
ReRe--engineering Home Service Robots engineering Home Service Robots
Improving Software Reliability: A Case StudyImproving Software Reliability: A Case Study

Moonzoo Kim, etc

2/34
CS550 Intro. to SE
Spring 2007

AgendaAgenda

Control Plane ReControl Plane Re--engineering engineering

IntroductionIntroduction

ReRe--engineering Software Architectureengineering Software Architecture

Lessons LearnedLessons Learned

Data Plane ReData Plane Re--engineering engineering

3/34
CS550 Intro. to SE
Spring 2007

IntroductionIntroductionHome Service Robots

Designed for providing various services to human user
- Service areas : home security, patient caring, cleaning, etc
- Markets for home service robots are still being formed

4/34
CS550 Intro. to SE
Spring 2007

Project BackgroundProject Background

• SAIT started development of SHR00 from 2002
– 4 separate teams (13 persons)

• Vision recognition, speech recognition, simultaneous localization
and mapping (SLAM), actuator

• Both SHR00 and SHR50 suffered feature interaction
problems
– SAIT decided to develop SHR100 from scratch

• SAIT requested POSTECH to improve the reliability
of SHR100 in six months
– SHR100 is written in 17K line of C/C++

Home Service Robots

5/34
CS550 Intro. to SE
Spring 2007

IntroductionIntroduction

Robots are created based on various technical components
- Speech recognizer, vision recognizer, actuator, etc

Components of Home Service Robots

Front
Camera

Speaker

Ceiling
Camera

•Face Recognition
•User following
•Remote Surveillance

•Map building
•Self-positioning

8 channel
Microphones

•Speaker
Localization

Structured
Light

Sensor

• Obstacle Detection
• Foot Step Detection

Wireless
LAN

•Communication to
Home Server

LCD •Informatio
n Display

•Sound
generation

Actuator •Movement

Single
Board

Computer

•Controlling
peripherals

8-Channel
Microphones

Front CameraFront Camera

Front CameraStructured Light

Front CameraMotor Controller

Front CameraCeiling Camera

6/34
CS550 Intro. to SE
Spring 2007

IntroductionIntroduction

Robot developers concentrate on technical components only,
resulting in integration in an ad-hoc and bottom-up way
- Difficult to coordinate components to provide services

Integration of Components

8-Channel
Microphones

Front CameraFront Camera

PDA

Motor ControllerMotor Controller

Name Sensor/Actuator

Service Component Data Flow

Legend

Name

Name External Device

User Following Navigation

Call & Come Tele-Presence

SLAM

Ceiling CameraCeiling Camera

Surveillance

Structured
Light

Call & Come

User Following

Tele-PresenceSurveillance

7/34
CS550 Intro. to SE
Spring 2007

Problems due to bottom-up integration
- Lack of global view
- Difficulty in analyzing the behavior of integrated systems
- Integration often requires modifications of other components

ReRe--engineering Software Architectureengineering Software ArchitectureProblems

Feature interaction problems

- Invisible interactions between the components
- Difficulty to trace the cause of problems (debugging difficulty)

Cannot develop products in reasonable project time
Cannot evolve according to quickly changed market demands
Cannot satisfy required quality attributes (e.g. safety and temporal properties)

8/34
CS550 Intro. to SE
Spring 2007

To provide hierarchical and modular SA
- Top-down global views
- Visualization of component interactions
- High adaptability for evolving features/ technologies

To apply formal construction & verification
to the core of SW
- Rigorous and automated debugging support
- Explicit interaction mechanism among components
- Compact and easy-to-understand code

ReRe--engineering Software Architectureengineering Software ArchitectureProposed Approach

9/34
CS550 Intro. to SE
Spring 2007

Re-engineering based on the following three principles

1. Separation of control plane from computational plane
2. Distinction between global behavior and local behavior
3. Layering in accordance with data refinement hierarchy

ReRe--engineering Software Architectureengineering Software ArchitectureProposed Approach

10/34
CS550 Intro. to SE
Spring 2007

ReRe--engineering Software Architectureengineering Software ArchitectureRe-engineering Principles

The first class of data is control
data for handling robot behaviors.
: correctness is the foremost
concern due to complexity of
reactive system.

