
1

Quality Concurrent SW
- Fight the Complexity of SW

Moonzoo Kim
CS Dept. KAIST

2

SW Testing is a Complex and
Challenging task!!!
Object-Oriented Programming, Systems Languages, and
Applications, Seattle, Washington, November 8, 2002

• “… When you look at a big commercial software company like
Microsoft, there's actually as much testing that goes in as
development. We have as many testers as we have developers.
Testers basically test all the time, and developers basically are
involved in the testing process about half the time…”

• “… We've probably changed the industry we're in. We're not in
the software industry; we're in the testing industry, and writing
the software is the thing that keeps us busy doing all that testing.”

• “…The test cases are unbelievably expensive; in fact, there's
more lines of code in the test harness than there is in the
program itself. Often that's a ratio of about three to one.”

http://images.google.com/imgres?imgurl=http://thomashawk.com/hello/209/1017/1024/hdtv%20gates.jpg&imgrefurl=http://thomashawk.com/2004_12_01_archive.html&h=580&w=1024&sz=55&hl=en&start=1&tbnid=Dw8ojcvZl9h4gM:&tbnh=85&tbnw=150&prev=/images?q=bill-gates&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://thomashawk.com/hello/209/1017/1024/hdtv%20gates.jpg&imgrefurl=http://thomashawk.com/2004_12_01_archive.html&h=580&w=1024&sz=55&hl=en&start=1&tbnid=Dw8ojcvZl9h4gM:&tbnh=85&tbnw=150&prev=/images?q=bill-gates&svnum=10&hl=en&lr=

Ex. Testing a Triangle Decision Program

Moonzoo Kim /3

Input : Read three integer values from the command line.
The three values represent the length of the sides of a
triangle.

Output : Tell whether the triangle is
• 부등변삼각형 (Scalene) : no two sides are equal
• 이등변삼각형(Isosceles) : exactly two sides are equal
• 정삼각형 (Equilateral) : all sides are equal

Create a Set of Test Cases for this program
(3,4,5), (2,2,1), (1,1,1) ?

Precondition (Input Validity) Check

Moonzoo Kim /114

• Condition 1: a > 0, b > 0, c > 0
• Condition 2: a < b + c

– Ex. (4, 2, 1) is an invalid triangle
– Permutation of the above condition

• a < b +c
• b < a + c
• c < a + b

• What if b + c exceeds 232 (i.e. overflow)?
– long v.s. int v.s. short. v.s. char

• Developers often fail to consider implicit
preconditions
– Cause of many hard-to-find bugs

Moonzoo Kim /115

• # of test cases
required?
① 4
② 10
③ 50
④ 100

• # of feasible unique
execution paths?
• 11 paths
• guess what test

cases needed

“Software Testing
a craftsman’s
approach” 2nd ed
by P.C.Jorgensen
(no check for
positive inputs)

.
CS Dept. KAIST

Software v.s. Magic Circle (마법진)

6/58

• Written by a software
developers line by line

• Requires programming
expertise

• SW executes complicated
tasks which are far more
complex than the code
itself

• The software often
behaves in unpredicted
ways and crash occurs

• Written by a human
magician line by line

• Requires magic spell
knowledge

• Summoned monsters
are far more powerful
than the magic spell
itself

• The summoned demon
is often uncontrollable
and disaster occurs

네이버웹툰 “그 판타지세계에서사는법“ by 촌장

http://www.kaist.ac.kr/main2.html
http://www.kaist.ac.kr/main2.html

.
CS Dept. KAIST7

Safety Problems due to Poor Quality of SW

http://www.kaist.ac.kr/main2.html
http://www.kaist.ac.kr/main2.html
http://www.redstone.army.mil/history/systems/jupiter/photos/jupiter%201st%20test%20flight.jpg
http://www.redstone.army.mil/history/systems/jupiter/photos/jupiter%201st%20test%20flight.jpg

.
CS Dept. KAISTMoonzoo Kim

8

http://www.kaist.ac.kr/main2.html
http://www.kaist.ac.kr/main2.html

.
CS Dept. KAIST

Research Trends toward Quality Systems

• Academic research on developing embedded systems has reached
stable stage

• Research focus has moved on to the quality of the systems from the
mere functionalities of the systems
– Energy efficient design, ez-maintenance, dynamic configuration, etc

• Software reliability is one of the highly pursued qualities
– USENIX Security 2015 Best paper

• “Under-Constrained Symbolic Execution: Correctness Checking for Real
Code” @ Stanford University

