CS492B Analysis of Concurrent Programs

Deadlock Bug Detection Techniques

Prof. Moonzoo Kim
CS KAIST

Bug Detection Techniques for
Concurrent Programs

p Model checking techniques

Verification Testing techniques

055'%&

Bug detection techniques
+ Fast and convenient

(no need to generate many
executions)
- False alarms

sion
Java PathFinder
CHESS

Precision () Kiss () CalFuzzer
O ConTest
() rstest _
. 8Atomizer
Eraser () RacerX
False alarm () Metal

100~1,000 LOC 1,000,000 LOC <

Scalability

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 2

Deadlock Bugs Frequently Occur in Real World

Application =~ What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
OpenOffice Office Suite 6 2
Total 74 31

* Inasurvey on 105 real-world concurrency bugs in open-
source applications, 31 out of 105 bugs are deadlock bugs
[Lu et al., ASPLOS 08]

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 3

Deadlock Bugs Frequently Occur in Real World

= NEglPhirs Sorars foundation ore - e According to Apache
Zaare M- bug tracking systems,
> | there have been 200
Project All~ Type Al Status: All~ Assignee: All= | deadlock More - .
deadlock related issues
since 2014

151-200 of 1,827 S

T Patch Info Key Summary

0 QPID-5344 [AMQP 1.0 JMS] Thread deadlock related fo session ¢

(o) QPID-5439 [AMQP 1.0 JMS client] Client hangs during connection

(=) QPID-5294 [AMQP 1.0 JM3] Thread deadlock due to JVM bug JDF

0 SOLR-3615 Deadlock while trying to recover after a ZK session exj

MESOS-930 Provide slave<-»executor protocol

0 FELIX-4384 Difference between inner class and normal class servi

(] HBASE-10452 Fix potential bugs in exception handlers

O DRILL-333 Throw exception when trying to send message within F
C5492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 4

=l I i™ERIE SAMN Ana tovt matehina amail laeal racd milla in | W0l

Deadlock

e A deadlock occurs when each of a set of threads

is blocked, waiting for another thread in the set

to satisfy[certain condition}

release shared resource

raise event

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Resource Deadlock

e Ex. Dining philosopher problem

[Milner] [Dijkstra]

Pick up Folk#1
Pick up Folk#2
Wait for
FElA Wait for
Folk#1

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 6

o O~ WOWDN P

Resource Deadlock in Concurrent Programs

e ABBA deadlock

Threadl() { Thread2() { tL:Threadl | t2:Thread2
= lock(X) 11: lock(Y) 1:lock(X)
i - 12:y = .3

2:X = ..
- lock(Y) 13: lock(X) 11:1ock(Y)
Sy = 14: x = .. ;

- unlock(Y) 15: unlock(x) 3:fock(Y) 122y=...

- unlock(X) 16: unlock(Y) *3'|OCK(X)
} ¥ |

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 7

Excerpt from the wikipedia

Non-blocking Algorithm

An algorithm is called non-blocking if failure or suspension of any thread
cannot cause failure or suspension of another thread

— anon-blocking algorithm is lock-free if there is guaranteed system-wide
progress, and wait-free if there is also guaranteed per-thread progress.

Blocking a thread is undesirable for many reasons while non-blocking
algorithms do not suffer from these downsides
— while the thread is blocked, it cannot accomplish anything

— certain interactions between locks can lead to error conditions such as
deadlock, livelock, and priority inversion.

— using locks involves a trade-off between coarse-grained locking, which can
significantly reduce opportunities for parallelism, and fine-grained locking,

which requires more careful design, increases locking overhead and is more
prone to bugs.

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Communication Deadlock

 Lost notify

Threadl() { Thread2() {
1- ... 11: ...
2: for(i=0;i<10;i++){ 12: For(§J=0;j<10;j++){
3: waitt(m) ;} 13: notify(m);}
+ }
t,: Thread 1 t,: Thread 2

3:wait(m)//i==0
" 13:notify(m)//)==

13:notify(m)//j==9
(terminate)

3:wart(m)//1==9 *
CS492B Analysis of Con€urrent Programs, Prof. Moonzoo Kim

Excerpt from the Java reference manual

public final void wairt()

e Causes the current thread to wait until another thread invokes the notify()
method or the notifyAll() method for this object.

e The current thread must own this object's monitor.