Principle1: Separation of Control Components from Computational
Components.

The second class of data is
computational data for handling
robot function.
: efficient computation is the most
important goal.

Computational
Component 1

Control
Components

Computational
Components

Computational
Component m

Control Plane

Data Plane

Control
Component 1

Control
Component n

Apply Apply
Control Oriented Development MethodologyControl Oriented Development Methodology

To the Control PlaneTo the Control Plane

Apply Apply
Data Oriented Development MethodologyData Oriented Development Methodology

To the Data PlaneTo the Data Plane

Event (Up-stream)

Event (Down-stream)

Data FlowName Component

Legend

Control

11/34
CS550 Intro. to SE
Spring 2007

ReRe--engineering Software Architectureengineering Software ArchitectureRe-engineering Principles

Mode manager components
defines the system modes and the
interaction policy between service
components.

Principle2: Separation of Local Behaviors from Global Behaviors

Service manager components
defines the behavior of service
feature by controlling the
computational components.

Computational
Component 1

Computational
Components

Computational
Component m

Control Plane

Data Plane

Service
Manager 1

Service
Manger n

Local Behavior
Control Components

Global Behavior
Control Components

Mode
Manager

Event (Up-stream)

Event (Down-stream)

Name Component

Legend

12/34
CS550 Intro. to SE
Spring 2007

ReRe--engineering Software Architectureengineering Software ArchitectureRe-engineering Principles

Principle3: Layering in Accordance with Data Refinement Hierarchy

Computational
Component 1

Data
Repository

Local Behavior
Control Components

Global Behavior
Control Components

Computational
Component m

Control Plane

Data Plane

Service
Manager1

Service
Manager n

Mode
Manager

QoS Manager

Computation Layer k

Computation Layer 1

QoS Manager determines the level
at which the computation should be
performed according to service

There exist data
refinement hierarchy
for data computation and
different service features
may use different
computational
component layers.

13/34
CS550 Intro. to SE
Spring 2007

Image
Acquisition

Object Recognition
through Color

Analysis

Image Format
Conversion

Structured
Light

User
Interface

Vision
Manager

Audio
Manager

Call &
Come

User
Following

Mode
Manager

Security
Monitoring

SLAM

Vision QoS
Manager

Audio
Acquisition

Audio Source
Direction Analysis

Audio Pattern
Recognition

Audio QoS
Manager

Data Repository

Data
Repository

Data Repository

Control

Tele-
Presence

Event (Up-stream)

Event (Down-stream)
Data Flow

Legend

Name

Conceptual
Component

Control Plane

Data Plane

ReRe--engineering Software Architecture engineering Software Architecture New Software Architecture

14/34
CS550 Intro. to SE
Spring 2007

ReRe--engineered SHR100 Architectureengineered SHR100 Architecture

Mode
Manager

module sm

stopped()
GO()

ROTATE()
STOP()

Navigation User Interface

human_in_range()
detected()

Vision Manager Audio
Manager

SLAM

Data
Repository

Tele-Presence
module tp

Call & Come
module cnc

User
Following

module uf

Security
Monitoring
module sm

EVENT

CALL_COME,
CALL_STOP

Control Plane
Implementation
in Esterel

Data Plane
Implementation
in C/C++

CALL_COME_DONE,CALL_STOP_DONE

Re-engineering Control Plane (1/3)

15/34
CS550 Intro. to SE
Spring 2007

01:class CCallComeDlg {
02: int m_order;
03: ...
04: void processState() {
05: ...
06: switch(m_order) {
07: case 0: STOP();
08: m_order++;
09: break;
10: case 1: ROTATE();
11: m_order++;
12: break;
13: case 2: static int nCount = 0;
14: if (abs(m_befO-curO)==0) nCount++;
15: else nCount = 0;
16: if (nCount > 2) m_order++;
17: break;
18: ...
19: case 9: CALL_N_COME_FINISHED();
20: m_order = -1;
21: break;
22: }/* End of processState()}
23:}

A main control procedure for the preemptive CC service

Overview of the Previous CC Overview of the Previous CC
ImplementationImplementation

This straightforward pattern is error prone.