– ASPLOS 2011 Best paper
• “S2E: a platform for in-vivo multi-path analysis for software systems” @

EPFL
– OSDI 2008 Best paper

• “Klee: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs” @ Stanford

9

http://www.kaist.ac.kr/main2.html
http://www.kaist.ac.kr/main2.html

.
CS Dept. KAIST

Formal Analysis of Software as a
Foundational and Promising CS Research

• 2007 ACM Turing Awardees
– Prof. Edmund Clarke, Dr. Joseph

Sipfakis, Prof. E. Allen Emerson
– For the contribution of migrating

from pure model checking research
to industrial reality

• 2013 ACM Turing Awardee
– Dr. Leslie Lamport
– For fundamental contributions to the theory

and practice of distributed and concurrent
systems

• Happens-before relation, sequential
consistency, Bakery algorithm, TLA+
(Temporal Logic for Actions), and LaTeX

10

http://www.kaist.ac.kr/main2.html
http://www.kaist.ac.kr/main2.html

/37

Motivation for Concurrency Analysis
• Multithreaded programming are becoming popular more and more

– 37 % of all open-source C# applications and 87% of large applications in
active code repositories use multi-threading [Okur & Dig FSE 2012]

• However, multithreaded programming remains as error-prone
– Writing correct multithreaded program is difficult
– Testing written multithreaded program is difficult

2016-05-12 11

Small
(1K-10K)

Medium
(10K-100K)

Large
(>100K)

of all projects in the study 6020 1553 205

of projects with multithreading 1761 916 178

of projects with parallel library uses 412 203 40

Most of my subjects (interviewee) have
found that the hardest bugs to track
down are in concurrent code
…
And almost every one seem to think that
ubiquitous multi-core CPUs are going to
force some serious changes in the way
software is written

P. Siebel, Coders at work (2009) -- interview with 15 top programmers of our times:
Jamie Zawinski, Brad Fitzpatrick, Douglas Crockford, Brendan Eich,
Joshua Bloch, Joe Armstrong, Simon Peyton Jones, Peter Norvig,
Guy Steele, Dan Ingalls, L Peter Deutsch, Ken Thompson, Fran Allen,
Bernie Cosell, Donald Knuth

Concurrency

Moonzoo Kim /1112

• Concurrent programs have very high complexity
due to non-deterministic scheduling
– Ex. int x=0, y=0, z =0;
void p() {x=y+1; y=z+1; z= x+1;}
void q() {y=z+1; z=x+1; x=y+1;}

p()

q()

/ 30SWTV group @ KAIST

Concurrent Programming is Error-prone
• Correctness of concurrent programs is hard to achieve

– Interactions between threads should be carefully performed
– A large # of thread executions due to non-deterministic thread scheduling
– Testing technique for sequential programs do not properly work

13

Ex. Peterson mutual exclusion (From Dr. Moritz Hammer’s Visualisierung)

2 processes
, 30 states

3 processes, 853 states
4 processes, 55043 states

14

An Example of Mutual Exclusion Protocol

char cnt=0,x=0,y=0,z=0;

void process() {
char me=_pid +1; /* me is 1 or 2*/

again:
x = me;
If (y ==0 || y== me) ;
else goto again;

z =me;
If (x == me) ;
else goto again;

y=me;
If(z==me);
else goto again;

/* enter critical section */
cnt++;
assert(cnt ==1);
cnt --;
goto again;

}
Mutual

Exclusion
Algorithm

Critical
section

Software
locks

Process 0

x = 1
If(y==0 || y == 1)

z = 1
If(x == 1)
y = 1
If(z == 1)
cnt++

Process 1
x = 2
If(y==0 || y ==2)
z = 2
If(x==2)

y=2
If (z==2)
cnt++

Counter
Example

Violation detected !!!

