
CS550 Intro. to SE
Spring 2007 1

Chapter 14Chapter 14
Testing Tactics Testing Tactics

Moonzoo Kim
CS Division of EECS Dept.

KAIST
moonzoo@cs.kaist.ac.kr

http://pswlab.kaist.ac.kr/courses/cs550-07

CS550 Intro. to SE
Spring 2007 2

Overview of Ch14. Testing TacticsOverview of Ch14. Testing Tactics
14.1 Software Testing Fundamentals14.1 Software Testing Fundamentals
14.2 14.2 BlackboxBlackbox and Whiteand White--Box TestingBox Testing
14.3 White14.3 White--Box TestingBox Testing
14.4 Basis Path Testing14.4 Basis Path Testing

Glow Graph NotationGlow Graph Notation
Independent Program PathsIndependent Program Paths
Deriving Test CasesDeriving Test Cases
Graph MatricesGraph Matrices

14.5 Control Structure Testing14.5 Control Structure Testing
Condition TestingCondition Testing
Data Flow TestingData Flow Testing
Loop TestingLoop Testing

CS550 Intro. to SE
Spring 2007 3

Overview of Ch14. Testing TacticsOverview of Ch14. Testing Tactics
14.6 14.6 BlackboxBlackbox TestingTesting

GraphGraph--based testing methodsbased testing methods
Equivalence partitioningEquivalence partitioning
Boundary value analysisBoundary value analysis
Orthogonal array testingOrthogonal array testing

14.7 OO Testing Methods 14.7 OO Testing Methods
The test case design implications of OO conceptsThe test case design implications of OO concepts
Applicability of conventional test case design methodsApplicability of conventional test case design methods
FaultFault--based testingbased testing
Test cases and class hierarchyTest cases and class hierarchy
ScenarioScenario--based testingbased testing
Testing surface structure and deep structureTesting surface structure and deep structure

14.8 Testing methods applicable at the class level14.8 Testing methods applicable at the class level
14.9 14.9 InterClassInterClass Test Case DesignTest Case Design
14.10 Testing for Specialized Environments, Architectures, and A14.10 Testing for Specialized Environments, Architectures, and Applications pplications
14.11 Testing Patterns14.11 Testing Patterns

CS550 Intro. to SE
Spring 2007 4

BlackBlack--Box TestingBox Testing

requirementsrequirements

eventseventsinputinput

outputoutput

CS550 Intro. to SE
Spring 2007 5

BlackBlack--Box TestingBox Testing
How is functional validity tested?How is functional validity tested?
How is system behavior and performance tested?How is system behavior and performance tested?
What classes of input will make good test cases?What classes of input will make good test cases?
Is the system particularly sensitive to certain input Is the system particularly sensitive to certain input
values?values?
How are the boundaries of a data class isolated?How are the boundaries of a data class isolated?
What data rates and data volume can the system What data rates and data volume can the system
tolerate?tolerate?
What effect will specific combinations of data have What effect will specific combinations of data have
on system operation?on system operation?

CS550 Intro. to SE
Spring 2007 6

GraphGraph--Based MethodsBased Methods

new
file

menu select generates
(generation time < 1.0 sec)

document
window

document
tex

t

is represented as
contains

Attributes:

background color: white
text color: default color

 or preferences

(b)

object
#1

Directed link
(link weight)

object
#2

object
#
3

Undirected link

Parallel links

Node weight
(value

)

(a)

allows editing
of

To understand the To understand the
objects that are objects that are
modeled in modeled in
software and the software and the
relationships that relationships that
connect these connect these
objectsobjects

In this context, we In this context, we
consider the term consider the term
““objectsobjects”” in the broadest in the broadest
possible context. It possible context. It
encompasses data encompasses data
objects, traditional objects, traditional
components (modules), components (modules),
and objectand object--oriented oriented
elements of computer elements of computer
software.software.

