
Deadlock Bug Detection Techniques

Prof. Moonzoo Kim
CS KAIST

CS492B Analysis of Concurrent Programs

1

Bug Detection Techniques for
Concurrent Programs

1,000,000 LOC <100~1,000 LOC

Precision

rstest

ConTest

MetaL
RacerX

Java PathFinder

jCute

CHESS

SPIN

CalFuzzer

Atomizer
Eraser

Fusion

KISS

Scalability

Verification

False alarm

Model checking techniques
+ High precision
+ Comprehensive error detection
- Scalability

(state explosion problem)
- Verification expertise is required

Testing techniques
+ High precision
+ Friendly to developers
- Difficult to generate

test cases and thread schedules

Bug detection techniques
+ Fast and convenient

(no need to generate many
executions)

- False alarms

2CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Deadlock Bugs Frequently Occur in Real World

• In a survey on 105 real-world concurrency bugs in open-
source applications, 31 out of 105 bugs are deadlock bugs
[Lu et al., ASPLOS 08]

3CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Deadlock Bugs Frequently Occur in Real World
• According to Apache

bug tracking systems,
there have been 200
deadlock related issues
since 2014

4CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Deadlock

• A deadlock occurs when each of a set of threads

is blocked, waiting for another thread in the set

to satisfy certain condition

5CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

release shared resource

raise event

Resource Deadlock
• Ex. Dining philosopher problem

1. Think

2. If left fork is available,
pick it up

3. If right fork is available,
pick it up

4. Eat

5. Put the right folk down

6. Put the left folk down

Folk#1

Folk#2

[Milner]

Pick up Folk#1

Pick up Folk#2

[Dijkstra]

Pick up Folk#2

Pick up Folk#1

[Milner]

Pick up Folk#1

Wait for
Folk#2

[Dijkstra]

Pick up Folk#2

Wait for
Folk#1

6CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Resource Deadlock in Concurrent Programs

• ABBA deadlock

t1: Thread 1

1:lock(X)

2:x = …

3:lock(Y)

t2: Thread 2

11:lock(Y)

12:y=...

13:lock(X)

Thread1() {

1: lock(X)

2: x = … ;

3: lock(Y)

4: y = … ;

5: unlock(Y)

6: unlock(X)

}

Thread2() {

11: lock(Y)

12: y = … ;

13: lock(X)

14: x = … ;

15: unlock(X)

16: unlock(Y)

}

7CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Non-blocking Algorithm
• An algorithm is called non-blocking if failure or suspension of any thread

cannot cause failure or suspension of another thread
– a non-blocking algorithm is lock-free if there is guaranteed system-wide

progress, and wait-free if there is also guaranteed per-thread progress.
• Blocking a thread is undesirable for many reasons while non-blocking

algorithms do not suffer from these downsides
– while the thread is blocked, it cannot accomplish anything
– certain interactions between locks can lead to error conditions such as

deadlock, livelock, and priority inversion.
– using locks involves a trade-off between coarse-grained locking, which can

significantly reduce opportunities for parallelism, and fine-grained locking,
which requires more careful design, increases locking overhead and is more
prone to bugs.

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 8

Excerpt from the wikipedia

Communication Deadlock

t1: Thread 1
3:wait(m)//i==0
…

3:wait(m)//i==9

t2: Thread 2

13:notify(m)//j==0
…

13:notify(m)//j==9
(terminate)

Thread1() {
1: ...
2: for(i=0;i<10;i++){
3: wait(m) ;}
}

Thread2() {
11: ...
12: for(j=0;j<10;j++){
13: notify(m);}

}

9CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

• Lost notify

public final void wait()

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 10

Excerpt from the Java reference manual

• Causes the current thread to wait until another thread invokes the notify()
method or the notifyAll() method for this object.

• The current thread must own this object's monitor.
– The thread releases ownership of this monitor and waits until another thread notifies

threads waiting on this object's monitor to wake up either through a call to the notify
method or the notifyAll method. The thread then waits until it can re-obtain ownership
of the monitor and resumes execution.

