Chapter 10
Architectural Design

Moonzoo Kim

CS Division of EECS Dept.
KAIST

Overview of Ch 10.
Creating an Architectural Design

10.1 Software Architecture
= What Is Architecture
= Why Is Architecture Important

10.2 Data Design

= Data Design at the Architectural
Level

= Data Design at the Component
Level

10.3 Architectural Styles and
patterns

= A Brief Taxonomy of Architectural
Styles

= Architectural Patterns
= Organization and Refinement

T ———

10.4 Architectural Design

Representing the System in
Context

= Defining Archetypes
= Refining the Architecture into

Components

Describing Instantiations of the
System

10.5 Assessing Alternative
Architectural Designs

An Architecture Trade-off
Analysis Method

= Architectural Complexity
= Architectural Description

Language

What is Software Architecture

A Software Architecture provides a fundamental
description of a system, detailing

= the components that make up the system

= the significant collaborations between those components,

iIncluding the data and control flows of the system

A Software Architecture attempts to provide a sound
basis for analysis, decision making, and risk assessment
of both design and performance

Architecture is an asset that constitutes tangible value to
the organization that has created it

Why Architecture?

The architecture is not the operational software. Rather, it
IS a representation that enables a software engineer to:

(1) analyze the effectiveness of the design in meeting its
stated requirements,

(2) consider architectural alternatives at a stage when
making design changes is still relatively easy, and

(3) reduce the risks associated with the construction of the
software.

Why Is Architecture Important?

for
communication between all parties (stakeholders) interested in the
development of a computer-based system.

design decisions that will have a
profound impact on all software engineering work that follows and,
as important, on the ultimate success of the system as an
operational entity.

Intellectually graspable
model of how the system is structured and how its components work
together” [BASO3].

Data Design

The data design action translates data objects defined as part of the
analysis model into

A database architecture at the application level (when necessary)

Data structures at the software component level

At the architectural level ...
Design of one or more databases to support the application architecture

Design of methods for ' the content of multiple databases
Navigate through existing databases in an attempt to extract appropriate
business-level information

Design of a —
a large, independent database that has access to the data that are stored in
databases that serve the set of applications required by a business

Data Design

At the component level ...

= refine data objects and develop a set of data
abstractions

= Implement data object attributes as one or
more data structures

= review data structures to ensure that
appropriate relationships have been
established

= simplify data structures as required

Data Desigh—Component Level

1.

2.

7.

The systematic analysis principles applied to function and
behavior should also be applied to data.

All data structures and the operations to be performed on each
should be identified.

A mechanism for defining the content of each data object should
be established and used to define both data and the operations
applied to it.

Low level data design decisions should be deferred until late in
the design process.

The representation of data structure should be known only to
those modules that must make direct use of the data contained
within the structure (information hiding).

A library of useful data structures and the operations that may be
applied to them should be developed.

A software design and programming language should support
the specification and realization of abstract data types.

Architectural Styles

Each style describes a system category that encompasses:

(1) a set of components (e.g., a database, computational
modules) that perform a function required by a system

(2) a set of connectors that enable “communication,
coordination and cooperation” among components,

(3) constraints that define how components can be
Integrated to form the system

(4) semantic models that enable a designer to understand
the overall properties of a system by analyzing the
known properties of its constituent parts.

Architectural Styles

Data-centered architectures
Data flow architectures
Layered architectures

Call and return architectures
Object-oriented architectures

10

KAIST

Data-Centered Architecture

Client
software

Client
software

Client
software

Data store

[repasitory or
blackboard)

Client Client
software software

Client
software

11

Data-Centered Architecture (cont.)

