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Home Service Robots

Introduction

F Designed for providing various services to human user

- Service areas . home security, patient caring, cleaning, etc
- Markets for home service robots are still being formed
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Home Service Robots Project Background

o SAIT started development of SHROO from 2002

— 4 separate teams (13 persons)

« Vision recognition, speech recognition, simultaneous localization
and mapping (SLAM), actuator

« Both SHROO and SHR50 suffered feature interaction
problems
— SAIT decided to develop SHR100 from scratch

e SAIT requested POSTECH to improve the reliability

of SHR100 in six months
— SHR100 is written in 17K line of C/C++
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Components of Home Service Robots Introduction

E Robots are created based on various technical components
- Speech recognizer, vision recognizer, actuator, etc
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Integration of Components Introduction

B Robot developers concentrate on technical components only,
resulting in integration in an ad-hoc and bottom-up way

- Difficult to coordinate components to provide services
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Problems Re-engineering Software Architecture

B Problems due to bottom-up integration

- Lack of global view
- Difficulty in analyzing the behavior of integrated systems

- Integration often requires modifications of other components

I Feature interaction problems

- Invisible interactions between the components
- Difficulty to trace the cause of problems (debugging difficulty)

Cannot develop products in reasonable project time

> Cannot evolve according to quickly changed market demands
Cannot satisfy required quality attributes (e.g. safety and temporal properties)
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Proposed Approach Re-engineering Software Architecture

BETo provide hierarchical and modular SA
- Top-down global views
- Visualization of component interactions
- High adaptabillity for evolving features/ technologies

ETo apply formal construction & verification

to the core of SW

- Rigorous and automated debugging support

- Explicit interaction mechanism among components
- Compact and easy-to-understand code
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Proposed Approach Re-engineering Software Architecture

I Re-engineering based on the following three principles

1. Separation of control plane from computational plane
2. Distinction between global behavior and local behavior
3. Layering in accordance with data refinement hierarchy
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Re-engineering Principles Re-engineering Software Architecture

F Principlel: Separation of Control Components from Computational
Components.

The first class of data is control g
: : ﬁ Apply
data for handling robot behaviors. Control Oriented Development Methodology

- correctness is the foremost Control Plane To the Control Plane
concern due to complexity of
. Control Control Control
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The second class of data is Computational | computational Computational
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Re-engineering Principles Re-engineering Software Architecture

E Principle2: Separation of Local Behaviors from Global Behaviors

Control Plane
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Re-engineering Principles Re-engineering Software Architecture

E Principle3: Layering in Accordance with Data Refinement Hierarchy

QoS Manager determines the level

at which the computation should be
performed according to service
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New Software Architecture Re-engineering Software Architecture
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Re-engineering Control Plane (1/3) Re-engineered SHR100 Architecture
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Re-engineering Control Plane (2/3)

Overview of the Previous CC

ImEIementation

B A main control procedure for the preempiive CC service

New

Com-<

mands

E This straightforward pattern is error prone.
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01:class CCallComeDlIg {

02: int m_order;

03:

04: void processState() {

05: ...

06: switch(m_order) {

07: case 0: STOP();

08: m_order++;

09: break;

T0: Ca® 1: ROTATE():

11: m_order++;

12: break;

13: cas% 2

14:

15: else nCount =0
16: if (nCount > 2) m_order++;
17: break;

8 >

19: case 9: CALL_N_COME_FINISHED();
20: m_order = —1;
21: break:;

22: }/* End of processState()}
23:}

e processState() is

called periodically
once in every 100
milliseconds.

CC executes
through sequential
steps identified by
the value of
m_order

nCount is
declared as a
static local
variable at line 13
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Re-engineering Control Plane (3/3) ~ OVerview of the re-engineered CC

ImEIementation

I Esterel handles a

01:module control_plane: % Control Plane

02:input EVENT: integer;

03:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET,;
04:signal CALL_COME, CALL_STOP in

05:run mode_man| |run cncl [run uf||run tpllrun sm;
06:end signal

07:end module

08:

09:module cnc: % Call and Come service

10:function human_in_range() : boolean:

11:input CALL_COME,CALL_STOP; %come,stop commands
12:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET,;
13:vargm- sroesleanarrtegeris

14:

15: present

16: case CALL COME do % come command
17: mv := true;

18: emit STOP: pause;

19: I rig rni‘_r‘lm"

20:

21: emit CC_DONE;pause;

22: case CALL_STOP do % stop command
23: emit STOP;

24 if mv=true then emit CS_DONE;
25: else mv:=true;pausend ifs
26: end present;

27: mv := false;

28: end every

29:end var

30:end module

31:...

msr CS550 Intro. to SE
e Spring 2007

preemptive event e with a
preemption operator

EVERY e DO statements
END EVERY.

