
CS350 1

Chapter 14
Testing Tactics

Moonzoo Kim
CS Dept. KAIST

CS350 2

Overview of Ch14. Testing Tactics
 14.1 Software Testing Fundamentals
 14.2 Blackbox and White-Box Testing
 14.3 White-Box Testing
 14.4 Basis Path Testing

 Glow Graph Notation
 Independent Program Paths
 Deriving Test Cases
 Graph Matrices

 14.5 Control Structure Testing
 Condition Testing
 Data Flow Testing
 Loop Testing

“V” Model

3Excerpt From Wikipedia

http://upload.wikimedia.org/wikipedia/commons/9/96/V-model.JPG�

4Quoted from “Intro. To Software Testing” by P.Ammann and J.Offutt

5

Quoted from
“Intro. To
Software
Testing” by
P.Ammann
and J.Offutt

CS350 6

Testability
 Operability

 it operates cleanly
 Observability

 the results of each test case are readily observed
 Controllability

 the degree to which testing can be automated and
optimized

 Decomposability
 testing can be targeted

 Simplicity
 reduce complex architecture and logic to simplify

tests
 Stability

 few changes are requested during testing
 Understandability

 of the design

 Modular design
provides good
testability

 Let’s think about
embedded SW
 mobile phone

software
 Linux kernel

CS350 7

What is a “Good” Test?

 A good test has a high probability of finding an error
 A good test is not redundant.
 A good test should be “best of breed”
 A good test should be neither too simple nor too complex

CS350 8

Designing Unique Tests (pg423)
 The scene:

 Vinod's cubical.

 The players:
 Vinod, Ed

members of the SafeHome software
engineering team.

 The conversation:
 Vinod: So these are the test

cases you intend to run for the
password validation operation.

 Ed: Yeah, they should cover
pretty much all possibilities for the
kinds of passwords a user might
enter.

 Vinod: So let's see ... you note that
the correct password will be 8080,
right?

 Ed: Uh huh.
 Vinod: And you specify passwords

1234 and 6789 to test for errors in
recognizing invalid passwords?

 Ed: Right, and I also test passwords
that are close to the correct
password, see ... 8081 and 8180.

 Vinod: Those are okay, but I don't
see much point in running both the
1234 and 6789 inputs. They're
redundant . . . test the same thing,
don't they?

CS350 8

CS350 9

 Ed: Well, they're different values.
 Vinod: That's true, but if 1234

doesn't uncover an error ... in
other words ... the password
validation operation notes that it's
an invalid password, it is not likely
that 6789 will show us anything
new.

 Ed: I see what you mean.
 Vinod: I'm not trying to be picky

here ... it's just that we have
limited time to do testing, so it's a
good idea to run tests that have a
high likelihood of finding new
errors.

 Ed: Not a problem ... I'll give this a
bit more thought.

CS350 9

CS350 10

Test Case Design

"Bugs lurk in corners
and congregate at
boundaries ..."

Boris Beizer

OBJECTIVE

CRITERIA

CONSTRAINT

to uncover errors

in a complete manner

with a minimum of effort and time

CS350 11

Software Testing

Methods

Strategies

white-box
methods

black-box
methods

CS350 12

White-Box Testing

... our goal is to ensure that all
statements and conditions have
been executed at least once ...
(statement coverage, branch coverage,
path coverage, etc)

CS350 13

Why Statement/Branch/Path Coverage?

logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

we often believe that a path is not
likely to be executed; in fact, reality is
often counter intuitive

typographical errors are random; it's
likely that untested paths will contain
some

CS350 14

Exhaustive Path Testing

loop < 20 X

There are 10 possible paths! If we execute one
test per millisecond, it would take 3,170 years to
test this program!!

14

However, model checking techniques can analyze more
than 1014 test scenarios systematically in a modest time.

