
Introduction to UML 2.0

Software Engineering Laboratory

2006.03.31

(slides from ‘06 CS550 by Prof.Bae)



2005-07-21 KAIST SELAB 2/49

UML Introduction



2005-07-21 KAIST SELAB 3/49

What is UML?

Unified Modeling Language 
– Visual language for specifying, constructing and documenting 

Maintained by the OMG (Object Management Group) 
– Website: http://www.omg.org

Object-oriented

Model / view paradigm

Target language independent



2005-07-21 KAIST SELAB 4/49

Model / View Paradigm

Each diagram is just a view of part of the system

Together, all diagrams provides a complete picture

Underlying System Model



2005-07-21 KAIST SELAB 5/49

UML Diagrams

Class 
Diagram

Component
Diagram

Communication
Diagram

Interaction 
Overview
Diagram

Sequence 
Diagram

Timing
Diagram

Use Case
Diagram

State Machine
Diagram

Activity
Diagram

Package
Diagram

Composite 
Structure
Diagram

Object
Diagram

Deployment
Diagram

Interaction 
Diagram

Behavioral
DiagramStructural

Diagram



2005-07-21 KAIST SELAB 6/49

Use Case Diagrams



2005-07-21 KAIST SELAB 7/49

What is a Use Case?

Use Case ~ A behavior or coherent set 
of behaviors triggered by events sent to 
the system by human user(s), other 
systems, hardware components, or an 
internal clock



2005-07-21 KAIST SELAB 8/49

Use Case Diagrams

Describe WHAT the system will do at a high-level 

Box Office

Survey Sales

Make Charges

Buy
Tickets

Buy 
Subscription

Actor

Credit Card Service

Use Case

Use Case Name

Subject Name
Subject

System Boundary

Association

<<include>> <<include>>Dependency

Supervisor

Customer
Kiosk



2005-07-21 KAIST SELAB 9/49

Someone or some thing that must interact with the 
system
– Users, external systems, devices

Actor

Actor

Box Office
Survey Sales

Make Charges

Buy
Tickets

Buy 
Subscription

<<include>>
<<include>>

Supervisor

Credit Card 
Service

Kiosk
Customer



2005-07-21 KAIST SELAB 10/49

An Actor is a Role

An actor defines a single role played by users in their 
interactions with the system:
– Multiple users can play a single role

– A single user may play multiple roles

<<actor>> 
Consultant

<<actor>> 
John

<<actor>> 
Jane

<<actor>> 
Instructor

<<actor>>  
Project Manager



2005-07-21 KAIST SELAB 11/49

Identifying Actors

Useful questions
– Who will use the main functionality of the system (primary 

actors)?

– Who will need support from the system to their daily tasks?

– Who will need to maintain, administrate, and keep the system 
working (secondary actors)?

– Which hardware devices does the system need to handle?

– With which other systems does the system need to interact?

– Who or what has an interest in the results (the value) that the 
system produces?

(From :oopsla.snu.ac.kr/research/UML/ )



2005-07-21 KAIST SELAB 12/49

Unit of functionality expressed as a transaction among 
actors and the subject

Interaction between one or more actors and the system

Use Case

Use Case Name

Use Case
Box Office

Survey Sales

Make Charges

Buy
Tickets

Buy 
Subscription

<<include>>
<<include>>

Supervisor

Credit Card 
Service

Kiosk
Customer



2005-07-21 KAIST SELAB 13/49

Use Case

Identifying Use Cases
– Which functions does the actor require from system?

– Does the actor need to read, create, destroy, modify, or store
some kind of information in the system?

– Does the actor have to be notified about events in the system

– Could the actor’s daily work be simplified or made more efficient 
through new functions in the system



2005-07-21 KAIST SELAB 14/49

An Example of Use Case Text

Buy a Product
– Main Success Scenario :

1 . Customer browses catalog and selects items to buy
2 . Customer goes to check out
3. Customer fills in shipping information (address ; next-day or 3-day delivery)
4. System presents full pricing information, including shipping
5 . Customer fills in credit card information
6 . System authorizes purchase
7 . System confirms sale immediately
8 . System sends confirming e-mail to customer

– Extensions :
3a : Customer is regular customer

.1 : System displays current shipping, pricing, and billing information

.2 : Customer may accept or override these defaults, returns to MSS at step 6
6a : System fails to authorize credit purchase