Data repository Is

Passive

Client SW accesses the
data independent of any
changes to the data or the
actions of the other clients

Blackboard scheme
Sends naotifications to client
SW when data of interest to
the client changes
High integrability
Client components operate
independently

Client
software

Client
software

Client
software
Client
software

Client
software
Client
software

Client Client
software software

12

Data Flow Architecture
(pipe-filter pattern)

}

Plpes

Filter

()

[Pipes and filters

KAIST b} Batch sequential

Pipes and Filters Pattern

The Pipes and Filters pattern is a data-flow architectural
pattern that views the system as a series of
transformations on successive pieces of input data

Pipes are stateless and serve as conduits for moving
streams of data between multiple filters

Filters are stream modifiers, which process incoming
data in some specialized way and send that modified
data stream out over a pipe to another filter

Excerpts from CSPP 51050 “OO0 Architecture...”
CS dept. Univ. of Chicago

14

Pipes and Filters Features

Incremental delivery: data is output as work is conducted
Concurrent (non-sequential) processing, data flows through the
pipeline in a stream, so multiple filters can be working on different
parts of the data stream simultaneously

= Pipeline using different processes or threads
Filters work independently and ignorantly of one another, and
therefore are plug-and-play

m Filters are ignorant of other filters in the pipeline

= there are no filter-filter interdependencies
Maintenance is again isolated to individual filters, which are loosely
coupled
Very good at supporting producer-consumer mechanisms

Multiple readers and writers are possible

15

Batch Sequential Data Processing

Stand-alone programs would operate on data, producing
a file as output

This file would stand as input to another standalone
program, which would read the file in, process it, and
write another file out

Each program was dependent on its version of input
before it could begin processing

Therefore processing took place sequentially, where
each process in a fixed sequence would run to
completion, producing an output file in some new format,
and then the next step would begin

16

Benefits

Fairly simple to understand and implement

Simple, defined interface reduces complex integration
ISsues

Filters are substitutable black boxes, and can be plug
and played, and thus reused in creative ways

Filters are highly modifiable, since there’s no coupling
between filters and new filters can be created and added
to an existing pipeline

17

More Benefits

Filters and Pipes can be hierarchical and can be
composed into a mechanism to further simplify client
access

Because filters stand alone, they can be distributed
easily and support concurrent execution (the stream is In
process)

Multiple filters can be used to design larger complex

highly-modifiable algorithms, which may be modified by
adding new filters or deleting others

18

Limitations

A batch processing metaphor is not inherently limiting,
but this pattern does not facilitate highly dynamic
responses to system interaction

= Because filters are black boxes, and are ignorant of one another,
they cannot intelligently reorder themselves dynamically

= Once a pipeline is in progress, it cannot be altered without
corrupting the stream

= Difficult to configure dynamic pipelines, where depending on
content, data is routed to one filter or another

19

Layered Architecture

20

Layers

Architectural layers are collaborating sections of an
overall complex system that provide several benefits
such as:

= supporting incremental coding and testing, allowing localization
of changes

= well-defined interfaces allow substitution of different layers
= protection between collaborating layers

= Layers support a responsibility-driven architecture that divides
subtasks into groups of related responsibilities

21

Layers Pattern

In the pure sense, each layer provides services to the
layer directly above it, and acts as a client to the layer
directly below it

In an “impure” implementation, distanced layers can be
“bridged” which allows communication between them but
reduces portability and flexibility and plug and play
capability

Each layer provides a defined interface to the layers
above and below it

Higher layers provide increasing levels of abstraction

22

Features

Often, layered architectures are applied to virtual
machine architectures (such as in interpreters)
= hardware layers are virtualized in software, and either act as
mediators to actual hardware layers, or are stubbed out entirely
A layered system can be seen as a static pipes and
filters system but without the pipes, where the filters talk
directly to their neighbors

23

Example: Protocol Stacks

Application
(Telnet, ftp, etc.)

Presentation
(MIDI, HTML,
EBCDIC)

Session
(RPC, Netbhios,
Appletalk, DECnhet)

Transport
(TCP, UDP)

Network
(IPv4, IPvB, IPX)

Datalink

(Ethernet, Token
Ring, ATM, PPP)

Physical
(V.24, 802.3,
Ethernet RJ45)

QS| Model

(Tannenbaum, 1988)

Application
(Telnet, fip, etc.)

ftp Client

TCP Transport

Transport
(TCP, UDP)

IP Layer, IPv4

IP Layer
(IPv4, IPv6)

Device Driver and
Hardware
(twisted pair, NIC)

