Chapter 5
Practice: A Generic View

Moonzoo Kim

CS Division of EECS Dept.
KAIST
moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs550-07

MIST CS550 Intro. to SE

Spring 2007

What is “Practice” ?

m Practice is a broad array of concepts, principles,
methods, and tools that you must consider as software is
planned and developed.

m |t represents the details—the technical considerations
and how to’'s—that are below the surface of the software
process—the things that you'll need to actually build
high-quality computer software.

ms CS550 Intro. to SE
= == Spring 2007

The Essence of Practice

m George Polya, in a book written in 1945 (1), describes the

essence of software engineering practice ...
m Understand the problem (communication and analysis).
m Plan a solution (modeling and software design).
m Carry out the plan (code generation).
m Examine the result for accuracy (testing and quality assurance).

m At its core, good practice is common-sense problem
solving

MIST CS550 Intro. to SE

Spring 2007

Core Software Engineering
Principles

Provide value to the customer and the user
KIS—keep it simple!

Maintain the product and project “vision”
What you produce, others will consume

Be open to the future

Plan ahead for reuse

Think!

N o a0 ~ w D E

MIST CS550 Intro. to SE

Spring 2007

Software Engineering
Practices

m Consider the generic process framework
Cofrlrntnieaior)
et

Mol

CorsirLeior)

DEPIOYINEN
m Here, we’ll identify
m Underlying principles
m How to initiate the practice
m An abbreviated task set

msr CS550 Intro. to SE

Spring 2007

Communication Practices

m Principles

Listen

Prepare before you communicate
Facilitate the communication
Face-to-face is best

Take notes and document decisions
Collaborate with the customer

Stay focused

Draw pictures when things are unclear
Move on ...

Negotiation works best when both parties win.

MIST CS550 Intro. to SE

Spring 2007

Communication Practices

m [nitiation
m The parties should be physically close to one another
m Make sure communication is interactive

m An abbreviated task set
m Identify who it is you need to speak with
m Define the best mechanism for communication
m Establish overall goals and objectives and define the scope
|

Get more detailed
m Have stakeholders define scenarios for usage
m Extract major functions/features

m Review the results with all stakeholders

MIST CS550 Intro. to SE

Spring 2007

KAIS

CS550 Intro.

Spring 2007

Planning Practices

Principles

Understand the project scope

Involve the customer (and other stakeholders)
Recognize that planning is iterative
Estimate based on what you know
Consider risk

Be realistic

Adjust granularity as you plan

Define how quality will be achieved
Define how you’ll accommodate changes
Track what you've planned

© ©®© N o 0 A~ 0w DdPRE

|
o

to SE

Planning Practices

m [nitiation

m Ask Boehm’s gquestions
m Why is the system begin developed?
What will be done?
When will it be accomplished?
Who is responsible?
Where are they located (organizationally)?
How will the job be done technically and managerially?

|
H
|
|
H
m How much of each resource is needed?

MIST CS550 Intro. to SE

Spring 2007

Planning Practices

m An abbreviated task set

Re-assess project scope

Assess risks

Evaluate functions/features

Consider infrastructure functions/features

Create a coarse granularity plan
m Number of software increments
m Overall schedule
m Delivery dates for increments
m Create fine granularity plan for first increment

m Track progress

MIST CS550 Intro. to SE

Spring 2007

Modeling Practices

m We create models to gain a better understanding of the actual entity
to be built

m Analysis models represent the customer requirements by depicting
the software in three different domains:
m the information domain
m the functional domain
m the behavioral domain.
m Design models represent characteristics of the software that help
practitioners to construct it effectively:
m the architecture
m the user interface
m component-level detail.

MIST CS550 Intro. to SE

Spring 2007

11

Analysis Modeling Practices

m Analysis modeling principles
1. Represent the information domain
2. Represent software functions
3. Represent software behavior
4. Partition these representations
5. Move from essence toward implementation

m Elements of the analysis model (Chapter 8)
m Data model
m Flow model
m Class model
m Behavior model

MIST CS550 Intro. to SE

Spring 2007

12

KAIS

CS550 Intro.

Spring 2007

Design Modeling Practices

Principles

Design must be traceable to the analysis model
Always consider architecture

Focus on the design of data

Interfaces (both user and internal) must be designed
Components should exhibit functional independence
Components should be loosely coupled

Design representation should be easily understood
The design model should be developed iteratively
Elements of the design model

m Data design

m Architectural design

m Component design

m Interface design

© N o 00 b~ W NP

to SE

13

Construction Practices

m Preparation principles: Before you write one line of code,
be sure you:

1.

Understand of the problem you're trying to solve (see
communication and modeling)

Understand basic design principles and concepts.

Pick a programming language that meets the needs of the
software to be built and the environment in which it will operate.

Select a programming environment that provides tools that will
make your work easier.

Create a set of unit tests that will be applied once the component
you code is completed.

MIST CS550 Intro. to SE

Spring 2007

14

m Coding principles: As you begin writing code, be sure you:
1.

Construction Practices

Constrain your algorithms by following structured programming
[BOHOQ] practice.

Select data structures that will meet the needs of the design.

Understand the software architecture and create interfaces that are
consistent with it.

Keep conditional logic as simple as possible.
Create nested loops in a way that makes them easily testable.

Select meaningful variable names and follow other local coding
standards.

Write code that is self-documenting.

Create a visual layout (e.g., indentation and blank lines) that aids
understanding.

MIST CS550 Intro. to SE

Spring 2007

15

Construction Practices

m Validation Principles: After you’ve completed

your first coding pass, be sure you:
1. Conduct a code walkthrough when appropriate.
2. Perform unit tests and correct errors you've uncovered.
3. Refactor the code.

ms CS550 Intro. to SE
= == Spring 2007

16

Construction Practices

m Testing Principles

KAIST

1.

2
3.
4

All tests should be traceable to requirements

. Tests should be planned

The Pareto Principle applies to testing

. Testing begins “in the small’ and moves toward “in

the large”
Exhaustive testing is not possible

CS550 Intro. to SE
Spring 2007

17

Deployment Practices

m Principles

KAIST

1.
2.

Manage customer expectations for each increment

A complete delivery package should be assembled
and tested

A support regime should be established
Instructional materials must be provided to end-users
Buggy software should be fixed first, delivered later

CS550 Intro. to SE
Spring 2007

18

