Introduction to Software Testing
Chapter 2.1, 2.2
Overview Graph Coverage Criteria

Paul Ammann & Jeff Offutt

Graph Coverage Criteria Subsumption

Complete Path
Coverage

CPC

!

Prime Path
Coverage

PPC

All-DU-Paths
Coverage

ADUP

!

Edge-Pair
Coverage

All-uses
Coverage

AUC

EPC

|

v

Edge
Coverage

Complete Round
Trip Coverage

CRTC

All-defs
Coverage

ADC

EC

!

¢

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Node
Coverage

Simple Round
Trip Coverage

SRTC

\[@

© Ammann & Offutt

Covering Graphs

(D7 1)\
\&-1)

« Graphs are the most commonly used structure for testing

« Graphs can come from many sources
— Control flow graphs
— Design structure
— FSMs and statecharts
— Use cases

 Tests usually are intended to “cover’ the graph in some way

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Definition of a Graph

A set N of nodes, N Is not empty

A set N, of Initial nodes, N, Is not empty

A set N¢ of final nodes, N; Is not empty

A set E of edges, each edge from one node to another
— (n;, ny), I is predecessor, | Is successor

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Three Example Graphs

eae € w
ia'dye-

No={0} No={0,1,2} No={}
Ne={3} Ne={7,809} Ne={3}

re Testing (Ch 2), www.introsoftwaretesting.com

Paths in Graphs

Path : A sequence of nodes — [ny, n,, ..., Ny]
— Each pair of nodes is an edge

Length : The number of edges
— Assingle node is a path of length O

Subpath : A subseguence of nodes in p Is a subpath of p
Reach (n) : Subgraph that can be reached from n

{ |

a 0 G Paths
[0,3,7]

OO \ (6) [1,4,8,5.1]

[2,6,9]
O © @

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Raarh (M =10 2 A
I \NUVAAVI 1] \Ul LU’ U’_I'

7,8,51,9}
Reach ({0, 2}) =G

Reach([2,6]) = {2, 6,
9}

Test Paths and SESES

- Test Path : A path that starts at an initial node and ends at a
final node

« Test paths represent execution of test cases

— Some test paths can be executed by many tests
— Some test paths cannot be executed by any tests

- SESE graphs : All test paths start at a single node and end at
another node
— Single-entry, single-exit
— NO and Nf have exactly one node

(1)
aOGg O
(2

Double-diamond graph

° Four test paths

() 0,1,3,4,6]

1
1
2
2

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Visiting and Touring

« Visit : Atest path pvisitsnodenifnisinp
A test path p visitsedge e ifeisinp
- Tour : A test path p tours subpath g if g is a subpath of p

Path [0, 1,3,4,6]

Visits nodes 0, 1, 3, 4, 6

Visits edges (0, 1), (1,3), (3,4), (4, 6)

Tours subpaths (0, 1, 3), (1,3,4), (3,4,6), (0,1,3,4), (1,3,4,6)

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Tests and Test Paths

path (t) : The test path executed by test t

path (T) : The set of test paths executed by the set of tests T

Each test executes one and only one test path

A location in a graph (node or edge) can be reached from
another location if there Is a sequence of edges from the first
location to the second

— Syntactic reach : A subpath exists in the graph

— Semantic reach : A test exists that can execute that subpath

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Tests and Test Paths

testl — many-to-one

‘;’ Test
. Path

test 2

test3 —

Deterministic software — a test always executes the same test path

many-to-many

test 1 — Test Path 1

test 2 > Test Path 2

test 3 — Test Path 3

Non-deterministic software — a test can execute different test paths

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 10

Testing and Covering Graphs
(2.2)

We use graphs in testing as follows :

— Developing a model of the software as a graph
— Requiring tests to visit or tour specific sets of nodes, edges or subpaths

Test Requirements (TR) : Describe properties of test paths
Test Criterion : Rules that define test requirements
Satisfaction : Given a set TR of test requirements for a criterion C,

a set of tests T satisfies C on a graph if and only if for every test
requirement in TR, there is a test path in path(T) that meets the
test requirement tr

Structural Coverage Criteria : Defined on a graph just in terms
of nodes and edges

Data Flow Coverage Criteria : Requires a graph to be annotated
with references to variables

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Node and Edge Coverage

The first (and simplest) two criteria require that each node and
edge in a graph be executed

Node Coverage (NC) : Test set T satisfies node coverage on
graph G Iff for every syntactically reachable node n in N,

there Is some path p in path(T) such that p visits n.

« This statement Is a bit cumbersome, so we abbreviate It in terms
of the set of test requirements

Node Coverage (NC)u FRicontainsieach reachable node in G.

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Node and Edge Coverage

- Edge coverage is slightly stronger than node coverage

Edge Coverage (EC) : TR contains each reachable path of
length up to 1, inclusive, Iin G.