• Interrupts and spurious wakeups are possible, and this method should
always be used in a loop:

synchronized (obj) {
while (<condition does not hold>)

obj.wait();
... // Perform action appropriate to condition

}

See the following stackoverflow discussion:
http://stackoverflow.com/questions/105059
2/do-spurious-wakeups-actually-happen

http://stackoverflow.com/questions/1050592/do-spurious-wakeups-actually-happen

public final void notify()

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 11

Excerpt from the Java reference manual

• Wakes up a single thread that is waiting on this object's monitor.
– If any threads are waiting on this object, one of them is chosen to be awakened. The

choice is arbitrary and occurs at the discretion of the implementation.

• The awakened thread will not be able to proceed until the current
thread relinquishes the lock on this object.
– The awakened thread will compete in the usual manner with any other threads that

might be actively competing to synchronize on this object; for example, the
awakened thread enjoys no reliable privilege or disadvantage in being the next
thread to lock this object.

• This method should only be called by a thread that is the owner of
this object's monitor. A thread becomes the owner of the object's
monitor in one of three ways:
– By executing a synchronized instance method of that object.
– By executing the body of a synchronized statement that synchronizes on the object.
– For objects of type Class, by executing a synchronized static method of that class.

Finding Deadlock Bugs is Difficult

• A deadlock bug induces deadlock situations
only under certain thread schedules

• Systems software creates a massive number
of locks for fine-grained concurrency controls

• Function caller-callee relation complicates
the reasoning about possible nested lockings

12CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Bug Detection Approach
Resource deadlock
• Basic potential deadlock detection algorithm
• GoodLock algorithm

Communication deadlock
• CHECKMATE: a trace program model-checking

technique for deadlock detection

13CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Basic Potential Deadlock Detection

• Extend the cyclic deadlock monitoring algorithm

• Cyclic deadlock monitoring algorithm (e.g. LockDep)
– Monitor lock acquires and releases in runtime
– Lock graph (N, EN)

• Create a node nX when a thread acquires lock X
• Create an edge (nX, nY) when a thread acquires lock Y

while holding lock X
• Remove nX , (nX,*) and (*, nX) when a thread releases X

 Report deadlock when the graph has any cycle

14CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Cyclic Deadlock Detection Example (1/2)

t1: Thread 1

1:lock(X)

2:a = …

3:lock(Y)

t2: Thread 2

11:lock(Y)

12:b=...

13:lock(X)

Thread1() {

1: lock(X)

2: a = … ;

3: lock(Y)

4: b = … ;

5: unlock(Y)

6: unlock(X)

}

Thread2() {

11: lock(Y)

12: b = … ;

13: lock(X)

14: a = … ;

15: unlock(X)

16: unlock(Y)

}

X Y

3

13 Deadlock detected!
15CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Cyclic Deadlock Detection Example (2/2)
t1: Thread 1

1:lock(X)
2:a = …
3:lock(Y)
4:b = …
5:unlock(Y)

6:unlock(X)

t2: Thread 2

11:lock(Y)

12:b =...
13:lock(X)
14:a =...
15:unlock(X)
16:unlock(Y)

Thread1() {

1: lock(X);

2: a = …

3: lock(Y);

4: b = …

5: unlock(Y);

6: unlock(X);

}

Thread2() {

11: lock(Y);

12: b = …

13: lock(X);

14: a = …

15: unlock(X);

16: unlock(Y);

}

X Y

3

No problem

16CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

XX YYYX

13

Basic Deadlock Prediction Technique
• Potential cyclic deadlock detection algorithm [Harrow, SPIN 00]

– Lock graph (N, EN)

• Create a node nX when a thread acquires lock X

• Create an edge (nX, nY) when a thread acquires lock Y
while holding lock X

• Remove nX , (nX,*) and (*, nX) when a thread releases X

 Report potential deadlocks if the resulted graph at the
end of an execution has a cycle

17CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

[Harrow, SPIN 00] J. J. Harrow, Jr.: Runtime checking of multithreaded applications
with Visual Threads, SPIN Workshop 2000

Potential Cyclic Deadlock Detection Example
t1:Thread 1

1:lock(X)
2:a = …
3:lock(Y)
4:b = …
5:unlock(Y)

6:unlock(X)

t2:Thread 2

11:lock(Y)

12:b=...
13:lock(X)

...