• processState() is

called periodically

once in every 100

milliseconds.

• CC executes

through sequential

steps identified by

the value of

m_order

• nCount is

declared as a

static local

variable at line 13

New
Com-
mands

Re-engineering Control Plane (2/3)

16/34
CS550 Intro. to SE
Spring 2007

Esterel handles a
preemptive event e with a
preemption operator

EVERY e DO statements
END EVERY.

Interactions among Esterel
modules are clearly defined
via events

PRESENT CASE e DO
statements END PRESENT

Submodule can be
conveniently utilized

RUN module

Overview of the reOverview of the re--engineered CC engineered CC
ImplementationImplementation

01:module control_plane: % Control Plane
02:input EVENT: integer;
03:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET;
04:signal CALL_COME, CALL_STOP in
05:run mode_man||run cnc||run uf||run tp||run sm;
06:end signal
07:end module
08:
09:module cnc: % Call and Come service
10:function human_in_range() : boolean;
11:input CALL_COME,CALL_STOP; %come,stop commands
12:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET;
13:var mv:=false:boolean,n:integer in
14: every immediate [CALL_COME or CALL_STOP] do
15: present
16: case CALL_COME do % come command
17: mv := true;
18: emit STOP; pause;
19: run rot_det;
20: ...
21: emit CC_DONE;pause;
22: case CALL_STOP do % stop command
23: emit STOP;
24: if mv=true then emit CS_DONE;
25: else mv:=true;pause;run rot_det end if;
26: end present;
27: mv := false;
28: end every
29:end var
30:end module
31:...

Re-engineering Control Plane (3/3)

17/34
CS550 Intro. to SE
Spring 2007

Synchrony =
abstraction of the
real world
Cycle-based
execution model,
global clock
Perfect synchrony

Input
event

Output
event

computation
memory

time

Execution instants

input output

Reactive Synchronous Language EsterelReactive Synchronous Language EsterelEsterel Background (1/5)

18/34
CS550 Intro. to SE
Spring 2007

Synchronous language

Structural imperative style

Basic constructs
Classical control flow
p;q, p||q, loop p end

Signals:
signal S in p end, emit S,

present S then p else q end

Preemption
abort p when S, every s do p end every

Exception handling
trap T in p end, exit T

The Esterel LanguageThe Esterel LanguageEsterel Background (2/5)

19/34
CS550 Intro. to SE
Spring 2007

ABRO example

1

2 3

4

0

/RBA /RBA
/ORAB

/ORA/ORB

R/ R/

R/

switch(state){
case 0: state=1; break;
case 1: if(!R)if(A)if(B) {O();state=4;}

else state=2;
else if(B)state=3;break;

case 2: if(R)state=1;
else if(B){O();state=4;} break;

case 3: if(R)state=1;
else if(A){O();state=4;} break;

case 4: if(R)state=1;break;
}

Input A,B,R;
Output O;
loop
[
await A

||
await B

];
emit O;
halt

every R

The The EsterelEsterel SemanticsSemanticsEsterel Background (3/5)

20/34
CS550 Intro. to SE
Spring 2007

The esterel Compiler:
C/VHDL/Verilog code generation.

interface between Esterel and C.

The xes Graphical Simulator:
graphical interactive simulation

session recording/replay.

The xeve Model Checker:
analyzes an Esterel program.

check presence of an output signal
with given configuration of input
signals.

Overview of Esterel ToolsOverview of Esterel ToolsEsterel Background (4/5)

21/34
CS550 Intro. to SE
Spring 2007

Commercial Esterel Studio 5.21Commercial Esterel Studio 5.21Esterel Background (5/5)

22/34
CS550 Intro. to SE
Spring 2007

Behavior of CCBehavior of CC

• !S indicates output
signal

• ?S indicates presence
of the input signal S

• #S indicates absence
of the input signal S

Formal Verification of Stopping Behaviors (1/5)

23/34
CS550 Intro. to SE
Spring 2007

Requirement PropertiesRequirement Properties

Stopping behaviors are safety critical

Three properties on the stopping behaviors
P1: If a user does not give a command to the robot, the robot must not move.