— The thread releases ownership of this monitor and waits until another thread notifies
threads waiting on this object's monitor to wake up either through a call to the notify

method or the notifyAll method. The thread then waits until it can re-obtain ownership
of the monitor and resumes execution.

* Interrupts and spurious wakeups are possible, and this method should
always be used in a loop:

synchronized (obj) { See the following stackoverflow discussion:

while (<condition does not hold>) | http://stackoverflow.com/questions/105059
obj.wait(); 2/do-spurious-wakeups-actually-happen

... // Perform action appropriate to condition

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

http://stackoverflow.com/questions/1050592/do-spurious-wakeups-actually-happen

Excerpt from the Java reference manual

public final void notify()

Wakes up a single thread that is waiting on this object's monitor.

— If any threads are waiting on this object, one of them is chosen to be awakened. The
choice is arbitrary and occurs at the discretion of the implementation.

The awakened thread will not be able to proceed until the current

thread relinquishes the lock on this object.

— The awakened thread will compete in the usual manner with any other threads that
might be actively competing to synchronize on this object; for example, the
awakened thread enjoys no reliable privilege or disadvantage in being the next
thread to lock this object.

This method should only be called by a thread that is the owner of
this object's monitor. A thread becomes the owner of the object's

monitor in one of three ways:
— By executing a synchronized instance method of that object.
— By executing the body of a synchronized statement that synchronizes on the object.
— For objects of type Class, by executing a synchronized static method of that class.

Finding Deadlock Bugs is Difficult

A deadlock bug induces deadlock situations
only under certain thread schedules

e Systems software creates a massive number
of locks for fine-grained concurrency controls

* Function caller-callee relation complicates
the reasoning about possible nested lockings

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Bug Detection Approach

Resource deadlock
e Basic potential deadlock detection algorithm

 GoodLock algorithm

Communication deadlock

e CHECKMATE: a trace program model-checking
technique for deadlock detection

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Basic Potential Deadlock Detection

e Extend the cyclic deadlock monitoring algorithm

* Cyclic deadlock monitoring algorithm (e.g. LockDep)
— Monitor lock acquires and releases in runtime
— Lock graph (N, E,)
* Create a node n, when a thread acquires lock X

e Create an edge (n,, n,) when a thread acquires lock Y
while holding lock X

e Remove ny, (n,, *) and (*, n,) when a thread releases X

— Report deadlock when the graph has any cycle

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Cyclic Deadlock Detection Example (1/2)

Threadl() {
- lock(X)
S a= . ;
: Iock(Y)
b= . 3
> unlock(Y)
> unlock(X)

}

11:
12:
13:
14:
15:
16:

Thread2() { tl: Thread 1 t2: Thread 2
fock(") 1: lock(X)
b — -
lock () 2:a = -
11:lock(Y)
q = -
unlock(X) 3:lock(Y) Zzlb=o .
unlock(Y)
13: lock(X)
3

13 Deadlock detected!

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 15

Cyclic Deadlock Detection Example (2/2)

tl: Thread 1 t2: Thread 2
Threadl() { Thread2() { 1- Iock(X)
: lockQO); 11: Bock(M); §If S o
I a = . 12: b = .. 4:b =
- lock(Y); 13: lock(X); > unlock(Y) 11:lock(Y)
- b = 14: a = .. 6:unlock(X) 19-p =
> unlock(Y); 15: unlock(X); 13: Tock(X)
; ; ; ; 14:a =._.
> unlock(X); 16: unlock(Y); 15:unlock(X)
} 1 16:unlock(Y)

