
Introduction to Software Testing
Chapter 2.1, 2.2p ,

Overview Graph Coverage Criteria

Paul Ammann & Jeff Offutt

www.introsoftwaretesting.com

Graph Coverage Criteria Subsumption
Complete Path

Coverage
CPC

Prime Path
Coverage

Edge-Pair
C

PPC
All-DU-Paths

Coverage
ADUP g

Coverage
EPC

Complete Round
Trip Coverage

ADUP

All-uses
Coverage

Simple Round

Edge
Coverage

EC

Trip Coverage
CRTC

Coverage
AUC

All defs Simple Round
Trip Coverage

SRTCNode
Coverage

All-defs
Coverage

ADC

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 2

NC

Covering Graphs
(2 1)(2.1)

• Graphs are the most commonly used structure for testingp y g

• Graphs can come from many sources
– Control flow graphs
– Design structure
– FSMs and statechartsFSMs and statecharts
– Use cases

• Tests usually are intended to “cover” the graph in some way

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 3

Definition of a Graph
• A set N of nodes, N is not empty

• A set N0 of initial nodes, N0 is not empty

• A set Nf of final nodes, Nf is not empty

• A set E of edges, each edge from one node to another
– (ni , nj), i is predecessor, j is successor

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 4

Three Example Graphs

0 00 1 2

21 2143 5 6
Not aNot a
validvalid21 2143 5 6
graphgraph

3 397 8

N0 = { 0 }

N { 3 }

N0 = { }

N { 3 }

N0 = { 0, 1, 2 }

N { 7 8 9 }

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 5

Nf = { 3 } Nf = { 3 }Nf = { 7, 8, 9 }

Paths in Graphs
• Path : A sequence of nodes – [n1, n2, …, nM]

– Each pair of nodes is an edgeEach pair of nodes is an edge

• Length : The number of edges
– A single node is a path of length 0

• Subpath : A subsequence of nodes in p is a subpath of p
• Reach (n) : Subgraph that can be reached from ng p

0 1 2
Paths Reach (0) = { 0 3 4

43 5 6

Paths

[0, 3, 7]

[1 4 8 5 1]

Reach (0) { 0, 3, 4,
7, 8, 5, 1, 9 }

Reach ({0, 2}) = G43 5 6 [1, 4, 8, 5, 1]

[2, 6, 9]

({ , })

Reach([2,6]) = {2, 6,
9}

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 6

97 8

Test Paths and SESEs
• Test Path : A path that starts at an initial node and ends at a

final node
• Test paths represent execution of test cases

– Some test paths can be executed by many tests
S h b d b– Some test paths cannot be executed by any tests

• SESE graphs : All test paths start at a single node and end atSESE graphs : All test paths start at a single node and end at
another node

– Single-entry, single-exit
– N0 and Nf have exactly one node

1 4
Double-diamond graph

Four test paths

0

2

63

5

[0, 1, 3, 4, 6]
[0, 1, 3, 5, 6]
[0, 2, 3, 4, 6]

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 7

2 5 [, , , ,]
[0, 2, 3, 5, 6]

Visiting and Touring
• Visit : A test path p visits node n if n is in p

A test path p visits edge e if e is in pA test path p visits edge e if e is in p
• Tour : A test path p tours subpath q if q is a subpath of p

Path [0, 1, 3, 4, 6]

Visits nodes 0, 1, 3, 4, 6

Visits edges (0, 1), (1, 3), (3, 4), (4, 6)g

Tours subpaths (0, 1, 3), (1, 3, 4), (3, 4, 6), (0, 1, 3, 4), (1, 3, 4, 6)

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 8

Tests and Test Paths

• path (t) : The test path executed by test t

• path (T) : The set of test paths executed by the set of tests T

• Each test executes one and only one test path
• A location in a graph (node or edge) can be reached from

another location if there is a sequence of edges from the first
location to the secondlocation to the second

– Syntactic reach : A subpath exists in the graph
– Semantic reach : A test exists that can execute that subpath

