First order theories

(Chapter 1, Sections 1.4-1.5)

From the slides for the book
"Decision procedures"
by D.Kroening and O.Strichman

Prelude: Syntax v.s. Semantic in Logic Framework

- An example of small language
- Syntax
- $F:=0|1| F+1 \mid 1+F$
- Ex. $0,0+1+1,1+0+1$, but not $0+0$
- Possible semantics
- $1+1$ == $1+1+0$?
- Yes (interpreting formula as a natural \#),

$$
=[1+1]_{\mathrm{N} 1}=2,[1+1+0]_{\mathrm{N} 1}=2 \quad \rightarrow 1+1==_{\mathrm{N} 1} 1+1+0
$$

- No (interpreting formula as string),

$$
" \quad[1+1]_{S}=" 1+1 ",[1+1+0]_{S}=" 1+1+0 " \rightarrow 1+1!={ }_{S} 1+1+0
$$

- No (interpreting formula as a natural \# of string length)

$$
[1+1]_{\mathrm{N} 2}=3,[1+1+0]_{\mathrm{N} 2}=5 \quad \rightarrow 1+1!=_{\mathrm{N} 2} 1+1+0
$$

Examples of Semantic Mapping

Mathematical Domain

First order logic

- A first order theory consists of
- Variables
- Logical symbols: $-\neq$; < '(' ')'
- Non-logical Symbols \sum : Constants, predicate and function symbols
- Syntax

Examples

- $\sum=\left\{0,1, \quad{ }^{\prime}+\right.$ ', ‘>’ $\}$
- '0','1' are constant symbols
- '+' is a binary function symbol
- ' $>$ ' is a binary predicate symbol
- An example of a \sum-formula:

$$
<y ; x . x>y
$$

Examples

- $\sum=\{1, \times>$ ', ‘‘', 'isprime' $\}$
- ' 1 ' is a constant symbol
- ' $>$ ', '<' are binary predicates symbols
- 'isprime' is a unary predicate symbol
- An example \sum-formula:
; $\mathrm{n}<\mathrm{p} . \mathrm{n}>1$ \$ isprime $(\mathrm{p})-\mathrm{n}<\mathrm{p}<2 \mathrm{n}$.
- Are these formulas valid?
- So far these are only symbols, strings. No meaning yet.

Interpretations

- Let $\sum=\{0,1, ~ ‘+’, ~ ‘=’\}$ where 0,1 are constants, '+' is a binary function symbol and ' $=$ ' a predicate symbol.
- Let $\phi=<x . x+0=1$
- Q: Is ϕ true in Q_{0} ?
- A: Depends on the interpretation!

Structures

- A structure is given by:

1. A domain
2. An interpretation of the nonlogical symbols: i.e.,

- Maps each predicate symbol to a predicate of the same arity
- Maps each function symbol to a function of the same arity
- Maps each constant symbol to a domain element

3. An assignment of a domain element to each free (unquantified) variable

Structures

- Remember $\phi=<x . x+0=1$
- Consider the structure S :
- Domain: Q_{0}
- Interpretation:
- ' 0 ' and ' 1 ' are mapped to 0 and 1 in Q_{0}
- '=’ \mapsto = (equality)
- '+' \mapsto * (multiplication)
- Now, is ϕ true in S ?

Satisfying structures

- Definition: A formula is satisfiable if there exists a structure that satisfies it
- Example: $\phi=<x . x+0=1$ is satisfiable
- Consider the structure S^{\prime} :
- Domain: Q 0
- Interpretation:
- ' 0 ' and ' 1 ' are mapped to 0 and 1 in Q_{0}
- ‘=‘ $\mapsto=$ (equality)
- ' + ' $\mapsto+$ (addition)
- S' satisfies ϕ. S^{\prime} is said to be a model of ϕ.

First-order theories

- First-order logic is a framework.
- It gives us a generic syntax and building blocks for constructing restrictions thereof.
- Each such restriction is called a first-order theory.
- A theory defines
- the signature \sum (the set of nonlogical symbols) and
- the interpretations that we can give them.

Definitions

- $\quad \sum$ - the signature. This is a set of nonlogical symbols.
- $\quad \sum$-formula: a formula over \sum symbols + logical symbols.
- A variable is free if it is not bound by a quantifier.
- A sentence is a formula without free variables.
- A \sum-theory T is defined by a set of \sum-sentences.