- The “length up to 1” allows for graphs with one node and no
edges

« NC and EC are only different when there is an edge and another
subpath between a pair of nodes (as in an “if-else” statement)

Node Coverage: TR={0,1,2}
TestPath=[0,1, 2]

2), (
1,2
2]

Edge Coverage : TR ={(0,1), (0,
Test Paths =[0,
[0,

1,2)}
]

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Paths of Length 1 and O

A graph with only one node will not have any edges

!

O

It may be boring, but formally, Edge Coverage needs to require
Node Coverage on this graph
Otherwise, Edge Coverage will not subsume Node Coverage

— So we define “length up to 1” instead of simply “length 1

|

We have the same issue with graphs that only @
have one edge — for Edge Pair Coverage ...

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Covering Multiple Edges

Edge-pair coverage requires pairs of edges, or subpaths of
length 2

Edge-Pair Coverage (EPC) : TR contains each reachable path
of length up to 2, inclusive, in G.

The “length up to 2” is used to include graphs that have less
than 2 edges

The logical extension is to require all paths ...

Complete Path Coverage (CPC) : TR contains all paths in G.

Unfortunately, this is impossible if the graph has a loop, so a
weak compromise is to make the tester decide which paths:

Specified Path Coverage (SPC) : TR contains a set S of test
paths, where S is supplied as a parameter.

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Structural Coverage Example

Node Coverage
TR={0,1,2,3,4,56}
Test Paths: [0,1,2,3,6][0,1,2,4,5,4,6]

Edge Coverage
TR ={(0,1), (0,2), (1,2), (2,3), (2,4), (3,6), (4,5), (4,6), (5,4) }
Test Paths: [0,1,2,3,6][0,2,4,5,4,6]

Edge-Pair Coverage
TR ={[0,1,2], [0,2,3], [0,2,4], [1,2,3], [1,2,4], [2,3,6],
[2,4,5], [2,4,6], [4,5,4], [5,4,5], [5,4,6] }
Test Paths: [0,1,2,3,6][0,1,2,4,6][0,2,3,6]
[0,2,4,5,4,5,4,6]

Complete Path Coverage
Test Paths: [0,1,2,3,6][0,1,2,4,6][0,1,2,4,5,4,6]
[0,1,2,4,5,4,5,4,6][0,1,2,4,5,4,5,4,5,4,6]...

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

L_oops in Graphs

If a graph contains a loop, it has an infinite number of paths

Thus, CPC is not feasible

SPC is not satisfactory because the results are subjective and
vary with the tester

Attempts to “deal with” loops:
1970s : Execute cycles once ([4, 5, 4] in previous example, informal)
1980s : Execute each loop, exactly once (formalized)
1990s : Execute loops 0 times, once, more than once (informal description)
2000s : Prime paths

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Simple Paths and Prime Paths

Simple Path : A path from node ni to nj is simple if no node
appears more than once, except possibly the first and last nodes
are the same

— No internal loops

— Includes all other subpaths

— A loop is a simple path

Prime Path : A simple path that does not appear as a proper
subpath of any other simple path

Simple Paths :[0,1,3,0],[0,2,3,0],[1,3,0,1],

(2,3,0,21,[3,0,1,3],[3,0,2,3],[1,3,0, 2],

(2,3,0,11,[0,1,3],[0,2,3],[1,3,0],[2,3,0],
|

!
G a a 13,0,11,13,0,2],[0,11,[0,2],[1,31,[2,31,[3,01,
e 0], [1], [2], [3]

Prime Paths:[0,1,3,0],[0,2,3,0],[1,3,0,1],
[2,3,0,2],[3,0,1,3],[3,0,2,3],[1,3,0,2],

Introduction to Software Testing (Ch 2), www.introsoftwa [2’ 3’ O’ 1]

Prime Path Coverage

- A simple, elegant and finite criterion that requires loops to be
executed as well as skipped

Prime Path Coverage (PPC) : TR contains each prime path in G.

- Will tour all paths of length 0, 1, ...
- That is, it subsumes node, edge, and edge-pair coverage

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Round Trips

- Round-Trip Path : A prime path that starts and ends at the same
node

Simple Round Trip Coverage (SRTC) : TR contains at least
one round-trip path for each reachable node in G that begins
and ends a round-trip path.

Complete Round Trip Coverage (CRTC) : TR contains all
round-trip paths for each reachable node in G.

