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Deadlock Bugs Frequently Occur in Real World

Application =~ What it does Non-Deadlock  Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
OpenOffice  Office Suite 6 2
Total 74 31

* Inasurvey on 105 real-world concurrency bugs in open-
source applications, 31 out of 105 bugs are deadlock bugs
[Lu et al., ASPLOS 08]
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Deadlock Bugs Frequently Occur in Real World

= NEglPhirs Sorars foundation  ore - e According to Apache
Zaare M- bug tracking systems,
> | there have been 200
Project All~  Type Al  Status: All~  Assignee: All= | deadlock More - .
deadlock related issues
since 2014

151-200 of 1,827 S

T Patch Info Key Summary

0 QPID-5344 [AMQP 1.0 JMS] Thread deadlock related fo session ¢

(o) QPID-5439 [AMQP 1.0 JMS client] Client hangs during connection

(=) QPID-5294 [AMQP 1.0 JM3] Thread deadlock due to JVM bug JDF

0 SOLR-3615 Deadlock while trying to recover after a ZK session exj

MESOS-930 Provide slave<-»executor protocol

0 FELIX-4384 Difference between inner class and normal class servi

(] HBASE-10452 Fix potential bugs in exception handlers

O DRILL-333 Throw exception when trying to send message within F
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Deadlock

e A deadlock occurs when each of a set of threads

is blocked, waiting for another thread in the set

to satisfy[certain condition}

release shared resource

raise event
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Resource Deadlock

e Ex. Dining philosopher problem

[Milner] [Dijkstra]

Pick up Folk#1
Pick up Folk#2
Wait for
FElA Wait for
Folk#1
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Resource Deadlock in Concurrent Programs

e ABBA deadlock

Threadl() { Thread2() {  tL:Threadl |  t2:Thread2
= lock(X) 11: lock(Y) 1:lock(X)
i - 12:y = .3

2:X = ..
- lock(Y) 13: lock(X) 11:1ock(Y)
Sy = 14: x = .. ;

- unlock(Y) 15: unlock(x)  3:fock(Y) 122y=...

- unlock(X)  16: unlock(Y) *3'|OCK(X)
} ¥ |
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Excerpt from the wikipedia

Non-blocking Algorithm

An algorithm is called non-blocking if failure or suspension of any thread
cannot cause failure or suspension of another thread

— anon-blocking algorithm is lock-free if there is guaranteed system-wide
progress, and wait-free if there is also guaranteed per-thread progress.

Blocking a thread is undesirable for many reasons while non-blocking
algorithms do not suffer from these downsides
— while the thread is blocked, it cannot accomplish anything

— certain interactions between locks can lead to error conditions such as
deadlock, livelock, and priority inversion.

— using locks involves a trade-off between coarse-grained locking, which can
significantly reduce opportunities for parallelism, and fine-grained locking,

which requires more careful design, increases locking overhead and is more
prone to bugs.
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Communication Deadlock

 Lost notify

Threadl() { Thread2() {
1- ... 11: ...
2: for(i=0;i<10;i++){ 12: For(§J=0;j<10;j++){
3: waitt(m) ;} 13: notify(m);}
+ }
t,: Thread 1 t,: Thread 2

3:wait(m)//i==0
" 13:notify(m)//)==

13:notify(m)//j==9
(terminate)

3:wart(m)//1==9 *
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Excerpt from the Java reference manual

public final void wairt()

e Causes the current thread to wait until another thread invokes the notify()
method or the notifyAll() method for this object.

e The current thread must own this object's monitor.

— The thread releases ownership of this monitor and waits until another thread notifies
threads waiting on this object's monitor to wake up either through a call to the notify

method or the notifyAll method. The thread then waits until it can re-obtain ownership
of the monitor and resumes execution.

* Interrupts and spurious wakeups are possible, and this method should
always be used in a loop:

synchronized (obj) { See the following stackoverflow discussion:

while (<condition does not hold>) | http://stackoverflow.com/questions/105059
obj.wait(); 2/do-spurious-wakeups-actually-happen

... // Perform action appropriate to condition
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http://stackoverflow.com/questions/1050592/do-spurious-wakeups-actually-happen

Excerpt from the Java reference manual

public final void notify()

Wakes up a single thread that is waiting on this object's monitor.

— If any threads are waiting on this object, one of them is chosen to be awakened. The
choice is arbitrary and occurs at the discretion of the implementation.