Definitions...

- Let T be a \sum-theory
- A \sum-formula ϕ is T-satisfiable if there exists a structure that satisfies both ϕ and the sentences defining T .
- A \sum-formula ϕ is T-valid if all structures that satisfy the sentences defining T also satisfy ϕ.

Example

- Let $\sum=\{0,1, ‘+’, ‘=’$
- Recall $\phi=<x . x+0=1$
- ϕ is a \sum-formula.
- We now define the following \sum-theory:
- ; x. x = x
// '=' must be reflexive
- ; $x, y \cdot x+y=y+x$
// '+' must be commutative
- Not enough to prove the validity of ' !

Theories through axioms

- The number of sentences that are necessary for defining a theory may be large or infinite.
- Instead, it is common to define a theory through a set of axioms.
- The theory is defined by these axioms and everything that can be inferred from them by a sound inference system.

Example 1

- Let $\sum=\left\{{ }^{\prime \prime}=\right.$ ' $\}$
- An example \sum-formula is $\phi=((x=y)-=(y=z)) \$=(x=z)$
- We would now like to define a \sum-theory T that will limit the interpretation of ' $=$ ' to equality.
- We will do so with the equality axioms:
- ; $x . x=x$
- ; $x, y \cdot x=y \$ y=x$
व ; x, y, z. $x=y-y=z \$ x=z$
(reflexivity)
(symmetry)
(transitivity)
- Every structure that satisfies these axioms also satisfies ϕ above.
- Hence ϕ is T-valid.

Example 2

- Let $\sum=\left\{{ }^{\prime}<\right.$ ' $\}$
- Consider the \sum-formula : ; $\mathrm{x}<\mathrm{y} . \mathrm{y}<\mathrm{x}$
- Consider the theory T:
- ; $x, y, z . x<y-y<z \rightarrow x<z$
(transitivity)
- $\quad ; x, y . x<y \rightarrow=(y<x)$
(anti-symmetry)

Example 2 (cont'd)

- Recall: ': ; \quad <y. $y<x$
- Is • T-satisfiable?
- We will show a model for it.
- Domain:]
- ' $<$ ' \mapsto <
- Is • T-valid?
- We will show a structure to the contrary
- Domain: Q 0
- 'く' $\rightarrow<$

Fragments

- So far we only restricted the nonlogical symbols.
- Sometimes we want to restrict the grammar and the logical symbols that we can use as well.
- These are called logic fragments.
- Examples:
- The quantifier-free fragment over $\sum=\left\{{ }^{\prime}=\right.$ ', ' + ', 0,1$\}$
- The conjunctive fragment over $\sum=\left\{={ }^{\prime},{ }^{\prime}+{ }^{\prime}, 0,1\right\}$

Fragments

- Let $\sum=\{ \}$
- (T must be empty: no nonlogical symbols to interpret)
- Q: What is the quantifier-free fragment of T?
- A: propositional logic
- Thus, propositional logic is also a first-order theory.
- A very degenerate one.

Theories

- Let $\sum=\{ \}$
- (T must be empty: no nonlogical symbols to interpret)
- Q: What is T?
- A: Quantified Boolean Formulas (QBF)
- Example:
- $; \mathrm{x}_{1}<\mathrm{x}_{2} ; \mathrm{x}_{3} . \mathrm{x}_{1} \rightarrow\left(\mathrm{x}_{2}\right.$ 原 $\left.\mathrm{x}_{3}\right)$

Some famous theories

- Presburger arithmetic: $\Sigma=\{0,1$, ' + ', ‘=’\}
- Peano arithmetic: $\Sigma=\left\{0,1,{ }^{‘+}{ }^{\prime}\right.$, ‘*, ' $\left.=’\right\}$
- Theory of reals
- Theory of integers
- Theory of arrays
- Theory of pointers
- Theory of sets
- Theory of recursive data structures
- ...

The algorithmic point of view...

- It is also common to present theories NOT through the axioms that define them.
- The interpretation of symbols is fixed to their common use.
- Thus '+' is plus, ...
- The fragment is defined via grammar rules rather than restrictions on the generic first-order grammar.

The algorithmic point of view...

- Example: equality logic (= "the theory of equality")
- Grammar: formula : formula Æ formula | = formula | atom
atom : term-variable = term-variable
| term-variable = constant | Boolean-variable
- Interpretation:
' $=$ ' is equality.