- These criteria omit nodes and edges that are not in round trips
- That is, they do not subsume edge-pair, edge, or node coverage

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Prime Path Example

« The previous example has 38 simple paths
« Only nine prime paths

w

Execute
loop O times

1

Execute
loop once

Execute loop
more than once

\

o O~ .
(@)) (@) My
I_H_H_Il_llc—nh_d@(ﬂ@j
N_’

O

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Touring, Sidetrips and Detours

Prime paths do not have internal loops ... test paths might

Tour : Atest path p tours subpath q if q Is a subpath of p

Tour With Sidetrips : A test path p tours subpath g with sidetrips
Iff every edge In g is also In p in the same order

« The tour can include a sidetrip, as long as it comes back to the same node

Tour With Detours : A test path p tours subpath g with detours iff
every node in g is also In p in the same order

« The tour can include a detour from node ni, as long as it comes back to
the prime path at a successor of ni

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Sidetrips and Detours Example

(@D

Touring without
sidetrips or
detours

OO

\ 4

D—@—®

3

(D
N

Touring with a
sidetrip

3

(DO

OO

Touring with a
detour

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

4

3

© Ammann & Offutt

Infeasible Test Requirements

An infeasible test requirement cannot be satisfied

— Unreachable statement (dead code)
— A subpath that can only be executed if a contradiction occurs (X >0 and X <0)

Most test criteria have some infeasible test requirements

It is usually undecidable whether all test requirements are
feasible

When sidetrips are not allowed, many structural criteria have
more infeasible test requirements

However, always allowing sidetrips weakens the test criteria

Practical recommendation — Best Effort Touring

— Satisfy as many test requirements as possible without sidetrips
— Allow sidetrips to try to satisfy unsatisfied test requirements

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Prime Paths

© Ammann & Offutt

AN NMT OO
-OII- -OII- -1’- -2’- -2’- -3!’- -4’- -4’- -F.DII-

) —

(ab)

2D
Q.
&
©
X
LL]
O
e
©
an
D
-
-
an
od
2L
Q.
=
0p)

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Data Flow Criteria

Goal: Try to ensure that values are computed and used correctly

Definition (def) : A location where a value for a variable is
stored into memory

Use : A location where a variable’s value 1s accessed

def (n) or def (e) : The set of variables that are defined by node n
or edge e

use (n) or use (e) : The set of variables that are used by node n
oredge e 2 = X% Defs: def (0) = {X}

X =42 G ° def (4) = {Z}
—>@ © (6) def (5) = {Z}
a e Uses: use (4) = {X}

Z=X-8 use (5) = {X}

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

DU Pairs and DU Paths

DU pair : A pair of locations (I;, |;) such that a variable v is
defined at |; and used at |,

Def-clear : A path from |; to |; is def-clear with respect to
variable v, If v Is not given another value on any of the nodes or
edges in the path

— Reach : If there Is a def-clear path from [; to I; with respect to v, the def of
v at |; reaches the use at |;

du-path : A simple subpath that is def-clear with respect to v
from a def of v to a use of v

du (n;, n;, v) — the set of du-paths from n; to n;
du (n;, v) — the set of du-paths that start at n.

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Touring DU-Paths

- A test path p du-tours subpath d with respect to v if p tours d and
the subpath taken is def-clear with respect to v

- Sidetrips can be used, just as with previous touring

- Three criteria
— Use every def
— Get to every use
— Follow all du-paths

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Data Flow Test Criteria

First, we make sure every def reaches a use

All-defs coverage (ADC) : For each set of du-paths S = du (n,
V), TR contains at least one path d in S.

Then we make sure that every def reaches all possible uses

All-uses coverage (AUC) : For each set of du-paths to uses S =
du (n;, n;, v), TR contains at least one path d in S.

Finally, we cover all the paths between defs and uses

All-du-paths coverage (ADUPC) : For each set S = du (n;, n;,
V), TR contains every path d in S.

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt

Data Flow Testing Example

Z = X*2

X =42 ° °
@

All-defs for X

[0,1,3,4]

Introduction to Software Testing (Ch 2), www.intro

Z = X-8

All-uses for X

All-du-paths for X

[0,1,3,4]
[0,1,3,5]

0,1,3,4]
[0,2,3,4]
0,1,3,5]
0,2,3,5]

softwaretesting.com © Ammann & Offutt

Graph Coverage Criteria Subsumption

Assumptions for Data Flow Coverage
1. Every use is preceded by a def
2. Every def reaches at least one use

3. Forevery node with multiple outgoing edges,
at least one variable is used on each out edge,

and the same variables are u

All-DU-Paths
Coverage

ADUP

!

All-uses

Edge-Pair
Coverage

Complete Path
Coverage

CPC

!

EPC

Coverage
AUC

|

Prime Path
Coverage

PPC

v

Edge
Coverage

Complete Round
Trip Coverage

CRTC

All-defs
Coverage

ADC

EC

!

¢

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Node
Coverage

Simple Round
Trip Coverage

SRTC

\[@

© Ammann & Offutt