Interactions among Esterel
modules are clearly defined
via events

PRESENT CASE e DO
statements END PRESENT

Submodule can be
conveniently utilized

RUN module
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Esterel Background (1/5) Reactive Synchronous Language Esterel

Input ____
B Synchrony =
event event .
abstraction of the
real world
E Cycle-based
" computation execution model,
_______ memory global clock
B Perfect synchrony
iInput output
WA N
A Y g time
Execu’tio—h—‘ihstéiﬁféﬂ_
m CS550 Intro. to SE
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Esterel Background (2/5) The Esterel Language

I Synchronous language
I Structural imperative style

I Basic constructs

eClassical control flow

P49, pllg, loop p end
eSignals:

signal S In p end, emit S,
present S then p else g end

ePreemption
abort p when S, every s do p end every

eException handling
trap T In pend, exit T

msr CS550 Intro. to SE
Spring 2007

18/34



Esterel Background (3/5) The Esterel Semantics

B ABRO example

Input A,B,R;

Output O;
await A
I
1: switch(state){
erﬁit 0- case 0: state=1l; break;
’ case 1: 1T(IR) {0() ;state=4;}
halt else state=2;
else state=3;break;
case 2: 1f(R)state=1;
else {0 ;state=4;} break;
case 3: I1f(R)state=1;
else {0();state=4;} break;
case 4: i1T(R)state=1;break;

}
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Esterel Background (4/5)

B The esterel Compiler:
e C/VHDL/Verilog code generation.

#» interface between Esterel and C.

E The xes Graphical Simulator:
® graphical interactive simulation

» session recording/replay.

¥ The xeve Model Checker:

» analyzes an Esterel program.

» check presence of an output signal

with given configuration of input
signals.

CS550 Intro. to SE
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Overview of Esterel Tools
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Esterel Background (5/5)
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Formal Verification of Stopping Behaviors (1/5)  Behavior of CC

#Wﬁmh?ﬂh!ﬂ[ﬁ?n!mmﬂ

o N  |S indicates output
I signal
e 7S indicates presence

"mmm of the input signal S
SCMLAST I ROTATE
\ CMAS an
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ST, of the input signal S

CMLISTISTOR KNG DONE

fan ® #OMLIST.ISTOPR, ICNC_DONE
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Formal Verification of Stopping Behaviors (2/5) Requirement Properties

B Stopping behaviors are safety critical

B Three properties on the stopping behaviors
e P1: If a user does not give a command to the robot, the robot must not move.

e P2: If a user does not give a “come” command, but may give a “stop” command to
the robot, the robot must not move.

e P3: If a user gives a “stop” command, the robot must stop and not move without
any new command.

® We verify whether P1,P2, and P3 are satisfied in the following
two cases

¢« \When the CC service runs solely

¢« When the CC service and the UF service run concurrently

ms‘r CS550 Intro. to SE
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Formal Verification of Stopping Behaviors (3/5) Verification Result |

E We check P1 by setting

¢ Input signals COME_COMMAND and STOP_COMMAND as “always

absent”

¢ Output signal GO to check.

I Both cases satisfy P1
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Formal Verification of Stopping Behaviors (4/5) Verification Result 11

E The CC service satisfies P2, but not CC and UF together.

- Verification result said that ROTATE and GO could be possibly

emitted when COME_COMMAND command was absent and
STOP_COMMAND might be given

- l.e. feature interaction happens

& UF should had been triggered only after a “come”
command

1. We refined CNC_DONE into CNC_COME_DONE and
CNC_STOP_DONE.

2. We maodified the UF implementation so that only
CNC_COME_DONE could invoke UF.

3. After this modification, we could see that P2 was satisfied by the
concurrent CC and UF services.
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Formal Verification of Stopping Behaviors (5/5) Verification Result 111

B The property P3.

e P3: If a user gives a “stop” command, the robot stops and does not move
without any new command.

E To verify P3, we need to build an observer to detect violations

01 :moduale obasrver:

DE:input sTOP COMMAND , COME COMMAND , ROTATE , 8TOF , GO ;
02 :output STOP VIOLATION;

0d:weak abort

05: every immediate STOF COMMAND do

06 : present STOP then

07 : loop

08: present [ROTATE or GO]

09: then emit STOP VIOLATION;
10 end pressnt;

11: pauaes;

12 end loop;

13 end preasnt

14: emit STOP VIOLATION;

15: end every

16 :when COME  COMMARND ;
17 :ennd modules
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Re-engineering Data Plane (1/2) Experimental Results

I Layered Implementation of Vision Manager
- The layered architectural pattern is organized based on the
data refinement hierarchy.

