Re-engineering Home Service Robots
Improving Software Reliability: A Case Study

Moonzoo Kim, etc

Agenda

@ Introduction

@ Re-engineering Software Architecture

@ Control Plane Re-engineering

@ Data Plane Re-engineering

@ Lessons Learned

m CS550 Intro. to SE

e SPriNG 2007 2/34

Home Service Robots

Introduction

F Designed for providing various services to human user

- Service areas . home security, patient caring, cleaning, etc
- Markets for home service robots are still being formed

At Home

EEEEEEERE R

~ May I help you?

m CS550 Intro. to SE

e SPring 2007

Is she OK?

F |
| [
= .. sending /@"
:* \\\ .
OK. I'll take

a picture.

Cecking a Sick

Remote Control |

3/34

Home Service Robots Project Background

o SAIT started development of SHROO from 2002

— 4 separate teams (13 persons)

« Vision recognition, speech recognition, simultaneous localization
and mapping (SLAM), actuator

« Both SHROO and SHR50 suffered feature interaction
problems
— SAIT decided to develop SHR100 from scratch

e SAIT requested POSTECH to improve the reliability

of SHR100 in six months
— SHR100 is written in 17K line of C/C++

msr CS550 Intro. to SE
Spring 2007 4/34

Components of Home Service Robots Introduction

E Robots are created based on various technical components
- Speech recognizer, vision recognizer, actuator, etc

Front Camera

8-Channel
Microphones

|Motor Controller

Single .controlling
. Board peripherals
omputer Ceiling *Map building Structured Light

__ / "; Camera +Self-positioning |Cei|ing Camera

" *Face Recognition
./ Front ,yser following
= Camera .pemote Surveillance

*Sound
(Q‘l;h Speaker gecr)ml:err]ation

4

& 8 channel *Speaker
Microphones Localization \'

Structured .« Obstacle Detection
. Light < Foot Step Detection
Sensor

.ﬁ Lcp °Informatio
n Display —
s

‘E.Actuator -Movemem;\": >

1L Wireless «Communication to
- LAN Home Server

ms‘r CS550 Intro. to SE
e Spring 2007 e

Integration of Components Introduction

B Robot developers concentrate on technical components only,
resulting in integration in an ad-hoc and bottom-up way

- Difficult to coordinate components to provide services

PDA
Call & Come
Front Camera
Surveillance Tele-Presence
A\ 4 Y Y
8-Channel Call & Come Surveillance [¢—» Tele-Presence ,
Microphones User Following
A
JV A 4 I
Strll_JiCtrl:red +| User Following > Navigation > SLAM
ght
A
) 4
Motor Controller Ceiling Camera
Legend
Name Sensor/Actuator Name External Device
Name Service Component —p Data Flow

msr CS550 Intro. to SE
Spring 2007

6/34

Problems Re-engineering Software Architecture

B Problems due to bottom-up integration

- Lack of global view
- Difficulty in analyzing the behavior of integrated systems

- Integration often requires modifications of other components

I Feature interaction problems

- Invisible interactions between the components
- Difficulty to trace the cause of problems (debugging difficulty)

Cannot develop products in reasonable project time

> Cannot evolve according to quickly changed market demands
Cannot satisfy required quality attributes (e.g. safety and temporal properties)

KAIST €5550Intro. to SE pu s
7134

Spring 2007

Proposed Approach Re-engineering Software Architecture

BETo provide hierarchical and modular SA
- Top-down global views
- Visualization of component interactions
- High adaptabillity for evolving features/ technologies

ETo apply formal construction & verification

to the core of SW

- Rigorous and automated debugging support

- Explicit interaction mechanism among components
- Compact and easy-to-understand code

msr CS550 Intro. to SE
Spring 2007

8/34

Proposed Approach Re-engineering Software Architecture

I Re-engineering based on the following three principles

1. Separation of control plane from computational plane
2. Distinction between global behavior and local behavior
3. Layering in accordance with data refinement hierarchy

ms' CS550 Intro. 10 S |
e Spring 2007 "

Re-engineering Principles Re-engineering Software Architecture

F Principlel: Separation of Control Components from Computational
Components.