Thread1() {

1: lock(X)

2: a = … ;

3: lock(Y)

4: b = … ;

5: unlock(Y)

6: unlock(X)

}

Thread2() {

11: lock(Y)

12: b = … ;

13: lock(X)

14: a = … ;

15: unlock(X)

16: unlock(Y)

}

X Y

3

13 Cycle  Potential deadlock
18CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Basic Deadlock Prediction Technique

• The algorithm is commercialized as a SW tool
VisualThreads (HP)

• Empirical results show that the algorithm is
very effective to discover hidden deadlock bugs

• Challenge:

19CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

generate many false positive

False Positive Example#1 – Single Thread Cycle

Thread1() {

1: lock(X);
2: lock(Y);
3: unlock(Y);
4: unlock(X);

5: lock(Y);
6: lock(X);
7: unlock(X);
8: unlock(Y);}

Thread2() {

11: lock(X);
12: unlock(X);

13: lock(Y);
14: unlock(Y);}

X Y

2

5

The lock graph has a
cycle, but no deadlock

A cycle that consists of edges
created by one thread is a
false positive

20CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

False Positive Example#2: Gate Lock
Thread1() {

1: lock(X);
2: lock(Y);
3: lock(Z) ;
4: unlock(Z);
5: unlock(Y);
6: unlock(X); }

Thread2() {

11: lock(X);
12: lock(Z) ;
13: lock(Y) ;

14: unlock(Y);
15: unlock(Z);
16: unlock(X);

X

Y

Z

3

13

3, 12

2, 13

Cycle, but no deadlock

Gate lock
(guard lock)

21CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

False Positive Example#3: Thread Creation
f1(){

1: lock(X);
2: lock(Y);
3: unlock(Y);
4: unlock(X);
5: start(f2);

}

Cycle, but no deadlock

f2(){

11: lock(Y) ;

12: lock(X);
13: unlock(X);
14: unlock(Y);

}

X Y

2

12

Thread
segment#1

Thread
segment#2

22CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

main(){

0: start(f1);
}

GoodLock Algorithm[Agarwal, IBM 10]

• Extend the lock graph in the basic potential deadlock detection
algorithm to consider thread, gate lock, and thread segment

• Thread segment graph (S, ES)
– When the main thread t0 starts:

• Create a thread segment node s0 ;
• map t0 to s0 (M(t0) = s0);
• n = 1.

– When a thread ti starts a new thread tj
• Create two thread segment nodes sn and sn+1 ;
• Create two edges (M(ti), sn) and (M(ti), sn+1) ;
• M(ti) = sn ; M(tj) = sn+1 ;
• n = n + 2 ;

[Agarwal, IBM 10] R. Agarwal et al., Detection of deadlock potential in
multithreaded programs, IBM Journal of Research and Development, 54(5), 2010

23CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Thread Segment Graph Example

f1(){
1: lock(X);
2: lock(Y);
3: start(f2);
4: unlock(Y);
5: unlock(X);}

f2(){
11: lock(Y) ;
12: lock(X);
13: unlock(X);
14: unlock(Y);

main(){
0: …
1: start(f1);
2: …
}

s0

s1

s3

s2

s4

t0 : main() t1: f1() t2: f2()

s0

s1

s2 s4

s3

24CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Extended Lock Graph
• Lock graph (N, EN)

