
Concurrency Analysis for
Correct Concurrent Programs:

Fight Complexity Systematically and Efficiently

Moonzoo Kim
Computer Science, KAIST

/37

Motivation for Concurrency Analysis
Most of my subjects (interviewee) have
found that the hardest bugs to track
down are in concurrent code
…
And almost every one seem to think that
ubiquitous multi-core CPUs are going to
force some serious changes in the way
software is written

P. Siebel, Coders at work (2009) -- interview with 15 top programmers of our times:
Jamie Zawinski, Brad Fitzpatrick, Douglas Crockford, Brendan Eich, Joshua Bloch, Joe Armstrong,
Simon Peyton Jones, Peter Norvig, Guy Steele, Dan Ingalls, L Peter Deutsch, Ken Thompson,
Fran Allen, Bernie Cosell, Donald Knuth

Unintended/unexpected thread scheduling (a.k.a., interleaving
scenarios) raises hard to detect concurrency errors

/ 30SWTV group @ KAIST

Concurrent Programming is Error-prone
• Correctness of concurrent programs is hard to achieve

– Interactions between threads should be carefully performed
– A large # of thread executions due to non-deterministic thread scheduling
– Testing technique for sequential programs do not properly work

3

Ex. Peterson mutual exclusion (From Dr. Moritz Hammer’s Visualisierung)

2 processes
, 30 states

3 processes, 853 states
4 processes, 55043 states

Concurrency

4/11

• Concurrent programs have very high complexity
due to non-deterministic scheduling

• Ex. int x=0, y=0, z =0;
void p() {x=y+1; y=z+1; z= x+1;}
void q() {y=z+1; z=x+1; x=y+1;}
– Total 20 interleaving scenarios

= (3+3)!/(3!x3!)

– However, only 11 unique outcomes

p()

q()

x=y+1 y=z+1 z=x+1

x=y+1

y=z+1

z=x+1

Trail1: 2,2,3
Trail2: 3,2,4
Trail3: 3,2,3
Trail4: 2,4,3
Trail5: 5,4,6
Trail6: 5,4,3

Trail7: 2,1,3
Trail8: 2,3,3
Trail9: 4,3,5
Trail10: 4,3,2
Trail11: 2,1,2

Moonzoo Kim /115

Very difficult to find
concurrency bugs !!!

Operational Semantics of Software

• A system execution σ is
a sequence of states
s0s1…
– A state has an

environment ρs:Var-> Val

• A system has its
semantics as a set of
system executions

6

x:0,y:0

x:0,y:1

x:1,y:2

x:1,y:3

x:2,y:4

s0

s1

s2

s3

s4

x:5,y:1

x:5,y:2

x:5,y:3

x:5,y:4

s11

s12

s13

s14

x:7,y:3

x:7,y:4

s21

s22

Model Checker Analyzes All Possible Scheduling

active type A() {
byte x;
again:

x++;
goto again;

}

7

x:0

x:1

x:2

x:255

active type A() {
byte x;
again:

x++;
goto again;

}

active type B() {
byte y;
again:

y++;
goto again;

}

x:0,y:0

x:1,y:0

x:2,y:0

x:255,y:0

x:0,y:1

x:1,y:1

x:0,y:255

x:1,y:255

x:255,y:255

x:2,y:1 x:2,y:255

Hierarchy of SW Coverage Criteria

8/60

Simple Round Trip
Coverage

SRTCNode
Coverage

NC

Edge
Coverage

EC

Edge-Pair
Coverage

EPC

Prime Path
Coverage

PPC

Complete Path
Coverage

CPC

Complete Round
Trip Coverage

CRTC

All-DU-Paths
Coverage

ADUP

All-uses
Coverage

AUC

All-defs
Coverage

ADC

Complete Value
Coverage

CVC (SW) Model checking

Concolic testing

	Concurrency Analysis for �Correct Concurrent Programs: �Fight Complexity Systematically and Efficiently
	Motivation for Concurrency Analysis
	Concurrent Programming is Error-prone
	Concurrency
	슬라이드 번호 5
	Operational Semantics of Software
	Model Checker Analyzes All Possible Scheduling
	Hierarchy of SW Coverage Criteria