The awakened thread will not be able to proceed until the current

thread relinquishes the lock on this object.

— The awakened thread will compete in the usual manner with any other threads that
might be actively competing to synchronize on this object; for example, the
awakened thread enjoys no reliable privilege or disadvantage in being the next
thread to lock this object.

This method should only be called by a thread that is the owner of
this object's monitor. A thread becomes the owner of the object's

monitor in one of three ways:
— By executing a synchronized instance method of that object.
— By executing the body of a synchronized statement that synchronizes on the object.
— For objects of type Class, by executing a synchronized static method of that class.



Finding Deadlock Bugs is Difficult

A deadlock bug induces deadlock situations
only under certain thread schedules

e Systems software creates a massive number
of locks for fine-grained concurrency controls

* Function caller-callee relation complicates
the reasoning about possible nested lockings
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Bug Detection Approach

Resource deadlock
e Basic potential deadlock detection algorithm

 GoodLock algorithm

Communication deadlock

e CHECKMATE: a trace program model-checking
technique for deadlock detection
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Basic Potential Deadlock Detection

e Extend the cyclic deadlock monitoring algorithm

* Cyclic deadlock monitoring algorithm (e.g. LockDep)
— Monitor lock acquires and releases in runtime
— Lock graph (N, E,)
* Create a node n, when a thread acquires lock X

e Create an edge (n,, n,) when a thread acquires lock Y
while holding lock X

e Remove ny, (n,, *) and (*, n,) when a thread releases X

— Report deadlock when the graph has any cycle
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Cyclic Deadlock Detection Example (1/2)

Threadl() {
- lock(X)
S a= . ;
: Iock(Y)
b= . 3
> unlock(Y)
> unlock(X)

}

11:
12:
13:
14:
15:
16:

Thread2() { tl: Thread 1 t2: Thread 2
fock(") 1: lock(X)
b — -
lock () 2:a = -
11:lock(Y)
q = -
unlock(X) 3:lock(Y) Zzlb=o .
unlock(Y)
13: lock(X)
3

13 Deadlock detected!
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Cyclic Deadlock Detection Example (2/2)

tl: Thread 1 t2: Thread 2
Threadl() { Thread2() { 1- Iock(X)
: lockQO);  11: Bock(M);  §If S o
I a = . 12: b = .. 4:b =
- lock(Y); 13: lock(X); > unlock(Y) 11:lock(Y)
- b = 14: a = .. 6:unlock(X) 19-p =
> unlock(Y); 15: unlock(X); 13: Tock(X)
; ; ; ; 14:a =._.
> unlock(X); 16: unlock(Y); 15:unlock(X)
} 1 16:unlock(Y)

No problem
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Basic Deadlock Prediction Technique

e Potential cyclic deadlock detection algorithm [Harrow, SPIN 00]
— Lock graph (N, E,)
* Create a node n, when a thread acquires lock X

e Create an edge (n,, n,) when a thread acquires lock Y
while holding lock X

o Pemeyven, —{a,Sraed a leberathresdrelegses

- Report potential deadlocks if the resulted graph at the
end of an execution has a cycle

[Harrow, SPIN 00] J. J. Harrow, Jr.: Runtime checking of multithreaded applications
with Visual Threads, SPIN Workshop 2000
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Potential Cyclic Deadlock Detection Example

Threadl() {

lock(X)

- a = ..

lock(Y)

b= . ;
> unlock(Y)
> unlock(X)

}

Thread2() {

11:
12:
13:
14:
15:
16:

}

lock(Y)
b =.;
lock(X)
a = .. ,
unlock(X)
unlock(Y)

b wWwNPE

6

13

t1l:Thread 1 t2:Thread 2
- lock(X)
a = ..
- lock(Y)
b = .
unlock(Y)
11:Hock(Y)
unlock(X)
12:b=...

