
```

```
p = a \lor (b \land c)
p_{a} = p_{a=true} \oplus p_{a=false}
= (true \lor (b \land c)) \oplus (false \lor (b \land c))
= true \oplus (b \land c)
= \neg (b \land c)
= \neg b \lor \neg c
```

- "NOT b \times NOT c" means either b or c can be false
- RACC requires the same choice for both values of a, CACC does not

A More Subtle Example

```
p = (a \land b) \lor (a \land \neg b)
p_a = p_{a=true} \oplus p_{a=false}
    = ((true \land b) \lor (true \land ¬ b)) \oplus ((false \land b) \lor (false \land ¬ b))
    = (b \vee \neg b) \oplus false
    = true ⊕ false
    = true
                              p = (a \land b) \lor (a \land \neg b)
p_b = p_{b=true} \oplus p_{b=false}
    = ((a \land true) \lor (a \land ¬ true)) \oplus ((a \land false) \lor (a \land ¬ false))
    = (a \vee false) \oplus (false \vee a)
    = a ⊕ a
    = false
```

- a always determines the value of this predicate
- MST
- b never determines the value b is irrelevant!

Infeasible Test Requirements

Consider the predicate:

$$(a > b \land b > c) \lor c > a$$

- (a > b) = true, (b > c) = true, (c > a) = true is infeasible
- As with graph-based criteria, infeasible test requirements have to be recognized and ignored
- Recognizing infeasible test requirements is hard, and in general, undecidable

Example

$$p = a \wedge (\neg b \vee c)$$

	а	b	С	р	p _a	p _b	p _c
1	Т	T	Т	Т	T	F	Т
2	T	T	F	F	F	T	Т
3	T	F	Т	Т	T	F	F
4	T	F	F	Т	Т	T	F
5	F	T	T	F	T	F	F
6	F	T	F	F	F	F	F
7	F	F	Т	F	Т	F	F
8	F	F	F	F	T	F	F

- Conditions under which each of the clauses determines p

 - p_b: a ∧¬c
 - p_c: a ∧ b

All pairs of rows satisfying CACC

a: {1,3,4} x {5,7,8}, b: {(2,4)}, c:{(1,2)}

All pairs of rows satisfying RACC

a: {(1,5),(3,7),(4,8)}

Same as CACC pairs for b, c

GICC

a: {(2,6)} for p=F, no feasible pair for p=T

b: {5,6}x{7,8} for p=F, {(1,3) for p=T

c: {5,7}x{6,8} for p=F, {(3,4)} for p=T

RICC

a: same as GICC

b: {(5,7),(6,8)} for p=F, {(1,3)} for p=T

 $c: \{(5,6),(7,8)\}$ for p=F, $\{(3,4)\}$ for p=T

Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
 - In fact, most predicates only have one clause!
 - With only clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses
- Control software often has many complicated predicates, with lots of clauses
 - Question ... why don't complexity metrics count the number of clauses in predicates?