– Create a node nX when a thread acquires lock X
– Create an edge (nX, L, nY) when a thread acquires lock Y while

holding lock X, where L = (s1, t, G, s2)
• s1: the thread segment (s1∈ S) where lock X was acquired
• t: the thread that acquires lock Y
• G: the set of locks that t holds when it acquires Y
• s2: the thread segment where lock Y was acquired

25CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Potential Deadlock Detection
• A cycle is valid (i.e., true positive) when every pair of edges

(m11, (s11, t1, G1, s12), m12), and (m21, (s21, t2, G2, s22), m22) in the
cycle satisfies:

• 𝑡𝑡1 ≠ 𝑡𝑡2, and
• 𝐺𝐺1 ∩ 𝐺𝐺2 = ∅ , and
• ¬(𝑠𝑠12 ≺ 𝑠𝑠21)

– The happens-before relation ≺ is the transitive
closure of the relation R such that 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑅𝑅
if there exists the edge from 𝑠𝑠1 to 𝑠𝑠2 in the thread
segment graph

26CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Thread Creation Example Revisit

f1(){
1: lock(X);
2: lock(Y);
3: start(f2);
4: unlock(Y);
5: unlock(X);}

f2(){
11: lock(Y) ;
12: lock(X);
13: unlock(X);
14: unlock(Y);

main(){
0: …
1: start(f1);
2: …
}

s0

s1

s3

s2

s4

t0 : main() t1: f1() t2: f2()

27CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

X Y

e2: (nY, (s4, t2, {Y}, s4), nX)

e1: (nX, (s2, t1, {X}, s2), nY)

s0

s1

s2 s4

s3

Revising Singe Thread Cycle Example
main() {

1: start(Thread1);
2: start(Thread2);
}

Thread2() {

21: lock(X);
22: unlock(X);

23: lock(Y);
24: unlock(Y);}

X Y

e1: (nX, (s2, t1,{X}, s2), nY)

e2: (nY, (s2, t1, {Y}, s2), nX)

s0

s1

s2

s3

s4

Thread1() {
11: lock(X);
12: lock(Y);
13: unlock(Y);
14: unlock(X);

15: lock(Y);
16: lock(X);
17: unlock(X);
18: unlock(Y);}

28CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Revising Gate Lock Example
Thread1() {

1: lock(X);
2: lock(Y);
3: lock(Z) ;
4: unlock(Z);
5: unlock(Y);
6: unlock(X); }

Thread2() {

11: lock(X);
12: lock(Z) ;
13: lock(Y) ;

14: unlock(Y);
15: unlock(Z);
16: unlock(X);

X

Y

Z

e1: (nY, (s2, t1, {X, Y}, s2), nZ)

e2: (nZ, (s4, t2, {X, Z}, s4), nZ)

main() {

start(Thread1);
start(Thread2);

}

s0

s1

s2

s3

s4

29CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Detecting Potential Deadlock
with Wait/Notify, Semaphore, etc*

*P. Joshi et al., An Effective Dynamic Analysis for Detecting Generalized Deadlocks, FSE 2010

30CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

class BlockedBuffer {
List buf = new ArrayList();
int cursize = 0;
int maxsize;

BlockedBuffer(int max){
maxsize = max;

}

sync boolean isFull(){
return(cursize>=maxsize);

}

sync boolean isEmpty(){
return(cursize == 0) ;

}

sync void resize(int m){
maxsize = m;

}

Object get(){
Object e;
sync(this){

while(isEmpty())
wait() ;

e = buf.remove(0);
if(isFull()){

cursize--;
notify(); }

else
cursize--; }

return e; }

sync void put(Object e){
while(isFull())

wait() ;
buf.add(e);
cursize++ ;
notify(); }

Correct Execution Scenario

main() {
BoundedBuffer bf =
new BoundedBuffer(1);

(new Thread1(bf)).start();
(new Thread2(bf)).start();
(new Thread3(bf)).start();}