13: lock(X)

Cycle - Potential deadlock
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Basic Deadlock Prediction Technique

 The algorithm is commercialized as a SW tool
VisualThreads (HP)

 Empirical results show that the algorithm is
very effective to discover hidden deadlock bugs

e Challenge: generate many false positive
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: unlock(Y);}

False Positive Example#1 — Single Thread Cycle

Thread1() { Thread2() { 2
lock(X); 11: lock(X);
lock(Y); 12: unlock(X);
unlock(Y);
- unlock(X); 13: lock(Y); 5
lock(Y); 14z unlock(Y):} The ock graph has a
lock(X); cycle, but no deadlock
unlock(X);

A cycle that consists of edges
created by one thread is a
false positive
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False Positive Example#2: Gate Lock

Thread1l() { Thread2() {
1: lock(X); 11: lock(X);
_—2: lock(Y): 12:  lock(2) ;

Gate lock lock(2) : 13:  lock(Y) ;

unlock(Y); 15: unlock(2);

3

(guard lock) 4: unlock(2); 14: unlock(Y);
5
6: unlock(X); } 16: unlock(X);

Cycle, but no deadlock




False Positive Example#3: Thread Creation

main(){ 101 :Qéﬁ:nt#l 204 I:;ﬁf‘:nt#z
O: start(fl); 1: lock(X); 11: lock(Y) ;
1 2 lock(Y); 12: lock(X);
3: unlock(Y); 13: unlock(X);
4: unlock(X); 14: unlock(Y);
5: start(f2); }
+

2

Cycle, but no deadlock

12
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GoodLock Algorithm(agarwal, 1BM 10]

e Extend the lock graph in the basic potential deadlock detection
algorithm to consider thread, gate lock, and thread segment

* Thread segment graph (S, E)
— When the main thread t, starts:
* Create a thread segment node s, ;
* map t, to s, (M(t,) = s,);
* n=1.
— When a thread t; starts a new thread t;
* Create two thread segment nodes s, ands,,;;
e Create two edges (M(t), s,) and (M(t), s,..,) ,
o M(t) =5, ; M(t) =5y,
*n=n+2;
[Agarwal, IBM 10] R. Agarwal et al., Detection of deadlock potential in

multithreaded programs, IBM Journal of Research and Development, 54(5), 2010
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t0 : main()

main({

Thread Segment Graph Example

O:

1: start(fl)

So

21 .
1

S1

tl: f1

1041

lock(X);
lock(Y);

. start(f2);

t2: f2()

- unlock(Y);
> unlock(X); }

So )T 2\.S2 ST\ 54

¢

Sq
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S3

201

11:
12:
13:
14:

lock(Y) :
lock();

unlock(X);
unlock(Y);

S4

24




Extended Lock Graph

e Lock graph (N, E,)
— Create a node n, when a thread acquires lock X

— Create an edge (n,, L, n,) when a thread acquires lock Y while
holding lock X, where L=(s,, t, G, s,)

* s,: the thread segment (s,€ S) where lock X was acquired
e t: the thread that acquires lock Y

e G: the set of locks that t holds when it acquires Y

e s,: the thread segment where lock Y was acquired
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Potential Deadlock Detection

e Acycleisvalid (i.e., true positive) when every pair of edges
(M4, (S11, 1, Gy, S12), Myy), @and (Myy, (Sy1, By Gy, S,), My,) in the
cycle satisfies:

e t; # t,, and
e G;NG, =0,and

* (512 < S21)
— The happens-before relation < is the transitive
closure of the relation R such that (s4,s,) € R
if there exists the edge from s; to s, in the thread
segment graph
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Thread Creation Example Revisit

t0 : main() t1: f1() t2: f2()
main({
0: .. So
1: start(fl);
< - 1| F1OA 52
} 1: lock(X);
2: lock(Y);
3: st?rt£€23:
4: unlock(Y £2 S
5: unlock(X); } 11 - Eggk(Y) : *

12: lock(X);
€,. (nXI (SZI t]_l {X}r 52)1 nY) 13: unl OCk(X) ;
14: unlock(Y);

s, > s, > s,

vy

eZ: (ny, (54; tz; {Y}I 54)1 nX) 51 53
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Revising Singe Thread Cycle Example

main() {

Threadl() { Thread2() {

1: start(Thread1); +i: 10ck(X); 21: lock(X);

12: lock(Y);

2: start(Thread2); ;. unlock(V) : 222 unlock(X);

}

14: unlock(X);

15: lock(Y);
16: lock(X);
172 unlock(X);
18: unlock(Y);}

€. (”x'(}ty{x\}'slz)r ny) So >l s,
v

K. QO &G

S3

23: lock(Y);
24: unlock(Y);}

e,: (ny, (s, t,, {Y}, s,), ny)
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Revising Gate Lock Example

main() { Threadl() { Thread2() {
start(Threadl); 1: lock(X); 11: lock(X);
start(Thread2); 2 lock(Y); 12: lock(2) ;