The first class of data is control g
: : ﬁ Apply
data for handling robot behaviors. Control Oriented Development Methodology

- correctness is the foremost Control Plane To the Control Plane
concern due to complexity of
. Control Control Control
reactive SyStem Components Component 1 ¢ 00 Component n
. T 1 :

The second class of data is Computational | computational Computational
. ; Components Component 1 o o o Component m

computational data for handling

robot function. —

. Agmy
; efficient computation Is the most Data Oriented Development Methodology
important goal. ||A To the Data Plane

Legend
Name | Component — === Event (Up-stream)

............. Event (Down-stream) = *=-— Control

Data Flow

msr CS550 Intro. to SE
Spring 2007

10/34

Re-engineering Principles Re-engineering Software Architecture

E Principle2: Separation of Local Behaviors from Global Behaviors

Control Plane
Mode manager components II\

1 i Mod
_deflnes _the system modes and .the e e s vanager
interaction policy between service :

: : I

Components. Local Behavior Service Service !
/ Control Components Manager 1 ¢ 00 Manger n :

. B |

SerVICe manager Components \‘ | .. : |

. | |
defines the behaV|_or of service Qmbutationa Computational Computational
feature by controlling the
computational components. Data Plane

Legend

Name | Component = === Event (Up-stream)

------------- Event (Down-stream)

KAIST €5550Intro. to SE pu s
. Spring 2007 11/34

Re-engineering Principles Re-engineering Software Architecture

E Principle3: Layering in Accordance with Data Refinement Hierarchy

QoS Manager determines the level

at which the computation should be
performed according to service

2.
|
There exist data \

Control Plane

Global Behavior

Control Components

Local Behavior

Control Components

Mode
Manager
: T
.. 1
: : 1

- o 0o o ;
Service Service |}
Managerl Manager n :
___________________ N |

y

) T

refinement hierarchy 4,

QoS Manager

for data computation and

1
I
I

different service features Computation Layer k|1

may use different
computational

Computational Computational
Componentl | @ © @ Component m

=

Repository

component layers.

Computation Layer 1 | _ .

msr CS550 Intro. to SE
. Spring 2007

Data Plane

12/34

New Software Architecture Re-engineering Software Architecture

Mode
J/ ManaaerI
Control Plane__ é, E.....................................EE...........' :
L Call & User Tele- Security |
Come Eollowina Presence Monitaring 1
.............. prreesseeese e sssssss s sssss b s s s ssssss s e s essnsnsssesssssenssssegesssssbes
H : 1
- -Fr--------rf T-~——~~=====§fT- "=~ ===="d°q~-="==-=====°—---
I | | | L
ol Structured User Vision Audio
SLAM Light Interface Manager Manager
Data Plane +— Qf |l — | ~~ |
Data
__ L_Repasitory 4 4
: I : I
y 1 i. 1
Vision QoS - Audio QoS
Manager . Manager
|
_ » !
Object Recognition - g Audio Source
through Color ; Direction Analysis
Legend Analysis :
sl Event (Up-stream) mage Format o Audio Pattern
--------------- Event (Down-stream) Conversion ! Recognition
Conceptual Data Elow !
Component I di
_____ Control Image | Audio
Acquisition - Acquisition

Data Repository

Data Repository

KAIST 5850 Intro- 1o SE e —
P riNG 2007

Re-engineering Control Plane (1/3) Re-engineered SHR100 Architecture

Mode
Manager
CALL_COME_DONE,CALL_STOP_DONE GHHe ST

Control Plane ','_________':'_—_______—I____-_____:___ -
Implementation | CALL_COME,; | 2 |) l
//7 ESfefe/ CALL STOP: i 1 i 2 :
User Security i
Call & Come Following Tele-Presence Monitoring :

module cnc module uf module tp module sm I
|
|

: : : : EV[:_:NT

g freeeeeeaend S t@pp@d() e : :
:GOQO) P
Pop------ ROTATEQ - - -~ — =i~ - r - ~human-#n-nange¢)y - - £ - 1!

bata Flane N $TORO 1 detdctdd) | !