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 9

Tests and Test Paths
test 1 many-to-one

test 2 Test
Path

test 3

Deterministic software – a test always executes the same test path

test 1 many-to-many Test Path 1

y p

test 2 Test Path 2

test 3 Test Path 3

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 10

Non-deterministic software – a test can execute different test paths

Testing and Covering Graphs
(2.2)(2.2)

• We use graphs in testing as follows :
– Developing a model of the software as a graphDeveloping a model of the software as a graph
– Requiring tests to visit or tour specific sets of nodes, edges or subpaths

• Test Requirements (TR) : Describe properties of test pathsTest Requirements (TR) : Describe properties of test paths
• Test Criterion : Rules that define test requirements
• Satisfaction : Given a set TR of test requirements for a criterion C• Satisfaction : Given a set TR of test requirements for a criterion C,

a set of tests T satisfies C on a graph if and only if for every test
requirement in TR, there is a test path in path(T) that meets the

itest requirement tr

• Structural Coverage Criteria : Defined on a graph just in terms
f d d dof nodes and edges

• Data Flow Coverage Criteria : Requires a graph to be annotated
with references to variables

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 11

with references to variables

Node and Edge Coverage

• The first (and simplest) two criteria require that each node and
d i h b t dedge in a graph be executed

NodeNode CoverageCoverage (NC)(NC) :: TestTest setset TT satisfiessatisfies nodenode coveragecoverage onon
graphgraph GG iffiff forfor everyevery syntacticallysyntactically reachablereachable nodenode nn inin NN,,
thth ii thth ii th(T)th(T) hh th tth t i iti ittherethere isis somesome pathpath pp inin path(T)path(T) suchsuch thatthat pp visitsvisits nn..

• This statement is a bit cumbersome, so we abbreviate it in terms
of the set of test requirements

NodeNode CoverageCoverage (NC)(NC) :: TRTR containscontains eacheach reachablereachable nodenode inin GG..

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 12

Node and Edge Coverage
• Edge coverage is slightly stronger than node coverage

EdgeEdge CoverageCoverage (EC)(EC) :: TRTR containscontains eacheach reachablereachable pathpath ofof
lengthlength upup toto 11,, inclusive,inclusive, inin GG..

• The “length up to 1” allows for graphs with one node and no
edges

• NC and EC are only different when there is an edge and another
subpath between a pair of nodes (as in an “if-else” statement)p p ()

Node Coverage : TR = { 0, 1, 2 }
Test Path = [0, 1, 2]0 Test Path [0, 1, 2]

Edge Coverage : TR = { (0,1), (0, 2), (1, 2) }
Test Paths = [0 1 2]

1

2

0

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 13

Test Paths = [0, 1, 2]
[0, 2]

2

Paths of Length 1 and 0

• A graph with only one node will not have any edges

0

• It may be boring, but formally, Edge Coverage needs to require
Node Coverage on this graph

• Otherwise, Edge Coverage will not subsume Node Coverage
– So we define “length up to 1” instead of simply “length 1”

0• We have the same issue with graphs that only
have one edge for Edge Pair Coverage

1

have one edge – for Edge Pair Coverage …

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 14

Covering Multiple Edges
• Edge-pair coverage requires pairs of edges, or subpaths of

length 2

EdgeEdge--PairPair CoverageCoverage (EPC)(EPC) :: TRTR containscontains eacheach reachablereachable pathpath
ofof lengthlength upup toto 22,, inclusive,inclusive, inin GG..

• The “length up to 2” is used to include graphs that have less
than 2 edges

CompleteComplete PathPath CoverageCoverage (CPC)(CPC) :: TRTR containscontains allall pathspaths inin GG

• The logical extension is to require all paths …

CompleteComplete PathPath CoverageCoverage (CPC)(CPC) :: TRTR containscontains allall pathspaths inin GG..