.1 : Customer may reenter credit card information or may cancel



2005-07-21 KAIST SELAB 15/49

Subject Symbol

Indicate system boundary 
– Classifier that realizes behavior defined by a use case

Subject
Subject Name

System Boundary

Box Office
Survey Sales

Make Charges

Buy
Tickets

Buy 
Subscription

<<include>>
<<include>>

Supervisor

Credit Card 
Service

Kiosk
Customer



2005-07-21 KAIST SELAB 16/49

Represent bi-directional communication between the 
actor and the system
Drawn between an actor and a use case

Association

Association Box Office
Survey Sales

Make Charges

Buy
Tickets

Buy 
Subscription

<<include>>
<<include>>

Supervisor

Credit Card 
Service

Kiosk
Customer



2005-07-21 KAIST SELAB 17/49

Dependency – Include

Represent relationship from a base to an inclusion use case

Imply a Use Case calls another Use Case

Primarily used to reuse behavior common to several Use Cases

Dependency

Inclusion 
Use Cases

Base Use Case

Box Office
Survey Sales

Make Charges

Buy
Tickets

Buy 
Subscription

<<include>>
<<include>>

Supervisor

Credit Card 
Service

Kiosk
Customer



2005-07-21 KAIST SELAB 18/49

Dependency – Extend

Add sugar Buy coffee
<<extend>>

Used when some additional behavior should be added
– Models optional or conditional behavior

– Show infrequent events

Customer



2005-07-21 KAIST SELAB 19/49

Tips for Use Case Modeling

Make sure that each use case describes a significant chunk of 
system usage that is understandable by both domain experts and 
programmers
When defining use cases in text, use nouns and verbs accurately 
and consistently to help derive objects and messages for interaction 
diagrams 
Factor out common usages that are required by multiple use cases

– If the usage is required use <<include>>
– If the base use case is complete and the usage may be optional, consider use 

<<extend>>

A use case diagram should
– contain only use cases at the same level of abstraction
– include only actors required

Large numbers of use cases should be organized into packages

(From :oopsla.snu.ac.kr/research/UML/ )



2005-07-21 KAIST SELAB 20/49

Class Diagrams



2005-07-21 KAIST SELAB 21/49

Class Diagrams

Description of static structure 
– Showing the types of objects in a system and the relationships 

between them

Guard

Basketball Player
-Name: String
-Height: Float
-Weight: Float

+ ballDribble()
+ ballPass()
+ rebound()
+ shoot()

Team

- TeamName: String
- NumberofPlayer: Integer

Class Name

Class 
Attributes

Class 
Operations

1

*
employ

Association

Multiplicity

Generalization

Forward

exercise



2005-07-21 KAIST SELAB 22/49

Classes

Most important building block of any object-oriented system

Description of a set of objects

Abstraction of the entities
– Existing in the problem/solution domain

Class Name
Team

- TeamName: String
- NumberofPlayer: Integer

BasketballPlayer
- Name: String
- Height: Float
- Weight: Float

+ ballDribble()
+ ballPass()
+ rebound()
+ shoot()



2005-07-21 KAIST SELAB 23/49

Attributes and Operations

Attributes
– Represent some property of the thing being modeled

– Syntax: attributeName : Type

Operations
– Implement of a service requested from any object of the class

– Syntax: operationName(param1:type, param2:type, ...) : Result

Class 
Attributes

Class 
Operations

Team
- TeamName: String
- NumberofPlayer: Integer

BasketballPlayer

+ ballDribble()
+ ballPass()
+ rebound()
+ shoot()

- Name: String
- Height: Float
- Weight: Float



2005-07-21 KAIST SELAB 24/49

Association and Multiplicity

Association 
– Relationship between classes that specifies connections among 

their instances

Multiplicity 
– Number of instances of one class related to ONE instance of 

the other class

Association name 

“Team employs one or more basketball players”
“ Basketball players exercise in the team”

Basketball Player
-Name: String
-Height: Float
-Weight: Float

+ ballDribble()
+ ballPass()
+ rebound()
+ shoot()