CS550 Intro. to SE
Spring 2007 7

Equivalence PartitioningEquivalence Partitioning

useruser
queriesqueries mousemouse

pickspicks

outputoutput
formatsformats

promptsprompts

FKFK
inputinput

datadata

CS550 Intro. to SE
Spring 2007 8

Sample Equivalence Sample Equivalence
ClassesClasses

user supplied commandsuser supplied commands
responses to system promptsresponses to system prompts
file namesfile names
computational datacomputational data

physical parameters physical parameters
bounding valuesbounding values
initiation valuesinitiation values

output data formattingoutput data formatting
responses to error messagesresponses to error messages
graphical data (e.g., mouse picks)graphical data (e.g., mouse picks)

data outside bounds of the program data outside bounds of the program
physically impossible dataphysically impossible data
proper value supplied in wrong placeproper value supplied in wrong place

Valid dataValid data

Invalid dataInvalid data

CS550 Intro. to SE
Spring 2007 9

Boundary Value AnalysisBoundary Value Analysis

useruser
queriesqueries mousemouse

pickspicks

outputoutput
formatsformats

promptsprompts

FKFK
inputinput

datadata

outputoutput
domaindomaininput domaininput domain

CS550 Intro. to SE
Spring 2007 10

Comparison TestingComparison Testing

Used only in situations in which the reliability of software Used only in situations in which the reliability of software
is absolutely critical (e.g., humanis absolutely critical (e.g., human--rated systems)rated systems)

Separate software engineering teams develop independent Separate software engineering teams develop independent
versions of an application using the same specificationversions of an application using the same specification
Each version can be tested with the same test data to ensure Each version can be tested with the same test data to ensure

that all provide identical output that all provide identical output
Then all versions are executed in parallel with realThen all versions are executed in parallel with real--time time
comparison of results to ensure consistencycomparison of results to ensure consistency

CS550 Intro. to SE
Spring 2007 11

Orthogonal Array TestingOrthogonal Array Testing
Used when the number of input parameters is
small and the values that each of the parameters
may take are clearly bounded

Single mode faults
Double mode faults
Multimode faults

One input item at a time L9 orthogonal array

XY

Z

X
Y

Z

CS550 Intro. to SE
Spring 2007 12

Testing MethodsTesting Methods

FaultFault--based testingbased testing
The tester looks for plausible faults (i.e., aspects of the impThe tester looks for plausible faults (i.e., aspects of the implementation lementation
of the system that may result in defects). To determine whether of the system that may result in defects). To determine whether these these
faults exist, test cases are designed to exercise the design or faults exist, test cases are designed to exercise the design or code. code.

Class Testing and the Class HierarchyClass Testing and the Class Hierarchy
Inheritance does not obviate the need for thorough testing of alInheritance does not obviate the need for thorough testing of all derived l derived
classes. In fact, it can actually complicate the testing processclasses. In fact, it can actually complicate the testing process..

ScenarioScenario--Based Test DesignBased Test Design
ScenarioScenario--based testing concentrates on what the user does, not what based testing concentrates on what the user does, not what
the product does. This means capturing the tasks (via usethe product does. This means capturing the tasks (via use--cases) that cases) that
the user has to perform, then applying them and their variants athe user has to perform, then applying them and their variants as tests.s tests.

CS550 Intro. to SE
Spring 2007 13

OOT Methods: Random TestingOOT Methods: Random Testing

Random testingRandom testing
identify operations applicable to a classidentify operations applicable to a class
define constraints on their usedefine constraints on their use
identify a identify a miminummiminum test sequencetest sequence

an operation sequence that defines the minimum life an operation sequence that defines the minimum life
history of the class (object)history of the class (object)

generate a variety of random (but valid) test generate a variety of random (but valid) test
sequencessequences

exercise other (more complex) class instance life exercise other (more complex) class instance life
historieshistories