CS350 15

Selective Path Testing

loop < 20 X

Selected path

Example

int factorial(unsigned char n) {
unsigned char fact=1,i=0;
if(n == 0) fact=1; // 0!=1
for(i=1; i <= n; i++)

fact = fact * i;
return fact;

}

CS350 16

fact=1, i=0

i <= n

fact=fact * i
i++;

return fact

yes
no

n==0

fact=1

no
yes

i=1

Statement <= Branch <= Path
Coverage coverage coverage

CS350 17

Why More than Path Coverage?
 A flow graph does not reflect a real imperative program

 A state of a real imperative program consists of values of
variables while graph theory considers a node as a simple entity

 Most complicated error is caused from loop construct
 Coverage test does not consider loop

 Therefore, statement/branch/path coverage testing
should not be considered as complete test
 Dijkstra said that testing cannot show the absence of a bug, but

a presence of a bug in this sense

// Only one path exists
// Suppose we use a test case of x=0, and y=0
int adder(int x, int y) { return 0;}

18

Tragic Accidents due to Software Bugs
We need more rigorous and complete analysis methods than testing!!!

http://www.redstone.army.mil/history/systems/jupiter/photos/jupiter 1st test flight.jpg�

19

Model Checking Basics
 Specify requirement properties and build a system model

 Similar to a test oracle and a target software under testing (SUT) in
testing

 Generate all possible states (containing values of variables)
from the model and then check whether given requirement
properties are satisfied within the state space

OK

Counter
example(s)

or

System
model

Requirement
properties

Model Checking
(state exploration)

(Φ Ω)

20

SE

Model Checking Basics (cont.)

 Undergraduate foundational CS classes contribute this area
 CS204 Discrete mathematics
 CS300 Algorithm
 CS320 Programming language
 CS322 Automata and formal language
 CS350 Introduction to software engineering
 CS402 Introduction to computational logic

OK

Counter
example(s)

or

System
model

Requirement
properties

System
spec.

Model
Checking

Req.
spec.

PL

Logic

Automata, Algorithm

(Φ Ω)

Model checking
techniques can help
analyze more than
101000 test scenarios
systematically

21

21An Example of Model Checking ½
(checking every possible values of variables)

always (x >= y)

System
Spec.

Req.
Spec

unsigned char x=0;
unsigned char y=0;

void proc_A() {// Thread 1
while(1)
x++;

}

void proc_B() {Thread 2
while(1)
if (x>y)
y++;

}

x:0,y:0

x:1,y:0

x:2,y:0

x:255,y:0

x:1,y:1

x:255,y:255

x:2,y:1 x:2,y:2

x:0,y:0

x:1,y:0

x:2,y:0

x:255,y:0

x:0,y:1

x:1,y:1

x:0,y:255

x:1,y:255

x:2,y:1 x:2,y:255

x:255,y:1 x:255,y:255

Over-
flow

22

22An Example of Model Checking 2/2
(checking every possible thread scheduling)

char cnt=0,x=0,y=0,z=0;

void process() {
char me = _pid +1; /* me is 1 or 2*/

again:
x = me;
If (y ==0 || y== me) ;
else goto again;

z =me;
If (x == me) ;
else goto again;

y=me;
If(z==me);
else goto again;

/* enter critical section */
cnt++;
assert(cnt ==1);
cnt --;
goto again;

}
Mutual

Exclusion
Algorithm

Critical
section

Software
locks

Process 0

x = 1
y==0 || y == 1

z = 1
x==1
y = 1
z == 1
cnt++

Process 1
x = 2
y==0 || y ==2
z = 2
x==2

y=2
(z==2)
cnt++

Counter
Example

Violation detected !!!

23

Model Checking History
1981 Clarke / Emerson: CTL Model Checking

Sifakis / Quielle
1982 EMC: Explicit Model Checker

Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

24

Model Checking Example: Bubble Sort
#include <stdio.h>
#define N 4
int main(){

int data[N], i, j, tmp;

/* It misses the last element,
i.e., data[N-1]*/

1: for (i=0; i<N-1; i++) {
2: for (j=i+1; j<N-1; j++) {
3: if (data[i] > data[j]) {
4: tmp = data[i];

data[i] = data[j];
data[j] = tmp;

}
}

}
5: /* Check the array is sorted */
}

•There exist at most 8 (2x2x2)
simple paths

•However, the following test
cases fail to detect the bug
(0,1,2,3),
(0,2,1,3),
(1,0,2,3),
(1,2,0,3)
(2,0,1,3)
(2,1,0,3)

•A number of possible states is
(232)4 = 3.4x1038

•Suppose that 1 test takes1
microsecond total testing
takes 3.4x 1032 seconds
•However, SAT based model
checking completes the
analysis in 2 seconds

•

CS350 25

Basis Path Testing: Flow Graph Notation

CS350 26

Basis Path Testing: an Independent Path
 An independent path is any path through

the program that introduces at least one
new statement or a new condition.