Implementation : ' ' ' '

in C/C‘/"/' SLAM Navigation User Interface Vision Manager Audio

Manager
| | | |
Data
Repository

KA T 5550 Intr0. 10 S

e SPriNG 2007

Re-engineering Control Plane (2/3)

Overview of the Previous CC

ImEIementation

B A main control procedure for the preempiive CC service

New

Com-<

mands

E This straightforward pattern is error prone.

ms" CS550 Intro. to SE
e Spring 2007

01:class CCallComeDlIg {

02: int m_order;

03:

04: void processState() {

05: ...

06: switch(m_order) {

07: case 0: STOP();

08: m_order++;

09: break;

T0: Ca® 1: ROTATE():

11: m_order++;

12: break;

13: cas% 2

14:

15: else nCount =0
16: if (nCount > 2) m_order++;
17: break;

8 >

19: case 9: CALL_N_COME_FINISHED();
20: m_order = —1;
21: break:;

22: }/* End of processState()}
23:}

e processState() is

called periodically
once in every 100
milliseconds.

CC executes
through sequential
steps identified by
the value of
m_order

nCount is
declared as a
static local
variable at line 13

15/34

Re-engineering Control Plane (3/3) ~ OVerview of the re-engineered CC

ImEIementation

I Esterel handles a

01:module control_plane: % Control Plane

02:input EVENT: integer;

03:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET,;
04:signal CALL_COME, CALL_STOP in

05:run mode_man| |run cncl [run uf||run tpllrun sm;
06:end signal

07:end module

08:

09:module cnc: % Call and Come service

10:function human_in_range() : boolean:

11:input CALL_COME,CALL_STOP; %come,stop commands
12:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET,;
13:vargm- sroesleanarrtegeris

14:

15: present

16: case CALL COME do % come command
17: mv := true;

18: emit STOP: pause;

19: I rig rni‘_r‘lm"

20:

21: emit CC_DONE;pause;

22: case CALL_STOP do % stop command
23: emit STOP;

24 if mv=true then emit CS_DONE;
25: else mv:=true;pausend ifs
26: end present;

27: mv := false;

28: end every

29:end var

30:end module

31:...

msr CS550 Intro. to SE
e Spring 2007

preemptive event e with a
preemption operator

EVERY e DO statements
END EVERY.

Interactions among Esterel
modules are clearly defined
via events

PRESENT CASE e DO
statements END PRESENT

Submodule can be
conveniently utilized

RUN module

16/34

Esterel Background (1/5) Reactive Synchronous Language Esterel

Input ____
B Synchrony =
event event .
abstraction of the
real world
E Cycle-based
" computation execution model,
_______ memory global clock
B Perfect synchrony
iInput output
WA N
A Y g time
Execu’tio—h—‘ihstéiﬁféﬂ_
m CS550 Intro. to SE

e SPriNg 2007

17/34

Esterel Background (2/5) The Esterel Language

I Synchronous language
I Structural imperative style

I Basic constructs

eClassical control flow

P49, pllg, loop p end
eSignals:

signal S In p end, emit S,
present S then p else g end

ePreemption
abort p when S, every s do p end every

eException handling
trap T In pend, exit T

msr CS550 Intro. to SE
Spring 2007

18/34

Esterel Background (3/5) The Esterel Semantics

B ABRO example

Input A,B,R;

Output O;
await A
I
1: switch(state){
erﬁit 0- case 0: state=1l; break;
’ case 1: 1T(IR) {0() ;state=4;}
halt else state=2;
else state=3;break;
case 2: 1f(R)state=1;
else {0 ;state=4;} break;
case 3: I1f(R)state=1;
else {0();state=4;} break;
case 4: i1T(R)state=1;break;

}

msr CS550 Intro. to SE
e S PrING 2007 19/34

Esterel Background (4/5)

B The esterel Compiler:
e C/VHDL/Verilog code generation.

