
CS550 Intro. to SE
Spring 2007 1

Chapter 1Chapter 1
Software and Software EngineeringSoftware and Software Engineering

Moonzoo Kim
CS Division of EECS Dept.

KAIST
moonzoo@cs.kaist.ac.kr

http://pswlab.kaist.ac.kr/courses/cs550-07

CS550 Intro. to SE
Spring 2007 2

SoftwareSoftware’’s Dual Roles Dual Role

Software is a productSoftware is a product
Delivers computing potentialDelivers computing potential
Produces, manages, acquires, modifies, displays, or transmits Produces, manages, acquires, modifies, displays, or transmits
informationinformation

Software is a vehicle for delivering a productSoftware is a vehicle for delivering a product
Supports or directly provides system functionalitySupports or directly provides system functionality
Controls other programs (e.g., an operating system)Controls other programs (e.g., an operating system)
Effects communications (e.g., networking software)Effects communications (e.g., networking software)
Helps build other software (e.g., software tools)Helps build other software (e.g., software tools)

CS550 Intro. to SE
Spring 2007 3

What is Software?What is Software?

Software is a set of items or objects
that form a “configuration” that
includes

• programs
• documents
• data ...

CS550 Intro. to SE
Spring 2007 4

What is Software?What is Software?

software is engineeredsoftware is engineered
software doesnsoftware doesn’’t wear outt wear out
software is complexsoftware is complex

CS550 Intro. to SE
Spring 2007 5

Wear vs. DeteriorationWear vs. Deterioration

idealized curve

change

actual curve

Failure
rate

Time

increased failure
rate due to side effects

CS550 Intro. to SE
Spring 2007 6

Legacy SoftwareLegacy Software

software must be software must be adaptedadapted to meet the needs of new to meet the needs of new
computing environments or technology.computing environments or technology.
software must be software must be enhancedenhanced to implement new to implement new
business requirements.business requirements.
software must be software must be extended to make it interoperableextended to make it interoperable
with other more modern systems or databases.with other more modern systems or databases.
software must be software must be rere--architectedarchitected to make it viable to make it viable
within a network environmentwithin a network environment.

Why must it change?

CS550 Intro. to SE
Spring 2007 7

Software EvolutionSoftware Evolution
The Law of Continuing Change (1974):The Law of Continuing Change (1974): EE--type systems must be continually adapted type systems must be continually adapted
else they become progressively less satisfactory.else they become progressively less satisfactory.
The Law of Increasing Complexity (1974):The Law of Increasing Complexity (1974): As an EAs an E--type system evolves its type system evolves its
complexity increases unless work is done to maintain or reduce icomplexity increases unless work is done to maintain or reduce it.t.
The Law of Conservation of Organizational Stability (1980):The Law of Conservation of Organizational Stability (1980): The average effective The average effective
global activity rate in an evolving Eglobal activity rate in an evolving E--type system is invariant over product lifetime.type system is invariant over product lifetime.
The Law of Conservation of Familiarity (1980):The Law of Conservation of Familiarity (1980): As an EAs an E--type system evolves all type system evolves all
associated with it, developers, sales personnel, users, for examassociated with it, developers, sales personnel, users, for example, must maintain ple, must maintain
mastery of its content and behavior to achieve satisfactory evolmastery of its content and behavior to achieve satisfactory evolution. ution.
The Law of Continuing Growth (1980):The Law of Continuing Growth (1980): The functional content of EThe functional content of E--type systems must type systems must
be continually increased to maintain user satisfaction over theibe continually increased to maintain user satisfaction over their lifetime.r lifetime.
The Law of Declining Quality (1996):The Law of Declining Quality (1996): The quality of EThe quality of E--type systems will appear to be type systems will appear to be
declining unless they are rigorously maintained and adapted to odeclining unless they are rigorously maintained and adapted to operational perational
environment changes.environment changes.

Source: Lehman, M., et al, “Metrics and Laws of Software Evolution—The Nineties View,”
Proceedings of the 4th International Software Metrics Symposium (METRICS '97), IEEE, 1997, can be
downloaded from: http://www.ece.utexas.edu/~perry/work/papers/feast1.pdf

CS550 Intro. to SE
Spring 2007 8

Management MythsManagement Myths
Myth: We already have a book that's full of standards and procedures for building
software, won't that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? In many cases, the
answer to the following questions is "no.“

Are software practitioners aware of its existence?
Does it reflect modern software engineering practice?
Is it complete?
Is it streamlined to improve time to delivery while still maintaining a focus on quality?

Myth: If we get behind schedule, we can add more programmers and catch up
Reality: Software development is not a mechanistic process like manufacturing. In the
words of Brooks [BRO75]: "adding people to a late software project makes it later“

Myth: If I decide to outsource the software project to a third party, I can just relax
and let that firm build it.

Reality: If an organization does not understand how to manage and control software
projects internally, it will invariably struggle when it outsources software projects.

CS550 Intro. to SE
Spring 2007 9

Customer MythsCustomer Myths
Myth: A general statement of objectives is
sufficient to begin writing programs—we can fill
in the details later.

Reality: A poor up-front definition is the major
cause of failed software efforts. A formal and
detailed description of the information domain,
function, behavior, performance, interfaces,
design constraints, and validation criteria is
essential. These characteristics can be
determined only after thorough communication
between customer and developer.

Myth: Project requirements continually change,
but change can be easily accommodated
because software is flexible.

Reality: It is true that software requirements
change, but the impact of change varies with the
time at which it is introduced.

CS550 Intro. to SE
Spring 2007 10

PractitionerPractitioner’’s Mythss Myths
Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that "the sooner you begin 'writing code', the longer it'll take you to
get done." Industry data ([LIE80], [JON91], [PUT97]) indicate that between 60 and 80 percent of all
effort expended on software will be expended after it is delivered to the customer for the first time.

Myth: Until I get the program "running" I have no way of assessing its quality.
Reality: One of the most effective software quality assurance mechanisms can be applied from the
inception of a project—the formal technical review. Software reviews are more effective than
testing for finding certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working program.
Reality: A working program is only one part of a software configuration that includes many
elements. Documentation provides a foundation for successful engineering and, more important,
guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary
documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating quality. Better
quality leads to reduced rework. And reduced rework results in faster delivery times.