• Unfortunately, this is impossible if the graph has a loop, so a
weak compromise is to make the tester decide which paths:
SpecifiedSpecified PathPath CoverageCoverage (SPC)(SPC) :: TRTR containscontains aa setset SS ofof testtest
pathspaths wherewhere SS isis suppliedsupplied asas aa parameterparameter

weak compromise is to make the tester decide which paths:

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 15

paths,paths, wherewhere SS isis suppliedsupplied asas aa parameterparameter..

Structural Coverage Example
Node Coverage

TR = { 0, 1, 2, 3, 4, 5, 6 }
T t P th [0 1 2 3 6] [0 1 2 4 5 4 6]Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 5, 4, 6]

0 Edge Coverage
TR { (0 1) (0 2) (1 2) (2 3) (2 4) (3 6) (4 5) (4 6) (5 4) }

1
TR = { (0,1), (0,2), (1,2), (2,3), (2,4), (3,6), (4,5), (4,6), (5,4) }
Test Paths: [0, 1, 2, 3, 6] [0, 2, 4, 5, 4, 6]

Ed P i C2

3 4

Edge-Pair Coverage
TR = { [0,1,2], [0,2,3], [0,2,4], [1,2,3], [1,2,4], [2,3,6],

[2,4,5], [2,4,6], [4,5,4], [5,4,5], [5,4,6] }
3 4 Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 2, 3, 6]

[0, 2, 4, 5, 4, 5, 4, 6]
5

6 Complete Path Coverage
Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 1, 2, 4, 5, 4, 6]
[0, 1, 2, 4, 5, 4, 5, 4, 6] [0, 1, 2, 4, 5, 4, 5, 4, 5, 4, 6] …

5

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 16

[, , , , , , , ,] [, , , , , , , , , ,]

Loops in Graphs
• If a graph contains a loop, it has an infinite number of paths

• Thus, CPC is not feasible

• SPC is not satisfactory because the results are subjective and
vary with the tester

• Attempts to “deal with” loops:
1970s : Execute cycles once ([4 5 4] in previous example informal)– 1970s : Execute cycles once ([4, 5, 4] in previous example, informal)

– 1980s : Execute each loop, exactly once (formalized)
– 1990s : Execute loops 0 times, once, more than once (informal description)
– 2000s : Prime paths

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 17

Simple Paths and Prime Paths
• Simple Path : A path from node ni to nj is simple if no node

appears more than once, except possibly the first and last nodesappears more than once, except possibly the first and last nodes
are the same

– No internal loops
– Includes all other subpaths
– A loop is a simple path

• Prime Path : A simple path that does not appear as a properPrime Path : A simple path that does not appear as a proper
subpath of any other simple path

Simple Paths : [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1],p [, , ,], [, , ,], [, , ,],
[2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2],
[2, 3, 0, 1], [0, 1, 3], [0, 2, 3], [1, 3, 0], [2, 3, 0],
[3, 0, 1], [3, 0, 2], [0, 1], [0, 2], [1, 3], [2, 3], [3, 0],

0
[3, 0, 1], [3, 0, 2], [0, 1], [0, 2], [1, 3], [2, 3], [3, 0],
[0], [1], [2], [3]

Prime Paths : [0 1 3 0] [0 2 3 0] [1 3 0 1]

1 2

3

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 18

Prime Paths : [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1],
[2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2],
[2, 3, 0, 1]

Prime Path Coverage
• A simple, elegant and finite criterion that requires loops to be

executed as well as skipped

PrimePrime PathPath CoverageCoverage (PPC)(PPC) :: TRTR containscontains eacheach primeprime pathpath inin GG..