No problem

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Basic Deadlock Prediction Technique

e Potential cyclic deadlock detection algorithm [Harrow, SPIN 00]
— Lock graph (N, E,)
* Create a node n, when a thread acquires lock X

e Create an edge (n,, n,) when a thread acquires lock Y
while holding lock X

o Pemeyven, —{a,Sraed a leberathresdrelegses

- Report potential deadlocks if the resulted graph at the
end of an execution has a cycle

[Harrow, SPIN 00] J. J. Harrow, Jr.: Runtime checking of multithreaded applications
with Visual Threads, SPIN Workshop 2000

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 17

Potential Cyclic Deadlock Detection Example

Threadl() {

lock(X)

- a = ..

lock(Y)

b= . ;
> unlock(Y)
> unlock(X)

}

Thread2() {

11:
12:
13:
14:
15:
16:

}

lock(Y)
b =.;
lock(X)
a = .. ,
unlock(X)
unlock(Y)

b wWwNPE

6

13

t1l:Thread 1 t2:Thread 2
- lock(X)
a = ..
- lock(Y)
b = .
unlock(Y)
11:Hock(Y)
unlock(X)
12:b=...

13: lock(X)

Cycle - Potential deadlock

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 18

Basic Deadlock Prediction Technique

 The algorithm is commercialized as a SW tool
VisualThreads (HP)

 Empirical results show that the algorithm is
very effective to discover hidden deadlock bugs

e Challenge: generate many false positive

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

A W DN P

0O N O O

: unlock(Y);}

False Positive Example#1 — Single Thread Cycle

Thread1() { Thread2() { 2
lock(X); 11: lock(X);
lock(Y); 12: unlock(X);
unlock(Y);
- unlock(X); 13: lock(Y); 5
lock(Y); 14z unlock(Y):} The ock graph has a
lock(X); cycle, but no deadlock
unlock(X);

A cycle that consists of edges
created by one thread is a
false positive

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 20

False Positive Example#2: Gate Lock

Thread1l() { Thread2() {
1: lock(X); 11: lock(X);
_—2: lock(Y): 12: lock(2) ;

Gate lock lock(2) : 13: lock(Y) ;

unlock(Y); 15: unlock(2);

3

(guard lock) 4: unlock(2); 14: unlock(Y);
5
6: unlock(X); } 16: unlock(X);

Cycle, but no deadlock

False Positive Example#3: Thread Creation

main(){ 101 :Qéﬁ:nt#l 204 I:;ﬁf‘:nt#z
O: start(fl); 1: lock(X); 11: lock(Y) ;
1 2 lock(Y); 12: lock(X);
3: unlock(Y); 13: unlock(X);
4: unlock(X); 14: unlock(Y);
5: start(f2); }
+

2

Cycle, but no deadlock

12

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 22

GoodLock Algorithm(agarwal, 1BM 10]

e Extend the lock graph in the basic potential deadlock detection
algorithm to consider thread, gate lock, and thread segment

* Thread segment graph (S, E)
— When the main thread t, starts:
* Create a thread segment node s, ;
* map t, to s, (M(t,) = s,);
* n=1.
— When a thread t; starts a new thread t;
* Create two thread segment nodes s, ands,,;;
e Create two edges (M(t), s,) and (M(t), s,..,) ,
o M(t) =5, ; M(t) =5y,
*n=n+2;
[Agarwal, IBM 10] R. Agarwal et al., Detection of deadlock potential in

multithreaded programs, IBM Journal of Research and Development, 54(5), 2010
CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

t0 : main()

main({

Thread Segment Graph Example

O:

1: start(fl)

So

21 .
1

S1

tl: f1

1041

lock(X);
lock(Y);

. start(f2);

t2: f2()

- unlock(Y);
> unlock(X); }

So)T 2\.S2 ST\ 54

¢

Sq

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

¢

S3

201

11:
12:
13:
14:

lock(Y) :
lock();

unlock(X);
unlock(Y);

