Chapter 14
Testing Tactics

Moonzoo Kim

CS Division of EECS Dept.
KAIST

msr CS550 Intro. to SE

Spring 2007

Overview of Ch14. Testing Tactics

14.1 Software Testing Fundamentals
14.2 Blackbox and White-Box Testing
14.3 White-Box Testing

14.4 Basis Path Testing

= Glow Graph Notation

= Independent Program Paths
= Deriving Test Cases

= Graph Matrices

14.5 Control Structure Testing
= Condition Testing

= Data Flow Testing
= Loop Testing

msr CS550 Intro. to SE

Spring 2007

Overview of Ch14. Testing Tactics

14.6 Blackbox Testing

= Graph-based testing methods

= Equivalence partitioning

= Boundary value analysis

= Orthogonal array testing
14.7 OO Testing Methods
The test case design implications of OO concepts
Applicability of conventional test case design methods
Fault-based testing
Test cases and class hierarchy
Scenario-based testing

= Testing surface structure and deep structure
14.8 Testing methods applicable at the class level
14.9 InterClass Test Case Design
14.10 Testing for Specialized Environments, Architectures, and Applications
14.11 Testing Patterns

mS'I‘ CS550 Intro. to SE

- Spring 2007

Bt

CS550 Intro. to SE
Spring 2007

Black-Box Testing

requirements

Black-Box Testing

How is functional validity tested?
How is system behavior and performance tested?
What classes of input will make good test cases?

Is the system particularly sensitive to certain input
values?

How are the boundaries of a data class isolated?

What data rates and data volume can the system

tolerate?

What effect will specific combinations of data have
on system operation?

msr CS550 Intro. to SE
Spring 2007

Graph-Based Methods

To understand the
objects that are
modeled in
software and the
relationships that
connect these
objects

In this context, we
consider the term
“objects” in the broadest
possible context. It
encompasses data
objects, traditional
components (modules),
and object-oriented
elements of computer
software.

CS550 Intro. to SE
- Spring 2007

Directed link
(link weight)

Undirected link (value

Parallel links)

menu select generates
(generationtime < 1.0 sec)

document
window

allows editing

4,

is represented as Attributes:

contains

document

tex
t

(h)

Node weight

background color: white
text color: default color

or preferences

Equivalence Partitioning

user output
queries formats .
prompts

m CS550 Intro. to SE

e SPring 2007

Sample Equivalence
Classes

Valid data
user supplied commands

responses to system prompts
file names
computational data
physical parameters
bounding values
Initiation values

output data formatting
responses to error messages
graphical data (e.g., mouse picks)

Invalid data
data outside bounds of the program
physically impossible data
proper value supplied in wrong place

m CS550 Intro. to SE

e SPring 2007

Boundary Value Analysis

user FK
queries input
prompts ga

_ _ output
input domain domain

ﬂ CS550 Intro. to SE
Spring 2007

Comparison Testing

Used only in situations in which the reliability of software
IS absolutely critical (e.g., human-rated systems)

= Separate software engineering teams develop independent
versions of an application using the same specification

m Each version can be tested with the same test data to ensure
that all provide identical output

= Then all versions are executed in parallel with real-time
comparison of results to ensure consistency

CS550 Intro. to SE
- KAIST 10

Spring 2007

Orthogonal Array Testing

Used when the number of input parameters is
small and the values that each of the parameters
may take are clearly bounded

Single mode faults

Double mode faults ®
Multimode faults T
o @
@ AR _
\‘.‘ o \Y @
Y X—p X—>
One input item at a time L9 orthogonal array

CS550 Intro. to SE
KAIST 11

Spring 2007

Testing Methods

= The tester looks for plausible faults (i.e., aspects of the implementation
of the system that may result in defects). To determine whether these
faults exist, test cases are designed to exercise the design or code.

= Inheritance does not obviate the need for thorough testing of all derived
classes. In fact, it can actually complicate the testing process.

= Scenario-based testing concentrates on what the user does, not what
the product does. This means capturing the tasks (via use-cases) that
the user has to perform, then applying them and their variants as tests.

CS550 Intro. to SE
Spring 2007

12

OOT Methods: Random Testing

Random testing
identify operations applicable to a class
define constraints on their use

identify a miminum test sequence

an operation sequence that defines the minimum life
history of the class (object)

generate a variety of random (but valid) test
sequences

exercise other (more complex) class instance life
histories

msr CS550 Intro. to SE 13
Spring 2007

OOT Methods: Partition Testing

Partition Testing

reduces the number of test cases required to test a
class in much the same way as equivalence partitioning
for conventional software

state-based partitioning
categorize and test operations based on their ability to change
the state of a class

attribute-based partitioning
categorize and test operations based on the attributes that they
use

category-based partitioning

categorize and test operations based on the generic function
each performs
msr CS550 Intro. to SE 14

Spring 2007

OOT Methods: Inter-Class Testing

Inter-class testing

For each client class, use the list of class operators to
generate a series of random test sequences. The
operators will send messages to other server classes.

For each message that is generated, determine the
collaborator class and the corresponding operator in the
server object.

For each operator in the server object (that has been
iInvoked by messages sent from the client object),
determine the messages that it transmits.

For each of the messages, determine the next level of
operators that are invoked and incorporate these into

the test sequence
msr CS550 Intro. to SE 15

Spring 2007

OOT Methods: Behavior Testing

The tests to be

d ESi N ed . empty set up
S h 0 ugl d acC h | eve open CIEE setupAccnt g acct

all state deposit
coverage (inital
[KIR94]. That Is, deposit
the operation working
sequences belance e I
ShOUId cause accntinfo

the Account withdrawal
class to make oD

tl‘an S | t| on O | nonworking
through all et close et

allowable states
Figure 14.3 State diagram for Account class (adapted from [KIR94])
KAIST CS550 Intro. to SE 16

Spring 2007

Testing Patterns

Abstract: A process-oriented pattern, pair testing describes a technique that
IS analogous to pair programming (Chapter 4) in which two testers work
together to design and execute a series of tests that can be applied to unit,
integration or validation testing activities.

Abstract: There is a need to test every class in an object-oriented system,
including “internal classes” (i.e., classes that do not expose any interface
outside of the component that used them). The separate test interface
pattern describes how to create “a test interface that can be used to
describe specific tests on classes that are visible only internally to a
component.” [LANO1]

Abstract: Once unit and integration tests have been conducted, there is a
need to determine whether the software will perform in a manner that
satisfies users. The scenario testing pattern describes a technique for
exercising the software from the user’s point of view. A failure at this level
indicates that the software has failed to meet a user visible requirement.
[KANO1]

CS550 Intro. to SE
Spring 2007

17