Eternet Controller,
3Com Etherlink 3
Driver

Internet Protocol Suite

e

A

HUB

fipd Server

TCP Transport

IP Layer, IPv4

Eternet Controller,
3Com Etherlink 3

Driver
[o
HIRTHT @—T?I
HUB
p. |- =
Router

24

Benefits

A layered pattern supports increasing levels of
abstraction, thus simplifying design
= allows a complex problem to be partitioned into a sequence of
manageable incremental strategies (as layers)
Like Pipes and Filters, layers are loosely coupled, so
maintenance is enhanced because new layers can be
added affecting only two existing components (as layers)

Layers support plug-and-play (=reusable)designs. As
long as the interfaces do not change, one layer can be
substituted for another changing the behavior of the
layer system

T ——

Disadvantages

Close coupling of juxtaposed layers lowers
maintainability

Each layer must manage all data marshaling and
buffering

Lower runtime efficiency

Sometimes difficult to establish the granularity of
the various layers (10 layers or 4?)

26

KAIST

Call and Return Architecture

3

depth

fan-out

Y4
"
d e k
AN
a f1
/
' J
width

27

An Architectural Design Method

customer requirements

"four bedrooms, three baths,
o lots of glass ..."

~

ik

Architectural Design

The software must be placed into context
= the design should define the external entities (other systems,
devices, people) that the software interacts with and the nature
of the interaction
A set of architectural archetypes should be identified
= An archetype is an abstraction (similar to a class) that represents
one element of system behavior
The designer specifies the structure of the system by
defining and refining software components that
Implement each archetype

29

KAIST

Architectural Context

Safehome
Product

Internet-based
system

control

—>
panel
P
homeowner
uses

target system:
Security Function

[]

I uses

Sensors

Sensors

uses

surveillance
function

peers

30

Archetypes

31

KAIST

Top-level Component Structure

SafeHome

Executive

//7 “-\V\\ Functl_on
- \ ~_ >~ selection
-~ N S ~
-~ \ \\ \\
// \ N \\\
N \\ ~o
External \\ \\\ \\\\
Communication N No ~o
\ - —_
Management N ~_ ~_
N ~
\ S~ \\\
1 % A . ~~
/ N
4 N Security Surveillance Home
‘ S vee management
/ LN
GUI Internet
T N S
Interface P \ -
e ~
L \ N
Control detector alarm
panel management processing
processing

32

KAIST

Refined Component Structure

| | safeHome
] Executive

-
-~
_-
External
Communication \\\
Management N
/
7 \\
7 \ e
7 \
Gul Internet
Interface -~
~
\\
Control detector alarm
panel management processing
processing
gl - A
—_—
Ve / /
Keypad 7/ \
processing /’ scheduler phone “
/ communication
Vi \
\
CP display A \
functions
| alarm
sensor

33

Analyzing Architectural Design

Architecture trade-off analysis method (ATAM) by SEI

1. Collect scenarios.
2. Elicit requirements, constraints, and environment description.
3. Describe the architectural styles/patterns that have been chosen to
address the scenarios and requirements:
* module view
* process view
* data flow view

4. Evaluate quality attributes by considering each attribute in isolation.

- reliability, performance, maintainability, etc

5. Identify the sensitivity of quality attributes to various architectural
attributes for a specific architectural style.

6. Critigue candidate architectures (developed in step 3) using the
sensitivity analysis conducted in step 5.

e ——

34

Deriving Program Architecture

Program
Architecture

I
1

35

Why Partitioned Architecture?

results in software that is easier to test

leads to software that is easier to maintain
results in propagation of fewer side effects
results in software that is easier to extend

Low coupling
More reuse
Better maintenance

36

Partitioning the Architecture

“horizontal” and “vertical” partitioning are

required
L _EL.

37

HW #3. Due Mar 29

8.2 Is it possible to develop an effective analysis model without
developing all four elements shown in Fig.8.3? Explain

8.3 Is it possible to begin coding immediately after an analysis model
has been created? Explain your answer and then argue the
counterpoint (e.g. negative effects)

8.5 An analysis rule of thumb is that the model “should focus on
requirements that are visible within the problem or business domain.”
What types of requirements are not visible in these domains?
Provide a few examples.

8.19 Write a template-based use-case for the SafeHome home
management system (“SafeHome home management function”)
described informally in the sidebar following Sect 8.7.4. Also draw a
swimlane activity diagram (use a template at Sect.7.5)

KAIST