S4

24

Extended Lock Graph

e Lock graph (N, E,)
— Create a node n, when a thread acquires lock X

— Create an edge (n,, L, n,) when a thread acquires lock Y while
holding lock X, where L=(s,, t, G, s,)

* s,: the thread segment (s,€ S) where lock X was acquired
e t: the thread that acquires lock Y

e G: the set of locks that t holds when it acquires Y

e s,: the thread segment where lock Y was acquired

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Potential Deadlock Detection

e Acycleisvalid (i.e., true positive) when every pair of edges
(M4, (S11, 1, Gy, S12), Myy), @and (Myy, (Sy1, By Gy, S,), My,) in the
cycle satisfies:

e t; # t,, and
e G;NG, =0,and

* (512 < S21)
— The happens-before relation < is the transitive
closure of the relation R such that (s4,s,) € R
if there exists the edge from s; to s, in the thread
segment graph

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Thread Creation Example Revisit

t0 : main() t1: f1() t2: f2()
main({
0: .. So
1: start(fl);
< - 1| F1OA 52
} 1: lock(X);
2: lock(Y);
3: st?rt£€23:
4: unlock(Y £2 S
5: unlock(X); } 11 - Eggk(Y) : *

12: lock(X);
€,. (nXI (SZI t]_l {X}r 52)1 nY) 13: unl OCk(X) ;
14: unlock(Y);

s, > s, > s,

vy

eZ: (ny, (54; tz; {Y}I 54)1 nX) 51 53

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 27

Revising Singe Thread Cycle Example

main() {

Threadl() { Thread2() {

1: start(Thread1); +i: 10ck(X); 21: lock(X);

12: lock(Y);

2: start(Thread2); ;. unlock(V) : 222 unlock(X);

}

14: unlock(X);

15: lock(Y);
16: lock(X);
172 unlock(X);
18: unlock(Y);}

€. (”x'(}ty{x\}'slz)r ny) So >l s,
v

K. QO &G

S3

23: lock(Y);
24: unlock(Y);}

e,: (ny, (s, t,, {Y}, s,), ny)

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

28

Revising Gate Lock Example

main() { Threadl() { Thread2() {
start(Threadl); 1: lock(X); 11: lock(X);
start(Thread2); 2 lock(Y); 12: lock(2) ;

} 3 lock(2) ; 13: lock(Y) ;

4: unlock(2); 14: unlock(Y);
5: unlock(Y); 15: unlock(2);
6: unlock(X); } 16: unlock(X);

2.: (ny, (s,, ty, {X, Y}, s,), n,) S s,

v

4 tzr {X; Z}r 54)1 "z) Sq —> S,

v

S3

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 29

Detecting Potential Deadlock
with Wait/Notify, Semaphore, etc*

class BlockedBuffer { _ .
List buf = new ArrayList(); Sy@ﬁiYgE?SEﬂffggﬂeCt e)X{
Int cursize = 0; waitQ :
Int maxsize; buf add(ej'
BlockedBuffer(int max){ cursizes+ ,
maxsize = max; notify(); }
+
Object get(){
sync boolean isFull(){ Object e;
return(cursize>=maxsize); sync(this){
} while(isEmpty())
wait() ;
sync boolean 1sEmpty(){ e = buf.remove(0);
return(cursize == 0) ; iITCisFullOQ){
} cursize--;
notify(); }
sync void resize(int m){ else
maxsize = m; cursize--; }
} return e; }

*P. Joshi et al., An Effective Dynamic Analysis for Detecting Generalized Deadlocks, FSE 2010

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Correct Execution Scenario

main() {
BoundedBuffer bf =

new BoundedBuffer(l);
(new Threadl(bf)).start();
(new Thread2(bf)).start();
(new Thread3(bf)).start();}

Threadl(BoundedBuffer bf){
bf.put(0);
bf.put(1);}

Thread2(BoundedBuffer bf){
bf.resize(10);}

Thread3(BoundedBuffer bf){
bf.get();}

Threadl

bf.put(0)

Thread?2

bf.resize(10)

bf.put(l)