/ 30SWTV group @ KAIST

Research on Concurrent Program Analysis
• We have developed static/dynamic techniques for finding bugs in large

concurrent programs effectively
• Coverage-guided testing is a promising technique for effective/efficient

concurrent program quality assurance

Testing
Code

pattern-
based

analysis

Precision

Scalability

Industry-size
concurrent
programsModel

Checking

Sync.
pattern
based
bug

detection Bug pattern +
static analysis

Coverage-guided
thread scheduling

generation

Model-
based
testing

Race bug
classification

COBET
[JSS’12]

MOKERT
[MBT’08]

CUVE [ISSTA’12]

/ 30SWTV group @ KAIST

Techniques to Test Concurrent Programs

16

• Find predefined patterns of
suspicious synchronizations
[Eraser, Atomizer, CalFuzzer]

• Limitation: focused on specific
bug

Systematic testing

• Explore all possible thread
scheduling cases [CHESS, Fusion]

• Limitation: limited scalability

Random testing

• Generate random thread
scheduling [ConTest]

• Limitation: may not investigate
new interleaving

Direct thread scheduling
for high test coverage

Pattern-based bug detection

/37

Challenge: Thread Schedule Generation

• The basic thread scheduler repeats similar schedules in a fixed
environment

• Testing with the basic thread scheduler is not effective to
generate diverse schedules, possible for field environments

2016-05-12 17

5 4 3 2 1

5 4 3 2 1

5 4 3 2 1

Thread
scheduler 5 5 5 … 4 3 2 1 2 1 2 1

Thread-1

Thread-2

Thread-3

Interleaved execution-1

5 5 5 … 4 3 2 1 2 1 2 1

Interleaved execution-2

5 5 5 … 4 3 2 1 2 1 2 1

Interleaved execution-3
Testing environment

/37

Limitation of Random Testing Technique

Limitation
• The probability to cover subtle behavior may be very low
• No guarantee that the technique keeps discover new behaviors

2016-05-12 18

5 4 3 2 1

5 4 3 2 1

5 4 3 2 1

Thread
scheduler

5 5 5 … 2 3 2 3 1 2 1 1

Thread-1

Thread-2

Thread-3

Interleaved execution-1

Interleaved execution-2

Testing environment

Noise injector

5 5 5 … 2 3 2 1 3 2 1 1

5 4 3 … 3 2 5 1 4 3 2 1

/37

Systematic Testing Technique

Limitation
• Not efficient to check diverse behaviors

– A test might be skewed for checking local behaviors

2016-05-12 19

5 4 3 2 1

5 4 3 2 1

5 4 3 2 1

Systematic
testing

technique

5 4 3 … 3 2 1 5 4 3 2 1

Thread-1

Thread-2

Thread-3

Interleaved execution-1

Interleaved execution-2

Testing environment

5 4 3 … 3 2 5 1 4 3 2 1
:
:5 + 5 + 5 !

5! 5! 5!
5 4 3 … 3 5 4 2 1 3 2 1

Interleaved execution-10

/37

Pattern-directed Testing Technique

Limitation
• Not effective to discover diverse behaviors

– The technique may miss concurrency faults not predicted
• No guarantee to have a chance to induce predicted faults

2016-05-12 20

5 4 3 2 1

5 4 3 2 1

5 4 3 2 1

Bug-driven
scheduler

5 4 3 … 2 1 4 3 2 1 2 1
Thread-1

Thread-2

Thread-3

Interleaved execution-1

Interleaved execution-2

Testing environment

5 4 3 … 2 1 4 3 2 1 2 1

Pattern-based
bug predictor

Interleaved execution-3

5 4 3 … 3 2 4 3 2 1 1 1

/37

Coverage-based Testing Technique

2016-05-12 21

5 4 3 2 1

5 4 3 2 1

5 4 3 2 1

Coverage-
based

scheduler
5 5 4 … 2 3 2 3 1 2 1 1

Thread-1

Thread-2

Thread-3

Interleaved execution-1

Testing environment

Coverage
metric

Coverage
info.

Coverage
measure

:
:

Advantage
• High co-relation between concurrent

coverage and fault-finding
– Engineer can measure testing progress explicitly
– Note that coverage-based testing is a standard

testing process in sequential program testing

	Quality Concurrent SW�- Fight the Complexity of SW
	슬라이드 번호 2
	Ex. Testing a Triangle Decision Program
	Precondition (Input Validity) Check
	슬라이드 번호 5
	Software v.s. Magic Circle (마법진)
	Safety Problems due to Poor Quality of SW
	슬라이드 번호 8
	Research Trends toward Quality Systems
	Formal Analysis of Software as a Foundational and Promising CS Research
	Motivation for Concurrency Analysis
	Concurrency
	Concurrent Programming is Error-prone
	An Example of Mutual Exclusion Protocol�
	Research on Concurrent Program Analysis
	Techniques to Test Concurrent Programs
	Challenge: Thread Schedule Generation
	Limitation of Random Testing Technique
	Systematic Testing Technique
	Pattern-directed Testing Technique
	Coverage-based Testing Technique