 Equivalently, an independent path must
move along at least one edge that has not
been traversed before the path is defined.

 Ex. A set of independent paths
 Path 1: 1-11
 Path 2: 1-(2,3)-(4,5)-10-1-11
 Path 3: 1-(2,3)-6-8-9-10-1-11
 Path 4: 1-(2,3)-6-7-9-10-1-11

 But the following path is not
 1-(2,3)-(4,5)-10-1-2-3-6-8-9-10-1-11

 Paths 1,2,3, and 4 constitute a basis set
 If tests can be designed to exercise a basis set, the

followings can be guaranteed.
 Every statement will be executed at least once
 Every condition will be executed on its true

and false sides 26

CS350 27

Basis Path Testing: How Many Paths?
•First, we compute the cyclomatic
complexity, which is a quantitative
measure of the logical complexity

•Cyclomatic complexity defines the # of
independent paths to test for complete
statement/branch coverage

- number of simple decisions + 1

- number of enclosed areas + 1
- In this case, V(G) = 4

- number of edge – number of node +2

V(G) is the upper bound for the # of
independent paths for complete coverage

CS350 28

Basis Path Testing
Next, we derive the
independent paths:
(paths containing a new edge)

Since V(G) = 4,
there are four paths

Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8
Path 4: 1,2,4,7,2,4,7,8

Finally, we should derive test cases to
exercise these paths

1

2

3
4

5 6

7

8

CS350 29

Cyclomatic Complexity
A number of industry studies have indicated
that the higher V(G), the higher the probability
or errors.

V(G)

modules

modules in this range are
more error prone

CS350 30

Using Cyclomatic Complexity (pg428)
 The scene:

 Shakira's cubicle.

 The players:
 Vinod,Shakira

members of the SafeHome software
engineering team who are working on
test planning for the security function.

 The conversation:
 Shakira: Look ... I know that we

should unit test al! the
components for the security
function, but there are a lot of 'em
and if you consider the number of
operations that have to be
exercised, I don't know ...

maybe we should forget white-box
testing, integrate everything, and
start running black-box tests.

 Vinod: You figure we don't have
enough time to do component
tests, exercise the operations, and
then integrate?

 Shakira: The deadline for the first
increment is getting closer than I'd
like ... yeah, I'm concerned.

 Vinod: Why don't you at least run
white-box tests on the operations
that are likely to be the most error
prone?

CS350 30

CS350 31

 Shakira (exasperated): And
exactly how do I know which are
likely to be the most error prone?

 Vinod: V of G.
 Shakira: Huh?
 Vinod: Cyclomatic complexity--V

of G. Just compute V(G) for each
of the operations within each of
the components and see which
have the highest values for V(G).
They're the ones that are most
likely to be error prone.

 Shakira: And how do I compute V
of G?

 Vinod: It's really easy. Here's a
book that describes how to do it.

 Shakira (leafing through the
pages): Okay, it doesn't look hard.
I'll give it a try. The ops with the
highest V(G) will be the candidates
for white-box tests.

 Vinod: Just remember that there
are no guarantees. A component
with a low V(G) can still be error
prone.

 Shakira: Alright. But at least this'll
help me to narrow down the
number of components that have to
undergo white-box testing.

CS350 31

CS350 32

Basis Path Testing Notes

you don't need a flow chart,
but the picture will help when
you trace program paths

count each simple logical test,
compound tests count as 2 or
more

basis path testing should be
applied to critical modules

CS350 33

Graph Matrices
 A graph matrix is a square matrix whose size

(i.e., number of rows and columns) is equal to
the number of nodes on a flow graph

 Each row and column corresponds to an
identified node, and matrix entries correspond to
connections (an edge) between nodes.