#» interface between Esterel and C.

E The xes Graphical Simulator:
® graphical interactive simulation

» session recording/replay.

¥ The xeve Model Checker:

» analyzes an Esterel program.

» check presence of an output signal

with given configuration of input
signals.

CS550 Intro. to SE
e SPring 2007

Overview of Esterel Tools

module callncome :
function human in range() : hoolean;
input CIME_ COMMAND . STOP COMMARD :
relation COME COMHAND # STOP_ COMMAHD ;
gutput SIOP, ROTATE, GO,
CHC DOHNE, HUMAH DETECTED, HUMAH HOT DETECTI
sigmal Reset in

every immediate [COME COHMMAND oxr STOP _COI

weak abort

case COME COMMAND do
emit STOP;: pause:;

Tree MainFPanel Close

| ¥Yariahles

callncome .vot_det.n rd

callneome simulation main panel

=]

Commands 1

Fonts YWindows Info

Pure Inputs |
_y COME COMMAHD
_i STOP_COMMAHD

Pure Dutputs
STOP
ROTATE
GO
CHC_DOHE
HUMAN DETECTED
HUMAN HOT DETECTED

reset | rect

Fik: “eificaton Oplions 7

I Beginer's Mads

Fis Seleclian
Woking Dreclogp D:dpapsrs!/200405CA 8 ESTEREL

Faul Fils JC@lIncome.blit & eteion Fia S@lIncorme. rel bl
S o sk | fri

Weplication Selection

& CHECE OUTFUTS

ot |

" REDUCE
Siaral Selection
INPUTS | DUTPUTS

COME_COMMAND = iS"lOP

STOP_COMMAND {ROTATE
N
[
|C-NC_DD'E
HUMAN_DETECTED
HUMAN_WOT_DETECTED
ISTOP VIDLATION

1

EL

Output Checking Resulis

T
Olulpt Hame

Sharia:

I‘IE'-JEFE EMITTED

Peth zaved in hl=:

TS

20/34

Esterel Background (5/5)

O 2Ed & 0 & -

P& Esierel Siudio - [elevator.eipl - [safeiy.scgl

File Edit Wew Insert Format Project

Simulation Tools Window Help

rREBX |0 o KW &1

Commercial Esterel Studio 5.21

Vi BEEen oE | aqq [KO

=-[E call_intf,strl
F& Buttonsand|
IS ElevatorEng
Fa FloorSensol

=-{¢) cabinscg
Cabin

= [safety,scg
safety

=-[E call.strl
e CallHandler

=-[E elevator,strl
B Elevator

Label [Danger & 7 | [Module v © [] []
Trees ® | """ # cabin.scg - [Cabinl [E]E][7 safety.scg - [safety] e |
= {ealevatnr,etp s " Cabin = safety)
= Fodel
= data, strl DoorlsClosed |
(3 SizeData DoorlsOpen =
=-[8] cabin_intf, strl g
ﬁ R /OpenDoorilotorOn sustain Danger
’ﬁ Tirnernitf W Open # OpenDoorMotorOn f

:abinStopped /

n or DoorSensor /

DoorlsOpen |
OpanDoorWoto rOFF

Danger

CabinStopped [

Cabin moves

sustain assert OK = not D:

Stop/ / StartTimer

TimerExpired

<>

loseDoorfotorOn

#Start f

or DoorClose /

([Eutern = g
=3 Data ¥ | = DoorlsClosad /
£ | = B
Project | [Modules | .
L = Project loaded
CWPFrogram FilesWEsterel TechnologiesWEsterelZtudioWexamplesWadvancedWElevatorWelevator, etp