Thread1(BoundedBuffer bf){
bf.put(0);
bf.put(1);}

Thread2(BoundedBuffer bf){
bf.resize(10);}

Thread3(BoundedBuffer bf){
bf.get();}

Thread1 Thread2 Thread3

bf.put(0)

bf.resize(10)

bf.put(1)

bf.get()

31CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Another Correct Execution Scenario

main() {
BoundedBuffer bf =
new BoundedBuffer(1);

(new Thread1(bf)).start();
(new Thread2(bf)).start();
(new Thread3(bf)).start();}

Thread1(BoundedBuffer bf){
bf.put(0);
bf.put(1);}

Thread2(BoundedBuffer bf){
bf.resize(10);}

Thread3(BoundedBuffer bf){
bf.get();}

Thread1 Thread2 Thread3

bf.put(0)

bf.resize(10)

bf.put(1)

bf.get()

32CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

bf.put(1)

while(isFull())
wait();

if(isFull()) {…
notify() ; }

Deadlock Execution Scenario

main() {
BoundedBuffer bf =
new BoundedBuffer(1);

(new Thread1(bf)).start();
(new Thread2(bf)).start();
(new Thread3(bf)).start();}

Thread1(BoundedBuffer bf){
bf.put(0);
bf.put(1);}

Thread2(BoundedBuffer bf){
bf.resize(10);}

Thread3(BoundedBuffer bf){
bf.get();}

Thread1 Thread2 Thread3

bf.put(0)

bf.resize(10)

bf.put(1)

bf.get()

33CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

while(isFull())
wait();

if(isFull()) {…
notify() ; }

cursize=1

CHECKMATE: Trace Program Model Checking

• Observe a multi-threaded program execution
• Retain only the synchronization operations observed

during execution
– Throw away all other operations like memory update and

method calls

• Create a program from the retained operations (trace
program)

• Model checking trace program
– Check partial behaviors

34CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Trace Program Example
main() {
bf = Lock();
isFull=false;
start(t1);
start(t2);
start(t3);}

t1() {
lock(bf) ;
if(isFull)
wait(bf) ;

isFull=true;
notify(bf) ;
unlock(bf);

lock(bf);
if(isFull)
wait(bf) ;

notify(bf);
unlock(bf);}

t2() {
lock(bf);
isFull=false;
unlock(bf);
}

t3() {
lock(bf) ;
if(isFull)
notify(bf);
unlock(bf);
}

Thread1 Thread2 Thread3

bf.put(0)

bf.resize(10)

bf.put(1)

bf.get()

bf.put(0)

bf.put(1)

bf.get()

bf.resize()

35CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

	Deadlock Bug Detection Techniques
	Bug Detection Techniques for Concurrent Programs
	Deadlock Bugs Frequently Occur in Real World
	Deadlock Bugs Frequently Occur in Real World
	Deadlock
	Resource Deadlock
	Resource Deadlock in Concurrent Programs
	Non-blocking Algorithm
	Communication Deadlock
	public final void wait()
	public final void notify()
	Finding Deadlock Bugs is Difficult
	Bug Detection Approach
	Basic Potential Deadlock Detection
	Cyclic Deadlock Detection Example (1/2)
	Cyclic Deadlock Detection Example (2/2)
	Basic Deadlock Prediction Technique
	Potential Cyclic Deadlock Detection Example
	Basic Deadlock Prediction Technique
	False Positive Example#1 – Single Thread Cycle
	False Positive Example#2: Gate Lock
	False Positive Example#3: Thread Creation
	GoodLock Algorithm[Agarwal, IBM 10]
	Thread Segment Graph Example
	Extended Lock Graph
	Potential Deadlock Detection
	Thread Creation Example Revisit
	Revising Singe Thread Cycle Example
	Revising Gate Lock Example
	Detecting Potential Deadlock �with Wait/Notify, Semaphore, etc*
	Correct Execution Scenario
	Another Correct Execution Scenario
	Deadlock Execution Scenario
	CHECKMATE: Trace Program Model Checking
	Trace Program Example