 By adding a link weight to each matrix entry, the
graph matrix can become a powerful tool for
evaluating program control structure during
testing

CS350 34

Control Structure Testing

 Condition testing
 a test case design method that exercises the

logical conditions contained in a program
module

 Data flow testing
 selects test paths of a program according to

the locations of definitions and uses of
variables in the program

CS350 35

Data Flow Testing
 For a statement S

 DEF(S) = {X| statement S contains a definition of X}
 USE(S) = {X| statement S contains a use of X}

 A definition-use (DU) chain of variable X is of the
form [X,S,S’] where S and S’ are statement, X is in
DEF(S) and USE(S’)
 [x,s1,s3] is a DU chain
 [y,s1,s3] is NOT a DU chain

 A branch is not guaranteed to be
covered by DU testing

void f() {
s1: int x = 10, y;
s2: if (…) {

…
s3: y = x + 1;

}

CS350 36

Loop Testing

Nested
Loops

Concatenated
Loops Unstructured

Loops

Simple
loop

CS350 37

Loop Testing: Simple Loops

Minimum conditions—Simple Loops
1. skip the loop entirely
2. only one pass through the loop
3. two passes through the loop
4. m passes through the loop m < n
5. (n-1), n, and (n+1) passes through
the loop
where n is the maximum number
of allowable passes

CS350 38

Loop Testing: Nested Loops

Start at the innermost loop. Set all outer loops to their
minimum iteration parameter values.
Test the min+1, typical, max-1 and max for the
innermost loop, while holding the outer loops at their
minimum values.
Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until
the outermost loop has been tested.

If the loops are independent of one another
then treat each as a simple loop
else* treat as nested loops

endif*
for example, the final loop counter value of loop 1 is
used to initialize loop 2.

Nested Loops

Concatenated Loops

CS350 39

Black-Box Testing

requirements

eventsinput

output

CS350 40

Black-Box Testing
 How is functional validity tested?
 How is system behavior and performance tested?
 What classes of input will make good test cases?
 Is the system particularly sensitive to certain input

values?
 How are the boundaries of a data class isolated?
 What data rates and data volume can the system

tolerate?
 What effect will specific combinations of data have

on system operation?

CS350 41

Graph-Based Methods

new
file

menu select generates
(generation time < 1.0 sec)

document
window

document
tex

t

is represented as
contains

Attributes:

background color: white
text color: default color

 or preferences

(b)

object
#1

Directed link
(link weight)

object
#2

object
#
3

Undirected link

Parallel links

Node weight
(value

)

(a)

allows editing
of

To understand the
objects that are
modeled in
software and the
relationships that
connect these
objects

In this context, we
consider the term
“objects” in the broadest
possible context. It
encompasses data
objects, traditional
components (modules),
and object-oriented
elements of computer
software.

CS350 42

Equivalence Partitioning

user
queries mouse

picks

output
formats

prompts

FK
input

data

CS350 43

Sample Equivalence Classes

user supplied commands
responses to system prompts
file names
computational data

physical parameters
bounding values
initiation values

output data formatting
responses to error messages
graphical data (e.g., mouse picks)

data outside bounds of the program
physically impossible data
proper value supplied in wrong place

Valid data

Invalid data

CS350 44

Boundary Value Analysis

user
queries mouse

picks

output
formats

prompts

FK
input

data

output
domaininput domain

CS350 45

Comparison Testing

 Used only in situations in which the reliability of software
is absolutely critical (e.g., human-rated systems)
 Separate software engineering teams develop independent

versions of an application using the same specification
 Each version can be tested with the same test data to ensure

that all provide identical output
 Then all versions are executed in parallel with real-time

comparison of results to ensure consistency

CS350 46

Orthogonal Array Testing
 Used when the number of input parameters is small and

the values that each of the parameters may take are
clearly bounded

One input item at a time L9 orthogonal array

XY

Z

X
Y

Z

CS350 47

Testing Methods
 Fault-based testing

 The tester looks for plausible faults (i.e., aspects of the implementation
of the system that may result in defects). To determine whether these
faults exist, test cases are designed to exercise the design or code.

 Class Testing and the Class Hierarchy
 Inheritance does not obviate the need for thorough testing of all derived

classes. In fact, it can actually complicate the testing process.
 Scenario-Based Test Design

 Scenario-based testing concentrates on what the user does, not what
the product does. This means capturing the tasks (via use-cases) that
the user has to perform, then applying them and their variants as tests.