o
=
1]
=
4 Log |Errors | Find | Qutput | Browsing |
Ready

CS550 Intro. to SE
e SPring 2007

21/34

Formal Verification of Stopping Behaviors (1/5) Behavior of CC

#Wﬁmh?ﬂh!ﬂ[ﬁ?n!mmﬂ

o N |S indicates output
I signal
e 7S indicates presence

"mmm of the input signal S
SCMLAST I ROTATE
\ CMAS an

N * #S Indicates absence
ST, of the input signal S

CMLISTISTOR KNG DONE

fan ® #OMLIST.ISTOPR, ICNC_DONE

CS550 Intro. to SE
. Spring 2007 22/34

Formal Verification of Stopping Behaviors (2/5) Requirement Properties

B Stopping behaviors are safety critical

B Three properties on the stopping behaviors
e P1: If a user does not give a command to the robot, the robot must not move.

e P2: If a user does not give a “come” command, but may give a “stop” command to
the robot, the robot must not move.

e P3: If a user gives a “stop” command, the robot must stop and not move without
any new command.

® We verify whether P1,P2, and P3 are satisfied in the following
two cases

¢« \When the CC service runs solely

¢« When the CC service and the UF service run concurrently

ms‘r CS550 Intro. to SE
e Spring 2007

23/34

Formal Verification of Stopping Behaviors (3/5) Verification Result |

E We check P1 by setting

¢ Input signals COME_COMMAND and STOP_COMMAND as “always

absent”

¢ Output signal GO to check.

I Both cases satisfy P1

XV E=terel Verification Enviranment

Fiks ‘“aiiication Oplions ¥

o Eheck Output Aesults.

Fis Selactian

“Wolking Dreclory [/ papes /200405 CHS ESTEREL

Fsu F JCElINCOMe. biit
4|

Weplicatian 3 dlection

Aeiaion Fis 1oalncome, rel. bl
] I'J A

& CHECE OUTPUTE
" REDLCE

post |

Swnal Selection

INPUTS

| COME_COMMAND = iﬁTDP
STOP_COMMAND ROTATE
LN}

CHE_DONE

HUAAN_DETECTED
HUMAAM _NOT _DETECTED
[STOE WICLATHON

OUTPUTS

i=
bl
4|
=
g
o

I

Eseculion comglele

gl generated fil: (it ary| can ba simulated usng "ras”

Fahd Sizra

Aeachzble BLaI-ansi 12

Oulput Chacking Resudiz
o .

Slgtu;

INE"JEH EMITTED

Feth zaved in hl=:

m CS550 Intro. to SE

P riNg 2007

24/34

Formal Verification of Stopping Behaviors (4/5) Verification Result 11

E The CC service satisfies P2, but not CC and UF together.

- Verification result said that ROTATE and GO could be possibly

emitted when COME_COMMAND command was absent and
STOP_COMMAND might be given

- l.e. feature interaction happens

& UF should had been triggered only after a “come”
command

1. We refined CNC_DONE into CNC_COME_DONE and
CNC_STOP_DONE.

2. We maodified the UF implementation so that only
CNC_COME_DONE could invoke UF.

3. After this modification, we could see that P2 was satisfied by the
concurrent CC and UF services.

KAIST €5550Intro. to SE pu s
Spring 2007

Formal Verification of Stopping Behaviors (5/5) Verification Result 111

B The property P3.

e P3: If a user gives a “stop” command, the robot stops and does not move
without any new command.

E To verify P3, we need to build an observer to detect violations

01 :moduale obasrver:

DE:input sTOP COMMAND , COME COMMAND , ROTATE , 8TOF , GO ;
02 :output STOP VIOLATION;

0d:weak abort

05: every immediate STOF COMMAND do

06 : present STOP then

07 : loop

08: present [ROTATE or GO]

09: then emit STOP VIOLATION;
10 end pressnt;

11: pauaes;

12 end loop;

13 end preasnt

14: emit STOP VIOLATION;

15: end every

16 :when COME COMMARND ;
17 :ennd modules

msr CS550 Intro. (0 SE p
P ring 2007 26/34

Re-engineering Data Plane (1/2) Experimental Results

I Layered Implementation of Vision Manager
- The layered architectural pattern is organized based on the
data refinement hierarchy.