• Will tour all paths of length 0, 1, …
• That is, it subsumes node, edge, and edge-pair coverage

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 19

Round Trips
• Round-Trip Path : A prime path that starts and ends at the same

nodenode

SimpleSimple RoundRound TripTrip CoverageCoverage (SRTC)(SRTC) :: TRTR containscontains atat leastleastSimpleSimple RoundRound TripTrip CoverageCoverage (SRTC)(SRTC) :: TRTR containscontains atat leastleast
oneone roundround--triptrip pathpath forfor eacheach reachablereachable nodenode inin GG thatthat beginsbegins
andand endsends aa roundround--triptrip pathpath..pp pp

CompleteComplete RoundRound TripTrip CoverageCoverage (CRTC)(CRTC) :: TRTR containscontains allall
roundround--triptrip pathspaths forfor eacheach reachablereachable nodenode inin GG..

Th it i it d d d th t t i d t i• These criteria omit nodes and edges that are not in round trips
• That is, they do not subsume edge-pair, edge, or node coverage

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 20

Prime Path Example
• The previous example has 38 simple paths
• Only nine prime pathsOnly nine prime paths

Prime Paths
[0, 1, 2, 3, 6]

0

1 [0, 1, 2, 3, 6]
[0, 1, 2, 4, 5]
[0, 1, 2, 4, 6]

[0 2 3 6]2

1
Execute

loop 0 times
[0, 2, 3, 6]
[0, 2, 4, 5]
[0, 2, 4, 6]

[5 4 6]

Execute
loop once3 4

[5, 4, 6]
[4, 5, 4]
[5, 4, 5]

Execute loop
more than once

5
6

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 21

Touring, Sidetrips and Detours
• Prime paths do not have internal loops … test paths might

• Tour : A test path p tours subpath q if q is a subpath of p

• Tour With Sidetrips : A test path p tours subpath q with sidetrips
iff d i i l i i h diff every edge in q is also in p in the same order

• The tour can include a sidetrip, as long as it comes back to the same node

• Tour With Detours : A test path p tours subpath q with detours iff
every node in q is also in p in the same ordery q p

• The tour can include a detour from node ni, as long as it comes back to
the prime path at a successor of ni

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 22

Sidetrips and Detours Example
0 21 54

1 2 3 4

3
Touring without
sidetrips or
detours

0 21 54
1 2 5 6

3 4

3
Touring with a
sidetrip

3 4

0 21 54
1 2 5

3

3Touring with a
detour

3
4

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 23

Infeasible Test Requirements
• An infeasible test requirement cannot be satisfied

– Unreachable statement (dead code)Unreachable statement (dead code)
– A subpath that can only be executed if a contradiction occurs (X > 0 and X < 0)

• Most test criteria have some infeasible test requirements
• It is usually undecidable whether all test requirements are

f iblfeasible
• When sidetrips are not allowed, many structural criteria have

more infeasible test requirementsmore infeasible test requirements
• However, always allowing sidetrips weakens the test criteria

Practical recommendation – Best Effort Touring
– Satisfy as many test requirements as possible without sidetrips

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 24

– Allow sidetrips to try to satisfy unsatisfied test requirements

Simple & Prime Path Example
Len 0
[0]

‘!’ means path
terminatesLen 1

[0, 1]
Len 2
[0, 1, 2] ‘*’ means path

Len 3
[0, 1, 2, 3]

Simple
paths

0

[0]
[1]
[2]
[3]

[0, 1]
[0, 2]
[1, 2]
[2 3]

[0, 1, 2]
[0, 2, 3]
[0, 2, 4]
[1 2 3]

‘*’ means path
cycles

[0, 1, 2, 3]
[0, 1, 2, 4]
[0, 2, 3, 6] !
[0 2 4 6] !

paths

1
[3]
[4]
[5]
[6] !

[2, 3]
[2, 4]
[3, 6] !
[4 6] !

[1, 2, 3]
[1, 2, 4]
[2, 3, 6] !
[2 4 6] !

[0, 2, 4, 6] !
[0, 2, 4, 5] !
[1, 2, 3, 6] !
[1 2 4 5] !2

3 4

[6] ! [4, 6] !
[4, 5]
[5, 4]

[2, 4, 6] !
[2, 4, 5] !
[4, 5, 4] *

[1, 2, 4, 5] !
[1, 2, 4, 6] !