Team
- TeamName: String
- NumberofPlayer: Integer

1 *employ

Multiplicity

exercise1 *

Association 



2005-07-21 KAIST SELAB 25/49

Aggregations and Compositions

Aggregation 
– Weak “whole-part” relationship between elements

• Mailitem ‘has a’ address

Composition 
– Strong “whole-part” relationship between elements

• Window ‘contains a’ scrollbar

CompositionAggregation

Window

Panel Scrollbar
1 0 ..2

Mailitem

Address Body
1 1



2005-07-21 KAIST SELAB 26/49

Inheritance

Relationship between superclass and subclasses
– All attributes and operations of the superclass are part of the subclasses

Transportation

GeneralizationSpecialization

Automobile Boat

Car Truck Sports Car

BMW AudiBenz

Motor Boat Yacht



2005-07-21 KAIST SELAB 27/49

Active vs. Passive Class

Active class
– Own a thread control and can initiate control activity

• Used when asynchronous communication is necessary
• Typically modeled with a state machine of its behavior
• Encapsulated with ports and interfaces

Passive class
– Own address space, but not thread of control

• Executed under a control thread anchored in an active object 

Active
class

Passive 
class

Player
Id : Integer

InitiateGame()

Game
Level : Charstring

StartNew ()

NumberOfPlayers : Integer
HighScore : Integer

GameOver ()



2005-07-21 KAIST SELAB 28/49

Ports and Interfaces
Ports
– Define an interaction point on a classifier with external environment

Interfaces
– Describe behavior of objects without giving their implementations

• Each class implements the operations found in the interface

Interface 
NameInterface 

Definition

Coffee Machine

Port symbol

<<interface>>
ToUser

signal CupofCoffee()
signal CupofWater()
signal ReturnChange()

<<interface>>
FromUser

signal Coin(Integer)
signal Tea()
signal Coffee()



2005-07-21 KAIST SELAB 29/49

Provided/ Required Interface

Provided interface 
– Class provides the services of the interface to outside callers

– What the object can do

– Services that a message to the port may request (incoming)

Required interface
– Class uses to implement its internal behavior

– What the object needs to do 

– Services that a message from the port may require from external 
environment (outgoing)

PrintServer

SubmitJob

CheckStatus
SetPrintProperties

Provided Interface
Class

Required Interface

Interface Name

TransmitData



2005-07-21 KAIST SELAB 30/49

Computer Device Example

Keyboard Display

PC

keybd

keybd

IKeybdListener

IKeybdListener

video

video

IDisplay

IDisplay



2005-07-21 KAIST SELAB 31/49

Tips for Class Modeling

Finding Classes
– Do we have that should be stored or analyzed ?

– Do we have external system ? 
• External system is modeled as class

– Do we have any patterns, class libraries, components, and so 
on ?

– Are there devices that the system must handle ?

(From :oopsla.snu.ac.kr/research/UML/ )



2005-07-21 KAIST SELAB 32/49

Sequence Diagrams



2005-07-21 KAIST SELAB 33/49

Sequence Diagrams

Show sequences of messages (“interactions”) between 
instances in the system

Emphasize time ordering

Lifeline

Message 
name

:Customer :CoffeeMachine

ref InsertCoins

ref ReturnCoins

theMessage(“Insert Coins”)

Coffee()

CupofCoffee()

sd MakeCoffee

Messages 
line

Reference
Frame

Sequence Diagram
Name



2005-07-21 KAIST SELAB 34/49

Lifelines

Individual participant in the interaction over period time
– Subsystem/ object/ class

– Actor

:Customer :CoffeeMachine

ref InsertCoins

ref ReturnCoins

theMessage(“Insert Coins”)

Coffee()
CupofCoffee()

sd MakeCoffee

Lifeline

Instance name (object) : 
Type name (class)



2005-07-21 KAIST SELAB 35/49

Messages

One-way communication between two objects

May have parameters that convey values

:Customer :CoffeeMachine

ref InsertCoins

ref ReturnCoins

theMessage(“Insert Coins”)

Coffee()
CupofCoffee()

Message 
name

sd MakeCoffee

Messages 
line

Asynchronous 
message

Synchronous 
message



2005-07-21 KAIST SELAB 36/49

Combined Fragment Frame

Defines an expression of interaction fragments
Interaction operators define how the contents 
describe behavior
– Alt: each section is one alternative

• E.g. alt [a>0]
– Ref: reference to another Use Case
– Loop: specifies a repeated sequence of behavior

• E.g. ‘loop [1,5]’, ‘loop [6]’

[x!=0]



2005-07-21 KAIST SELAB 37/49

Referencing

Reuse already existing sequence diagrams 
– Avoid unnecessary duplication

Reference

:Customer :CoffeeMachine

sd InsertCoins

Coin()

OK()

:Customer :CoffeeMachine

ref
InsertCoins

theMessage(“Insert Coins”)

Coffee()

CupofCoffee()
ref

ReturnCoins

sd MakeCoffee



2005-07-21 KAIST SELAB 38/49

Tips for Sequence Diagram

Set the context for the interaction.
– E.g. one use case

Express the flow from left to right and from top to bottom.