Interface Implementation
class Layer3 { class Vision_L3_FaceRecognition |/ 1. |mage data from the front
protected : : public Layer3 {
Layer2 *lowerLayer; public - camera are captured
virtual bool L3Service()
publlic : K (Layer 1),
virtual bool L3Service()= 0; if(lowerLayer->L2Service()){ . .
void setLowerlLayer(Layer2 *I){ 2. then converted into a file
lowerLayer = 1; } iT(m_faceRec.Rec()){
3} DR: :setData(m_facePattern); format (Layer 2)
.} . .
i g 3. finally a human face is
class Layer2 { class Vision_L2_FormatConversion I 1fi I
protsotss - ke Lo |d(=int|f|§d Ey ?InaIyLzmg .
ayerl *lowerlLayer; public :
virtual bool L2Service() colors in t etie (ayer)
public : <l-{'"
virtual bool L2Service()= 0; if(lowerLayer->L1Service()){
void setLowerLayer(Layerl *1){
lowerLayer = 1; } iT(m_frmtConversion.Conv()){
} DR: :setData(m_imgFormat);
-}
V ¥

KAIST €5550Intro. to SE pu s
Spring 2007 27134

Re-engineering Data Plane (2/2)

E Vision QoS Manager
- The QoS manager layer selects the ‘right’ level of data refinements.

ms‘r CS550 Intro. to SE
e Spring 2007

Vision Computation

-

tm(100)
/ Recognize Face

>

UF vision

Stop U Req UF Vision
Vision / Recognize Face —
Req CC Vision
/Initialize / Recognize Face
.\Vision
Vision Ready Detected

\

Foxmat

Format Convelsjon
Conversion Done
Done
Req TP Vision

/Convert Format

TP Vision

Face Not Detected

~

Req SM Vision
/Convert Format

Experimental Results

Vision
QoS

Manager

T~

t

y 1

Vision QoS

Manager

Recognition

Face

Conversion

Image

1
S TR SN

o

Acquisition

Image

—
&

28/34

Necessity of Re-engineering Lessons Learned

E From the experience of re-engineering SHR100, we are
convinced that re-engineering is essential

- Due to the limited development time, developers tend to
concentrate only on technical components at the early state
without considering how they will be integrated.

- Once feasibllity of the project is confirmed through an early
prototype, re-engineering the product at later stage should be
enforced for increased quality of the product.

Mode

i R |

8-Channel > 1

Microphones Call& Come | Call & Come Uself |
L | Following

‘-‘\ T T 1

w \-. - |

Structured ————-!——I————-!——I————-!——I
Light —>| User Following Na g atio : I : 7 !

; Structured Vision Audio

| Motor Controlle | Navigatio Light Manager Manager Manager

msr CS550 Intro. to SE
Spring 2007

29/34

Separation of Priority Management

Lessons Learned

Global Priority Scheme Required

\NAIREN

Front Camera

- We found that unclear global
priority scheme was one of the

EChannel o a come primary causes of feature
\ ¢ \ Interaction problems.
\
Structured Y / . ! .
Light ‘“\\ User Following Navigation
: 7 -
x — Global Priority Scheme
= = = §\
7 Local Scheme Mode Managey,
-With the new architecture, the 4 /\ T)
. . . ; : 1
global priority scheme is \\|_<m&60me User '
separated from the service S : 2
st e e e TR I SO— = =
components and manageability of S = R = N
priority was increased drastically. o Structured Vision Audio
Navigation Light Manager Manager Manager

msr CS550 Intro. to SE
. Spring 2007

30/34

Needs of Monitoring Capability Lessons Learned

E A monitoring capability is an important aid for tracking down
possible sources of a problem.