5

3 4 [5, 4, 6] !
[5, 4, 5] *

L 46 Len 4
[0, 1, 2, 3, 6] !
[0, 1, 2, 4, 6] ! Prime Paths

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 25

[0, 1, 2, 4, 5] !

Data Flow Criteria
Goal: Try to ensure that values are computed and used correctly

• Definition (def) : A location where a value for a variable is
stored into memory

• Use : A location where a variable’s value is accessed
• def (n) or def (e) : The set of variables that are defined by node n

dor edge e
• use (n) or use (e) : The set of variables that are used by node n

or edge eor edge e

1 4X = 42

Z = X*2 Defs: def (0) = {X}

def (4) = {Z}

0

2

63

5

X 42
def (5) = {Z}

Uses: use (4) = {X}

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 26

Z = X-8 use (5) = {X}

DU Pairs and DU Paths
• DU pair : A pair of locations (li, lj) such that a variable v is

defined at li and used at ljdefined at li and used at lj

• Def-clear : A path from li to lj is def-clear with respect to
variable v, if v is not given another value on any of the nodes or
edges in the path

– Reach : If there is a def-clear path from li to lj with respect to v, the def of
v at li reaches the use at ljv at li reaches the use at lj

• du-path : A simple subpath that is def-clear with respect to v
from a def of v to a use of v

• du (ni, nj, v) – the set of du-paths from ni to nj

• du (ni, v) – the set of du-paths that start at ni(i,) p i

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 27

Touring DU-Paths

• A test path p du-tours subpath d with respect to v if p tours d and
the subpath taken is def-clear with respect to v

• Sidetrips can be used, just as with previous touring

• Three criteria
Use every def– Use every def

– Get to every use
– Follow all du-paths

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 28

Data Flow Test Criteria
• First, we make sure every def reaches a use

AllAll--defsdefs coveragecoverage (ADC)(ADC) :: ForFor eacheach setset ofof dudu--pathspaths SS == dudu ((nn,,
vv),), TRTR containscontains atat leastleast oneone pathpath dd inin SS..

• Then we make sure that every def reaches all possible uses

AllAll--usesuses coveragecoverage (AUC)(AUC) :: ForFor eacheach setset ofof dudu--pathspaths toto usesuses SS ==
dudu ((nnii,, nnjj,, vv),), TRTR containscontains atat leastleast oneone pathpath dd inin SS..((ii,, jj,,),), pp

• Finally, we cover all the paths between defs and uses

AllAll--dudu--pathspaths coveragecoverage (ADUPC)(ADUPC) :: ForFor eacheach setset SS == dudu ((nnii,, nnjj,,
vv)) TRTR containscontains everyevery pathpath dd inin SS

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 29

vv),), TRTR containscontains everyevery pathpath dd inin SS..

Data Flow Testing Example

1 4
Z = X*2

0

1

63

4X = 42

2 5
Z = X-8

All-defs for X All-uses for X All-du-paths for X

[0, 1, 3, 4] [0, 1, 3, 4]

[0, 1, 3, 5]

[0, 1, 3, 4]

[0, 2, 3, 4][, , ,] [, , ,]

[0, 1, 3, 5]

[0 2 3 5]
Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 30

[0, 2, 3, 5]

Graph Coverage Criteria Subsumption
Complete Path

Coverage
CPC

Assumptions for Data Flow Coverage
1. Every use is preceded by a def
2. Every def reaches at least one use

Prime Path
Coverage

3. For every node with multiple outgoing edges,
at least one variable is used on each out edge,
and the same variables are used on each out edge.

Edge-Pair
C

PPC
All-DU-Paths

Coverage
ADUP g

Coverage
EPC

Complete Round
Trip Coverage

ADUP

All-uses
Coverage

Simple Round

Edge
Coverage

EC

Trip Coverage
CRTC

Coverage
AUC

All defs Simple Round
Trip Coverage

SRTCNode
Coverage

All-defs
Coverage

ADC

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 31

NC