P2: If a user does not give a “come” command, but may give a “stop” command to
the robot, the robot must not move.

P3: If a user gives a “stop” command, the robot must stop and not move without
any new command.

We verify whether P1,P2, and P3 are satisfied in the following
two cases

When the CC service runs solely

When the CC service and the UF service run concurrently

Formal Verification of Stopping Behaviors (2/5)

24/34
CS550 Intro. to SE
Spring 2007

We check P1 by setting
Input signals COME_COMMAND and STOP_COMMAND as “always
absent”
Output signal GO to check.

Both cases satisfy P1

Verification Result IVerification Result IFormal Verification of Stopping Behaviors (3/5)

25/34
CS550 Intro. to SE
Spring 2007

The CC service satisfies P2, but not CC and UF together.

- Verification result said that ROTATE and GO could be possibly
emitted when COME_COMMAND command was absent and
STOP_COMMAND might be given

- I.e. feature interaction happens

UF should had been triggered only after a “come”
command
1. We refined CNC_DONE into CNC_COME_DONE and

CNC_STOP_DONE.

2. We modified the UF implementation so that only
CNC_COME_DONE could invoke UF.

3. After this modification, we could see that P2 was satisfied by the
concurrent CC and UF services.

Verification Result IIVerification Result IIFormal Verification of Stopping Behaviors (4/5)

26/34
CS550 Intro. to SE
Spring 2007

The property P3.
P3: If a user gives a “stop” command, the robot stops and does not move
without any new command.

To verify P3, we need to build an observer to detect violations

Verification Result IIIVerification Result IIIFormal Verification of Stopping Behaviors (5/5)

27/34
CS550 Intro. to SE
Spring 2007

Experimental ResultsExperimental ResultsRe-engineering Data Plane (1/2)

Layered Implementation of Vision Manager
- The layered architectural pattern is organized based on the
data refinement hierarchy.

1. Image data from the front
camera are captured
(Layer 1),

2. then converted into a file
format (Layer 2)

3. finally a human face is
identified by analyzing
colors in the file (Layer 3).

class Vision_L3_FaceRecognition
: public Layer3 {
public :
virtual bool L3Service()
{…
if(lowerLayer->L2Service()){
…
if(m_faceRec.Rec()){
DR::setData(m_facePattern);

… }

class Vision_L2_FormatConversion
: public Layer2 {
public :
virtual bool L2Service()
{…
if(lowerLayer->L1Service()){
…
if(m_frmtConversion.Conv()){
DR::setData(m_imgFormat);

… }

class Layer3 {
protected :

Layer2 *lowerLayer;

public :
virtual bool L3Service()= 0;
void setLowerLayer(Layer2 *l){

lowerLayer = l; }
}

class Layer2 {
protected :
Layer1 *lowerLayer;

public :
virtual bool L2Service()= 0;
void setLowerLayer(Layer1 *l){

lowerLayer = l; }
}

Interface Implementation

28/34
CS550 Intro. to SE
Spring 2007

Experimental ResultsExperimental ResultsRe-engineering Data Plane (2/2)

Vision QoS Manager
- The QoS manager layer selects the ‘right’ level of data refinements.

Vision
QoS

Manager

Image
Acquisition

Face
Recognition

Image
Conversion

Vision QoS
Manager

QM

L3

L2

L1

Vision Ready

UF vision

CC vision

TP Vision

Vision Computation

Req UF Vision
/ Recognize Face

Stop UF
Vision

Format
Conversion

Done

Req CC Vision
/ Recognize Face

tm(100)
/ Recognize Face

Face Not Detected

/Initialize
Vision

Req TP Vision
/Convert Format

SM Vision

Req SM Vision
/Convert Format

Format
Conversion

Done

Face
Detected

29/34
CS550 Intro. to SE
Spring 2007

Lessons LearnedLessons Learned
From the experience of re-engineering SHR100, we are
convinced that re-engineering is essential

- Due to the limited development time, developers tend to
concentrate only on technical components at the early state
without considering how they will be integrated.