Front Camera
Channe| v ! -Determining where to put probes
ﬁ « cone J is difficult, if the role of each
l_> i component and the ways they

Structured v #Q Interact each other are not clear
Light JBer Following Navigation
I i ¢ T
;otor Controller

-The new SA that we proposed Ca“&:COme User

could alleviate this difficulty with ~ ~ — T — i s
clear interaction strategy .. ______ g mmmdempo—--- g

between components

Mode Manager

Structured Vision Audio

Navigation Light Manager Manager Manager

msr CS550 Intro. to SE
. Spring 2007

31/34

Advantage of a Reactive PL

Lessons Learned

which decrease the accuracy of

J]CPIanner =l a1 class members)El| ¢ pinFuncCallCome =l - |JJ@
ol x|

= E5 Beamformer classes = wmanmSE ;§
= r<arcov w macecrren am consgn 200 =VV@ LINCOVeEred subtle bugs
-5 EBSYWSTEM (switch {(param.order
™% EigenBeamformer I
=--*5 MultiFiltering c§p: —

EI--- Common classes —
G128 CFFT if (m_pSLMain) T
=™ CircularBufferzD<class T> = d t t
"5 CircularBuffer<{class T> MY_TRACE{"[SSL Proce: e eC Ing a user
E E :‘MK?IF;:IanS(TI) . m_pSLMain->SetProces: . . .

- MultiFileRead<class 3

£ 22 Mulinleneatcclase > - Implementing preemption in
=--®% Thread m_tracker .cmdTurn{body .d«
=--C0 Globals param_order++; T

C++ is error prone.
-3 Call Come MY_TRACE("[plnCallCome T
=23 Common zreak .
-3 Data e] / —
-2 Grabber £ — —
...... £ Grid Map 2 static CPose befPose;
=423 Motion static int nCnt = 8;
. @™ _DasaStatus
. ®-®™= _PlnParam %e CweRese étrackel

- Esterel enalbes clear interactions

among the components

- Esterel has formal semantics as

Mealy machine, which allows

rigorously analysis such as model

checking

CS550 Intro. to SE
Spring 2007

callncome simulation main panel

breakpoinks | =« e Tree HainFanel Close i L]
modale nallnooms: Pure Inputs Pure Dubpats
function human in range(} : boolean; — COME COHPAND STOFP

inguat COME COMMAND , STOF LOMMMAHD ; _ STDF_ CIOMMAND HOTATE

relation COME COMARND # STOPF COMAWD G0

output ETOP, BOTATE . GO,
CHC DONE, HUMEH DETECTED, HUMAN HOT DETECT
signal Reset in
erecy dimmediate [COME COMMAHD ox STOP_ 0D
weak Aboxt
preaent
oaxe S duo

% mmusg\

a4 |
// XEVE: Esterel Verification Environment !
/

% When O

¥
Ol &

[" Bagimne': Made

C]I'C_DlIITE
mu_nnmcmn/
_ylﬂ TED

recc

HMainF anel Close Help J

Irpu sequesnce

Fiename [e

§|Iee Weificaion Opicns 1 4
_— _— =
——

Fi Sekclion

Lu:-acll Habpad ¥ Rt anboading
b | Step | Plaw Blov |

32/34

Industrial Viewpoints Lessons Learned

o After all, SAIT decided not to adopt re—

engineered robot sw In their robot
prototype ®

e EXcuses are

— QOverhead of using a new language
« Most robot developers are not from CS field

— [nability to optimize final code manually
e For consumer products, resource constraints are still
major ISSUes
—\Version discrepancy

« While re—engineering was going on at POSTECH,
SAIT constantly add/updated features, which our re—
engineered code did not cover

msr CS550 Intro. to SE
Spring 2007

33/34

Conclusion

B A Case Study of Re-engineering Home Service Robot

- Based on the three engineering principles, we designed a new
SA and re-engineered existing source code.

- By this re-engineering, interactions among the components
became visible and the responsibility of behaviors could be
assigned to components clearly, which enhance the reliability

- By this re-engineering, we can apply model checking technique
to improve the reliability of the control plane

B Future work
- Resource management problem

- Guideline for reverse-engineering

KAIST €5550Intro. to SE pu s
Spring 2007 34/34