CS550 Intro. to SE
Spring 2007 14

OOT Methods: Partition TestingOOT Methods: Partition Testing
Partition TestingPartition Testing

reduces the number of test cases required to test a reduces the number of test cases required to test a
class in much the same way as equivalence partitioning class in much the same way as equivalence partitioning
for conventional softwarefor conventional software
statestate--based partitioningbased partitioning

categorize and test operations based on their ability to change categorize and test operations based on their ability to change
the state of a classthe state of a class

attributeattribute--based partitioningbased partitioning
categorize and test operations based on the attributes that theycategorize and test operations based on the attributes that they
useuse

categorycategory--based partitioningbased partitioning
categorize and test operations based on the generic function categorize and test operations based on the generic function
each performseach performs

CS550 Intro. to SE
Spring 2007 15

OOT Methods: InterOOT Methods: Inter--Class TestingClass Testing
InterInter--class testingclass testing

For each client class, use the list of class operators to For each client class, use the list of class operators to
generate a series of random test sequences. The generate a series of random test sequences. The
operators will send messages to other server classes.operators will send messages to other server classes.
For each message that is generated, determine the For each message that is generated, determine the
collaborator class and the corresponding operator in the collaborator class and the corresponding operator in the
server object.server object.
For each operator in the server object (that has been For each operator in the server object (that has been
invoked by messages sent from the client object), invoked by messages sent from the client object),
determine the messages that it transmits.determine the messages that it transmits.
For each of the messages, determine the next level of For each of the messages, determine the next level of
operators that are invoked and incorporate these into operators that are invoked and incorporate these into
the test sequencethe test sequence

CS550 Intro. to SE
Spring 2007 16

OOT Methods: Behavior TestingOOT Methods: Behavior Testing
empty
acctopen setup Accnt

set up
acct

deposit
(initial)

working
acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit
accntInfo

Figure 14.3 St at e diagram f or Account class (adapt ed f rom [KIR94])

The tests to be The tests to be
designed designed
should achieve should achieve
all all state state
coveragecoverage
[KIR94]. That is, [KIR94]. That is,
the operation the operation
sequences sequences
should cause should cause
the Account the Account
class to make class to make
transition transition
through all through all
allowable statesallowable states

CS550 Intro. to SE
Spring 2007 17

Testing PatternsTesting Patterns
Pattern name:Pattern name: pair testingpair testing

Abstract: Abstract: A processA process--oriented pattern, pair testing describes a technique that oriented pattern, pair testing describes a technique that
is analogous to pair programming (Chapter 4) in which two testeris analogous to pair programming (Chapter 4) in which two testers work s work
together to design and execute a series of tests that can be apptogether to design and execute a series of tests that can be applied to unit, lied to unit,
integration or validation testing activities.integration or validation testing activities.

Pattern name: Pattern name: separate test interfaceseparate test interface
Abstract: Abstract: There is a need to test every class in an objectThere is a need to test every class in an object--oriented system, oriented system,
including including ““internal classesinternal classes”” (i.e., classes that do not expose any interface (i.e., classes that do not expose any interface
outside of the component that used them). The separate test inteoutside of the component that used them). The separate test interface rface
pattern describes how to create pattern describes how to create ““a test interface that can be used to a test interface that can be used to
describe specific tests on classes that are visible only internadescribe specific tests on classes that are visible only internally to a lly to a
component.component.”” [LAN01][LAN01]

Pattern name: Pattern name: scenario testingscenario testing
Abstract: Abstract: Once unit and integration tests have been conducted, there is a Once unit and integration tests have been conducted, there is a
need to determine whether the software will perform in a manner need to determine whether the software will perform in a manner that that
satisfies users. The scenario testing pattern describes a technisatisfies users. The scenario testing pattern describes a technique for que for
exercising the software from the userexercising the software from the user’’s point of view. A failure at this level s point of view. A failure at this level
indicates that the software has failed to meet a user visible reindicates that the software has failed to meet a user visible requirement. quirement.
[KAN01][KAN01]