- Once feasibility of the project is confirmed through an early
prototype, re-engineering the product at later stage should be
enforced for increased quality of the product.

8 -C h a n n e l
M ic ro p h o n e s

F ro n t C a m e ra

M o to r C o n tro lle r

N a v ig a tio n

C a ll & C o m e

S tru c tu red
L ig h t

8 -C h a n n e l
M ic ro p h o n e s

F ro n t C a m e ra

M o to r C o n tro lle r

N a v ig a tio n

C a ll & C o m e

S tru c tu red
L ig h t U s er F o llo w in gU s er F o llo w in g

Call & Come

Navigation Vision
Manager

Audio
Manager

User
Following

Mode
Manager

Structured
Light Manager

Necessity of Re-engineering

30/34
CS550 Intro. to SE
Spring 2007

Lessons LearnedLessons Learned

8 -C h a n n e l
M ic ro p h o n e s

F ro n t C am e ra

M o to r C o n tro lle r

N a vig a tio n

C a ll & C o m e

S tru c tu red
L ig h t

8 -C h a n n e l
M ic ro p h o n e s

F ro n t C am e ra

M o to r C o n tro lle r

N a vig a tio n

C a ll & C o m e

S tru c tu red
L ig h t U s e r F o llow in gU s e r F o llow in g

Call & Come

Navigation
Vision

Manager
Audio

Manager

User
Following

Mode Manager

Structured
Light Manager

- We found that unclear global
priority scheme was one of the
primary causes of feature
interaction problems.

-With the new architecture, the
global priority scheme is
separated from the service
components and manageability of
priority was increased drastically.

Global Priority SchemeGlobal Priority Scheme

Local SchemeLocal Scheme

Global Priority Scheme RequiredGlobal Priority Scheme Required

Separation of Priority Management

31/34
CS550 Intro. to SE
Spring 2007

Lessons LearnedLessons Learned
A monitoring capability is an important aid for tracking down
possible sources of a problem.

8-C h an n e l
M ic ro p h o n es

F ro n t C am e ra

M o to r C o n tro lle r

N a vig a tio n

C a ll & C o m e

S tru c tu re d
L ig h t

8 -C h an n e l
M ic ro p h o n es

F ro n t C am e ra

M o to r C o n tro lle r

N a vig a tio n

C a ll & C o m e

S tru c tu re d
L ig h t U ser F o llow in gU ser F o llow in g

Call & Come

Navigation
Vision

Manager
Audio

Manager

User
Following

Mode Manager

Structured
Light Manager

-Determining where to put probes
is difficult, if the role of each
component and the ways they
interact each other are not clear

-The new SA that we proposed
could alleviate this difficulty with
clear interaction strategy
between components

Needs of Monitoring Capability

32/34
CS550 Intro. to SE
Spring 2007

Lessons LearnedLessons Learned

-We uncovered subtle bugs
which decrease the accuracy of
detecting a user
- Implementing preemption in
C++ is error prone.

- Esterel enalbes clear interactions
among the components
- Esterel has formal semantics as
Mealy machine, which allows
rigorously analysis such as model
checking

Advantage of a Reactive PL

33/34
CS550 Intro. to SE
Spring 2007

• After all, SAIT decided not to adopt re-
engineered robot sw in their robot
prototype

• Excuses are
– Overhead of using a new language

• Most robot developers are not from CS field

– Inability to optimize final code manually
• For consumer products, resource constraints are still

major issues

– Version discrepancy
• While re-engineering was going on at POSTECH,

SAIT constantly add/updated features, which our re-
engineered code did not cover

Lessons LearnedLessons LearnedIndustrial Viewpoints

34/34
CS550 Intro. to SE
Spring 2007

ConclusionConclusion

A Case Study of Re-engineering Home Service Robot

- Based on the three engineering principles, we designed a new
SA and re-engineered existing source code.

- By this re-engineering, interactions among the components
became visible and the responsibility of behaviors could be
assigned to components clearly, which enhance the reliability

- By this re-engineering, we can apply model checking technique
to improve the reliability of the control plane

Future work

- Resource management problem

- Guideline for reverse-engineering