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Thread3

bf.get()

31

Another Correct Execution Scenario

main() {
BoundedBuffer bf =

new BoundedBuffer(l);
(new Threadl(bf)).start();
(new Thread2(bf)).start();
(new Thread3(bf)).start();}

Threadl(BoundedBuffer bf){
bf.put(0);
bf.put(1);}

Thread2(BoundedBuffer bf){
bf.resize(10);}

Thread3(BoundedBuffer bf){
bf.get();}

Threadl

bf.put(0)

bf.put(l)

Thread?2

while(isFull())
wait();

if(isFull()) {...
notify() ; }

bf.put(l)

Thread3

bf.get()

bf.resize(10)

¢

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

32

Deadlock Execution Scenario

main(Q) {
BoundedBuffer bf = Threadl Thread?2 Thread3

new BoundedBuffer(l); | |
(new Thread1(bP)).start(); [pf.purcoy| |while(isFull())
(new Thread2(bf)).start(); wait();

(new Thread3(bf)).start();} ﬁﬂiput(l)f

Threadl(BoundedBuffer bF){ cursize=1 bf.resize(10)

bf.put(0);

bf.put(l);}

if(isFull()) {...

Thread2(BoundedBuffer bf){ notify() ; }

bf.resize(10):} yu, bf.getQ
Thread3(BoundedBuffer bf){ * ‘l’ ‘1’

bf.get();}

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 33

CHECKMATE: Trace Program Model Checking

Observe a multi-threaded program execution

Retain only the synchronization operations observed
during execution

— Throw away all other operations like memory update and
method calls

Create a program from the retained operations (trace
program)

Model checking trace program

— Check partial behaviors

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim

Trace Program Example

main() {
bf = Lock(); t2() {bf.resize()
Thread1 Thread? Thread3 isFull=false; :lock(bf); :
start(tl); : isFul l=false;
start(t2); ‘unlock(bf);
Ibf-put(O) start(t3).} }
t1() { bf.put(0) bf.get
|bf.put(1) $ i Tock(bf) ; ¢ t%gkgbf)g """ Q.
- CifCisFull) 2T ’
.getQ : _ _ i 1FCaskull)
. _wartdD G notify (b
glsFuII—true, iiunlock(bf)' :
bf.resize(10) notify(bf) ; } Terrreed :
I E unlock(bf);
— bf . put(1)
: lock(bf); :
if(isFull)

 wait(bf) ; |
 notify(bP);
: unlock(bf);}

CS492B Analysis of Concurrent Programs, Prof. Moonzoo Kim 35

	Deadlock Bug Detection Techniques
	Bug Detection Techniques for Concurrent Programs
	Deadlock Bugs Frequently Occur in Real World
	Deadlock Bugs Frequently Occur in Real World
	Deadlock
	Resource Deadlock
	Resource Deadlock in Concurrent Programs
	Non-blocking Algorithm
	Communication Deadlock
	public final void wait()
	public final void notify()
	Finding Deadlock Bugs is Difficult
	Bug Detection Approach
	Basic Potential Deadlock Detection
	Cyclic Deadlock Detection Example (1/2)
	Cyclic Deadlock Detection Example (2/2)
	Basic Deadlock Prediction Technique
	Potential Cyclic Deadlock Detection Example
	Basic Deadlock Prediction Technique
	False Positive Example#1 – Single Thread Cycle
	False Positive Example#2: Gate Lock
	False Positive Example#3: Thread Creation
	GoodLock Algorithm[Agarwal, IBM 10]
	Thread Segment Graph Example
	Extended Lock Graph
	Potential Deadlock Detection
	Thread Creation Example Revisit
	Revising Singe Thread Cycle Example
	Revising Gate Lock Example
	Detecting Potential Deadlock �with Wait/Notify, Semaphore, etc*
	Correct Execution Scenario
	Another Correct Execution Scenario
	Deadlock Execution Scenario
	CHECKMATE: Trace Program Model Checking
	Trace Program Example