Interface Implementation
class Layer3 { class Vision_L3_FaceRecognition |/ 1. |mage data from the front
protected : : public Layer3 {
Layer2 *lowerLayer; public - camera are captured
virtual bool L3Service()
publlic : K (Layer 1),
virtual bool L3Service()= 0; if(lowerLayer->L2Service()){ . .
void setLowerlLayer(Layer2 *I){ 2. then converted into a file
lowerLayer = 1; } iT(m_faceRec.Rec()){
3} DR: :setData(m_facePattern); format (Layer 2)
.} . .
i g 3. finally a human face is
class Layer2 { class Vision_L2_FormatConversion I 1fi I
protsotss - ke Lo |d(=int|f|§d Ey ?InaIyLzmg .
ayerl *lowerlLayer; public :
virtual bool L2Service() colors in t etie ( ayer )
public : <l-{'"
virtual bool L2Service()= 0; if(lowerLayer->L1Service()){
void setLowerLayer(Layerl *1){
lowerLayer = 1; } iT(m_frmtConversion.Conv()){
} DR: :setData(m_imgFormat);
-}
V ¥
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Re-engineering Data Plane (2/2)

E Vision QoS Manager
- The QoS manager layer selects the ‘right’ level of data refinements.

ms‘r CS550 Intro. to SE
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Necessity of Re-engineering Lessons Learned

E From the experience of re-engineering SHR100, we are
convinced that re-engineering is essential

- Due to the limited development time, developers tend to
concentrate only on technical components at the early state
without considering how they will be integrated.

- Once feasibllity of the project is confirmed through an early
prototype, re-engineering the product at later stage should be
enforced for increased quality of the product.

Mode

i R |

8-Channel > 1

Microphones Call& Come | Call & Come Uself |
L | Following

‘-‘\ T T 1

w \ ......-. .................. - |

Structured ————-!——I————-!——I————-!——I
Light —>| User Following Na g atio : I : 7 !

; Structured Vision Audio

| Motor Controlle | Navigatio Light Manager Manager Manager
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Separation of Priority Management

Lessons Learned

Global Priority Scheme Required

\NAIREN

Front Camera

- We found that unclear global
priority scheme was one of the

EChannel o a come primary causes of feature
\ ¢ \ Interaction problems.
\
Structured Y / . ! .
Light ‘“\\ User Following Navigation
: 7 -
x — Global Priority Scheme
= = = §\
7 Local Scheme Mode Managey,
-With the new architecture, the 4 /\ ................... T )
. . . ; : 1
global priority scheme is \\|_<m&60me User '
separated from the service S : 2
st e e e TR I SO— = =
components and manageability of S = R = N
priority was increased drastically. o Structured Vision Audio
Navigation Light Manager Manager Manager
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Needs of Monitoring Capability Lessons Learned

E A monitoring capability is an important aid for tracking down
possible sources of a problem.

Front Camera
Channe| v ! -Determining where to put probes
ﬁ « cone J is difficult, if the role of each
l_> i component and the ways they

Structured v #Q Interact each other are not clear
Light JBer Following Navigation
I i ¢ T
;otor Controller

-The new SA that we proposed Ca“&:COme User

could alleviate this difficulty with ~ ~ — T — i s
clear interaction strategy .. ______ g mmmdempo—--- g

between components

Mode Manager

Structured Vision Audio

Navigation Light Manager Manager Manager
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Advantage of a Reactive PL

Lessons Learned

which decrease the accuracy of

J]CPIanner =l a1 class members)El| ¢ pinFuncCallCome =l - |JJ@
ol x|

= E5 Beamformer classes = wmanmSE ;§
= r<arcov w macecrren am consgn 200 =VV@ LINCOVeEred subtle bugs
-5 EBSYWSTEM ( switch {(param.order
™% EigenBeamformer I
=--*5 MultiFiltering c§p: —

EI--- Common classes —
G128 CFFT if (m_pSLMain) T
=™ CircularBufferzD<class T> = d t t
"5 CircularBuffer<{class T> MY_TRACE{"[SSL Proce: e eC Ing a user
E E :‘MK?IF;:IanS( TI) . m_pSLMain->SetProces: . . .

- MultiFileRead<class 3

£ 22 Mulinleneatcclase > - Implementing preemption in
=--®% Thread m_tracker .cmdTurn{body .d«
=--C0 Globals param_order++; T

C++ is error prone.
-3 Call Come MY_TRACE("[plnCallCome T
=23 Common zreak .
-3 Data e ] / —
-2 Grabber £ — —
...... £ Grid Map 2 static CPose befPose;
=423 Motion static int nCnt = 8;
. @™ _DasaStatus
. ®-®™= _PlnParam %e CweRese étrackel

- Esterel enalbes clear interactions

among the components

- Esterel has formal semantics as

Mealy machine, which allows

rigorously analysis such as model

checking
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Industrial Viewpoints Lessons Learned

o After all, SAIT decided not to adopt re—

engineered robot sw In their robot
prototype ®

e EXcuses are

— QOverhead of using a new language
« Most robot developers are not from CS field

— [nability to optimize final code manually
e For consumer products, resource constraints are still
major ISSUes
—\Version discrepancy

« While re—engineering was going on at POSTECH,
SAIT constantly add/updated features, which our re—
engineered code did not cover
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Conclusion

B A Case Study of Re-engineering Home Service Robot

- Based on the three engineering principles, we designed a new
SA and re-engineered existing source code.

- By this re-engineering, interactions among the components
became visible and the responsibility of behaviors could be
assigned to components clearly, which enhance the reliability

- By this re-engineering, we can apply model checking technique
to improve the reliability of the control plane

B Future work
- Resource management problem

- Guideline for reverse-engineering
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