The algorithmic point of view...

- This simpler way of presenting theories is all that is needed when our focus is on decision procedures specific for the given theory.
- The traditional way of presenting theories is useful when discussing generic methods (for any decidable theory T)
- Example 1: algorithms for combining two or more theories
- Example 2: generic SAT-based decision procedure given a decision procedure for the conjunctive fragment of T.

Expressiveness of a theory

- Each formula defines a language: the set of satisfying assignments ('models') are the words accepted by this language.
- Consider the fragment '2-CNF'
formula: (literal Æ literal)| formula - formula literal: Boolean-variable | =Boolean-variable

$$
\left(\left\{_{1} \circledast=\left\{_{2}\right)-\left(=\left\{_{3} \nVdash\left\{_{2}\right)\right.\right.\right.\right.
$$

Expressiveness of a theory

- Now consider a Propositional Logic formula
$\phi:\left(\left\{_{1} \notin\left\{_{2} \notin\left\{_{3}\right)\right.\right.\right.$.
- Q: Can we express this language with 2-CNF?
- A: No.

Proof:

- The language accepted by ϕ has 7 words: all assignments other than $\left\{_{1}=\left\{_{2}=\left\{_{3}=F\right.\right.\right.$.
- The first $2-C N F$ clause removes $1 / 4$ of the assignments, which leaves us with 6 accepted words. Additional clauses only remove more assignments.

Expressiveness of a theory

- Claim: 50FQ I • Sursrvivirqdalorjlf

The tradeoff

- So we see that theories can have different expressive power.
- Q: why would we want to restrict ourselves to a theory or a fragment? why not take some 'maximal theory'...
- A: Adding axioms to the theory may make it harder to decide or even undecidable.

Example: Hilbert axiom system (K)

- Let K be (M.P) + the following axiom schemas:
$\overline{A \$(B \$ A)}(H 1)$
$((A \$(B \$ C)) \$((A \$ B) \$(A \$ C))$
$(=B \$ \# A) \$ \#(A \$ B)$
- K is sound and complete
- This means that with K we can prove any valid propositional formula, and only such formulas. The proof is finite.

Example

- But there exists first order theories defined by axioms which are not sufficient for proving all T-valid formulas.

Example: First Order Peano Arithmetic

- $\quad \sum=\left\{0,1, ‘+{ }^{\prime},{ }^{\prime *},{ }^{\prime}=’\right\}$
- Domain: Natural numbers
- Axioms ("semantics"):

Undecidable!

1. $\quad ; \quad x:(0 \neq x+1)$
2. $\quad ; x: ; y:(x \neq y) \$(x+1 \neq y+1)$
$+ \begin{cases}3 . & \text { Induction } \\ 4 . & ; x: x+0=x \\ 5 . & ; x: ; y:(x+y)+1=x+(y+1)\end{cases}$
These axioms define the semantics of ' + '

* $\begin{cases}6 . & ; x: x^{*} 0=0 \\ 7 . & ; x ; y: x^{*}(y+1)=x^{*} y+x\end{cases}$

Example: First Order Presburger Arithmetic

- $\Sigma=\left\{0,1,+{ }^{\prime}\right.$ ', '敞, ' $=$ ' $\}$
- Domain: Natural numbers
- Axioms ("semantics"):

decidable!

1. $\quad ; x:(0 \neq x+1)$
2. $\quad ; x: ; y:(x \neq y) \$(x+1 \neq y+1)$
$+ \begin{cases}\text { 3. } & \text { Induction } \\ \text { 4. } & ; x: x+0=x\end{cases}$
; $x: ; y:(x+y)+1=x+(y+1)$
These axioms define the semantics of ' + '
$* \begin{cases}6 . & ; x: x^{*} 0=0 \\ 7 . & ; x ; y: x^{*}(y+1)=x^{*} y+x\end{cases}$

Tradeoff: expressiveness/computational hardness.

- Assume we are given theories $O_{1}{ }^{\circ} \ldots{ }^{\circ} O_{n}$

When is a specific theory useful?

1. Expressible enough to state something interesting.
2. Decidable (or semi-decidable) and more efficiently solvable than richer theories.
3. More expressible, or more natural for expressing some models in comparison to 'leaner' theories.