Put active instances to the left/top and passive ones to the 
right/bottom.

(From :oopsla.snu.ac.kr/research/UML/ )



2005-07-21 KAIST SELAB 39/49

State Machine Diagrams



2005-07-21 KAIST SELAB 40/49

State Machine Diagrams

Describe the dynamic behavior of objects over time by 
modeling the lifecycles of objects of each class

Show
– The event that cause a transition from one state to another

– The actions that result from a state change

Booting Working Shutting
Down

State

Initial 
State

Final 
State

Transition

Event

Guard Condition

terminate

Screen
Saving

keyStrock or
mouseMovement [is Timeout]/

popUpScreenShot()

turn PC on

Action



2005-07-21 KAIST SELAB 41/49

States

State
– Condition or situation during the life of an object 

• Satisfies some condition, performs some activity or waits for some event

State

Initial 
State Final 

State

State

Booting Working Shutting
Down

terminate

Screen
Saving

keyStrock or
mouseMovement

[is Timeout]/
popUpScreenShot()

turn PC on



2005-07-21 KAIST SELAB 42/49

Event and Action

Event 
– Stimulus which causes the object to change state

Action
– Output of a signal or an operation call

Booting Working Shutting
Down

Event

Guard Condition

terminate

Screen
Saving

keyStrock or
mouseMovement [is Timeout]/

popUpScreenShot()

turn PC on

Event

Event

Action



2005-07-21 KAIST SELAB 43/49

Transition

Change state from one to another triggered by an event

Occur only when guard condition is true

Syntax: event(arguments)[condition]/action

Booting Working Shutting
Down

Transition

terminate

Screen
Saving

keyStrock or
mouseMovement [is Timeout]/

popUpScreenShot()

turn PC on



2005-07-21 KAIST SELAB 44/49

Internal Activities

States can react to events without transition
– Putting the event, guard, and activity inside the state box

– Two special activities
• The entry and exit activities

Internal activities do not trigger the entry and exit 
activities



2005-07-21 KAIST SELAB 45/49

Superstates

Several states share common transitions and internal 
activities
– Move the shared behavior into a superstate

– A behavior can be expressed in a modular/hierarchical way 



2005-07-21 KAIST SELAB 46/49

Deployment Diagrams



2005-07-21 KAIST SELAB 47/49

Deployment Diagrams

Show runtime architecture of devices, execution 
environments, and artifacts in architecture
– Physical description of system topology

• Describe structure of hardware units and software executing 
on each unit

Node

AppServer

<<artifact>>
ShoppingApp.ear

<<artifact>>
ShoppingCart.jar

<<artifact>>
Order.jar

<<deployment spec>>
ejb-jar.xml

client<<TCP/IP>>

Communication Path

artifact



2005-07-21 KAIST SELAB 48/49

Deployment Diagrams

Node
– Computational resource upon which artifacts may be deployed 

for execution

Communication path
– Show connection between nodes

• Stereotype can be used for communication protocol or network used

Artifact
– Specification of a physical piece of information that is used or

produced by a software development process, or by deployment 
and operation of a system. 

• Examples of artifacts include model files, source files, scripts, and 
binary executable files, a table in a database system, a development 
deliverable, or a word-processing document, a mail message.



2005-07-21 KAIST SELAB 49/49

Summary 
UML can be used as

– Sketch level
– Blue print level
– Programming language level

Use appropriate UML diagrams for 
different goals

– If you just starts your SE projects, start
with 

• Use-case diagrams with use-case texts

– If you want to look at behavior across 
many use cases or many threads,

• Activity diagram

– If you want to look at the behavior of 
several objects within a single use case,

• Sequence diagrams

– If you want to look at the behavior of a 
single object across many use cases, 

• State diagrams