CS350 48

OOT Methods: Random Testing

 Random testing
 identify operations applicable to a class
 define constraints on their use
 identify a miminum test sequence

 an operation sequence that defines the minimum life
history of the class (object)

 generate a variety of random (but valid) test
sequences
 exercise other (more complex) class instance life

histories

CS350 49

OOT Methods: Partition Testing
 Partition Testing

 reduces the number of test cases required to test a
class in much the same way as equivalence partitioning
for conventional software

 state-based partitioning
 categorize and test operations based on their ability to change

the state of a class
 attribute-based partitioning

 categorize and test operations based on the attributes that they
use

 category-based partitioning
 categorize and test operations based on the generic function

each performs

CS350 50

OOT Methods: Inter-Class Testing
 Inter-class testing

 For each client class, use the list of class operators to
generate a series of random test sequences. The
operators will send messages to other server classes.

 For each message that is generated, determine the
collaborator class and the corresponding operator in the
server object.

 For each operator in the server object (that has been
invoked by messages sent from the client object),
determine the messages that it transmits.

 For each of the messages, determine the next level of
operators that are invoked and incorporate these into
the test sequence

CS350 51

OOT Methods: Behavior Testing
empty
acctopen setup Accnt

set up
acct

deposit
(initial)

working
acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit
accntInfo

Figure 14.3 St at e diagram f or Account class (adapt ed f rom [KIR94])

The tests to be
designed
should achieve
all state
coverage
[KIR94]. That is,
the operation
sequences
should cause
the Account
class to make
transition
through all
allowable states

CS350 52

Testing Patterns
Pattern name: pair testing

Abstract: A process-oriented pattern, pair testing describes a technique that
is analogous to pair programming (Chapter 4) in which two testers work
together to design and execute a series of tests that can be applied to unit,
integration or validation testing activities.

Pattern name: separate test interface
Abstract: There is a need to test every class in an object-oriented system,
including “internal classes” (i.e., classes that do not expose any interface
outside of the component that used them). The separate test interface
pattern describes how to create “a test interface that can be used to
describe specific tests on classes that are visible only internally to a
component.” [LAN01]

Pattern name: scenario testing
Abstract: Once unit and integration tests have been conducted, there is a
need to determine whether the software will perform in a manner that
satisfies users. The scenario testing pattern describes a technique for
exercising the software from the user’s point of view. A failure at this level
indicates that the software has failed to meet a user visible requirement.
[KAN01]

	� Chapter 14�Testing Tactics � Moonzoo Kim�CS Dept. KAIST �
	Overview of Ch14. Testing Tactics
	“V” Model
	슬라이드 번호 4
	슬라이드 번호 5
	Testability
	What is a “Good” Test?
	Designing Unique Tests (pg423)
	슬라이드 번호 9
	Test Case Design
	Software Testing
	White-Box Testing
	Why Statement/Branch/Path Coverage?
	Exhaustive Path Testing
	Selective Path Testing
	Example
	Why More than Path Coverage?
	Tragic Accidents due to Software Bugs
	Model Checking Basics
	Model Checking Basics (cont.)
	An Example of Model Checking ½�(checking every possible values of variables)
	An Example of Model Checking 2/2�(checking every possible thread scheduling)
	Model Checking History
	Model Checking Example: Bubble Sort
	Basis Path Testing: Flow Graph Notation
	Basis Path Testing: an Independent Path
	Basis Path Testing: How Many Paths?
	Basis Path Testing
	Cyclomatic Complexity
	Using Cyclomatic Complexity (pg428)
	슬라이드 번호 31
	Basis Path Testing Notes
	Graph Matrices
	Control Structure Testing
	Data Flow Testing
	Loop Testing
	Loop Testing: Simple Loops
	Loop Testing: Nested Loops
	Black-Box Testing
	Black-Box Testing
	Graph-Based Methods
	Equivalence Partitioning
	Sample Equivalence Classes
	Boundary Value Analysis
	Comparison Testing
	Orthogonal Array Testing
	Testing Methods
	OOT Methods: Random Testing
	OOT Methods: Partition Testing
	OOT Methods: Inter-Class Testing
	OOT Methods: Behavior Testing
	Testing Patterns