} 3 lock(2) ; 13: lock(Y) ;

4: unlock(2); 14: unlock(Y);
5: unlock(Y); 15: unlock(2);
6: unlock(X); } 16: unlock(X);

2.: (ny, (s,, ty, {X, Y}, s,), n,) S s,

v

4 tzr {X; Z}r 54)1 "z) Sq —> S,

v

S3
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Detecting Potential Deadlock
with Wait/Notify, Semaphore, etc*

class BlockedBuffer { _ .
List buf = new ArrayList(); Sy@ﬁiYgE?SEﬂffggﬂeCt e)X{
Int cursize = 0; waitQ :
Int maxsize; buf add(ej'
BlockedBuffer(int max){ cursizes+ ,
maxsize = max; notify(); }
+
Object get(){
sync boolean isFull(){ Object e;
return(cursize>=maxsize); sync(this){
} while(isEmpty())
wait() ;
sync boolean 1sEmpty(){ e = buf.remove(0);
return(cursize == 0) ; iITCisFullOQ){
} cursize--;
notify(); }
sync void resize(int m){ else
maxsize = m; cursize--; }
} return e; }

*P. Joshi et al., An Effective Dynamic Analysis for Detecting Generalized Deadlocks, FSE 2010
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Correct Execution Scenario

main() {
BoundedBuffer bf =

new BoundedBuffer(l);
(new Threadl(bf)).start();
(new Thread2(bf)).start();
(new Thread3(bf)).start();}

Threadl(BoundedBuffer bf){
bf.put(0);
bf.put(1);}

Thread2(BoundedBuffer bf){
bf.resize(10);}

Thread3(BoundedBuffer bf){
bf.get();}

Threadl

bf.put(0)

Thread?2

bf.resize(10)

bf.put(l)
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Another Correct Execution Scenario

main() {
BoundedBuffer bf =

new BoundedBuffer(l);
(new Threadl(bf)).start();
(new Thread2(bf)).start();
(new Thread3(bf)).start();}

Threadl(BoundedBuffer bf){
bf.put(0);
bf.put(1);}

Thread2(BoundedBuffer bf){
bf.resize(10);}

Thread3(BoundedBuffer bf){
bf.get();}

Threadl

bf.put(0)

bf.put(l)

Thread?2

while(isFull())
wait();

if(isFull()) {...
notify() ; }

bf.put(l)

Thread3

bf.get()

bf.resize(10)

¢
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Deadlock Execution Scenario

main(Q) {
BoundedBuffer bf = Threadl Thread?2 Thread3

new BoundedBuffer(l); | |
(new Thread1(bP)).start();  [pf.purcoy| |while(isFull())
(new Thread2(bf)).start(); wait();

(new Thread3(bf)).start();} ﬁﬂiput(l)f

Threadl(BoundedBuffer bF){ cursize=1 bf.resize(10)

bf.put(0);

bf.put(l);}

if(isFull()) {...

Thread2(BoundedBuffer bf){ notify() ; }

bf.resize(10):} yu, bf.getQ
Thread3(BoundedBuffer bf){ * ‘l’ ‘1’

bf.get();}
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CHECKMATE: Trace Program Model Checking

Observe a multi-threaded program execution

Retain only the synchronization operations observed
during execution

— Throw away all other operations like memory update and
method calls

Create a program from the retained operations (trace
program)

Model checking trace program

— Check partial behaviors
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Trace Program Example

main() {
bf = Lock();  t2() {bf.resize()
Thread1 Thread? Thread3 isFull=false; :lock(bf); :
start(tl); : isFul l=false;
start(t2); ‘unlock(bf);
Ibf-put(O) start(t3).} } .....................................
t1() { bf.put(0) bf.get
|bf.put(1) $ i Tock(bf) ; ¢ t%gkgbf)g """ Q.
- CifCisFull) 2T ’
.getQ : _ _ i 1FCaskull)
. _wartdD G notify (b
glsFuII—true, iiunlock(bf)' :
bf.resize(10) notify(bf) ; } ........................... Terrreed :
I E unlock(bf);
— bf . put(1)
: lock(bf); :
if(isFull)

 wait(bf) ; |
 notify(bP);
: unlock(bf);}
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