Chapter 15
Product Metrics

Moonzoo Kim

CS Division of EECS Dept.
KAIST

Overview of Ch15. Product Metrics

15.1 Software Quality
15.2 A Framework for Product Metrics
15.3 Metrics for the Analysis Model

Function point metrics

15.4 Metrics for the Design Model
Architectural design metrics
Metrics for OO design
Class-oriented metrics
Component-level design metrics
Operation oriented metrics

15.5 Metrics for Source Code
15.6 Metrics for Testing
15.7 Metrics for Maintenance

McCall’s Triangle of Quality (1970s)

PRODUCT REVISION T TRANSITION

PRODUCT OPERATION

ISO 9126 Quality Factors
- Functionality, reliability, usability, efficiency, maintainability, portability

— e

Measures, Metrics and Indicators

A SW engineer collects and develops so that
will be obtained

A provides a quantitative indication of the extent, amount,
dimension, capacity, or size of some attribute of a product or process

The IEEE defines a as “a quantitative measure of the degree to
which a system, component, or process possesses a given attribute.”

IEEE Standard Glossary of Software Engineering Terminology (IEEE Std
610.12-1990)

An is @ metric or combination of metrics that provide insight into
the software process, a software project, or the product itself

Ex. Moonzoo Kim

Measure: height=170cm, weight=65 kg
Metric: fat metric= 0.38 (=weight/height)
Indicator: normal health condition (since fat metric < 0.5)

KAIST 4

—_—

Measurement Principles

The objectives of measurement should be established before data
collection begins

= Ex. It might be useless to measure a number of words in a C file.

Each technical metric should be defined in an unambiguous manner
= Ex. For measuring a total line number of a C program
Including comments? Including empty lines?
Metrics should be derived based on a theory that is valid for the domain
of application

= Metrics for design should draw upon basic design concepts and principles
and attempt to provide an indication of the presence of a desirable attribute

= Metrics should be tailored to best accommodate specific products and
processes

Measurement Process

The derivation of software measures and
metrics appropriate for the representation
of the software that is being considered.

The mechanism used to accumulate data
required to derive the formulated metrics.

The computation of metrics and the
application of mathematical tools.

The evaluation of metrics results in an
effort to gain insight into the quality of the
representation.

Recommendations derived from the
interpretation of product metrics
transmitted to the software team.

To check whether a give software is hot-
spotted (i.e. has intensive loops)

Instrument a source program/binary to
count how many time a given statement
is executed in one second

Using Excel/MatLab to get average
numbers of executions of statements

If there exist statements which were
executed more than 108, on a 3 Ghz
machine, then the program is hot-spotted

Try to optimize those hot-spotted
statements. Or those hot-spotted
statement might have logical flaws

Goal-Oriented Software Measurement
The Goal/Question/Metric Paradigm

establish an explicit measurement goal

define a set of questions that must be answered to achieve the goal

identify well-formulated metrics that help to answer these questions.
Goal definition template

{the name of activity or attribute to be measured}

{the overall objective of the analysis}

{the aspect of the activity or attribute that is considered}

{the people who have an interest in the measurement}

{the environment in which the measurement takes place}.

Ex> Goal definition for SafeHome

Analyze the Safehome SW architecture

for the purpose of evaluating architectural components

with respect to the ability to make Safehome more extensible
from the viewpoint of the SW engineers performing the work
in the context of produce enhancement over the next 3 years
Questions

Q1: Are architectural components characterized in a manner that
compartmentalizes function and related data?

Answer: 0 ... 10
Q2: Is the complexity of each component within bounds that will
facilitate modification and extension?

Answer: 0 ... 1

Metrics Attributes

It should be relatively easy to learn how to derive the metric, and
its computation should not demand inordinate effort or time

The metric should satisfy the engineer’s intuitive notions about
the product attribute under consideration

The metric should always yield results that are unambiguous.

The mathematical computation of the metric should use
measures that do not lead to bizarre combinations of unit.

ex. MZ measure of a software complexity: kg x m?

That is, the metric should provide a software engineer with
information that can lead to a higher quality end product

Collection and Analysis Principles

Whenever possible, data collection and analysis should
be automated

Valid statistical techniques should be applied to establish
relationship between internal product attributes and
external quality characteristics

Interpretative guidelines and recommendations should
be established for each metric

Ex. Fat metric greater than 0.5 indicates obesity. A person who
has more than 0.7 fat metric should consult a doctor.

10

Metrics for the Analysis Model

These metrics examine the analysis model with the
intent of predicting the “size” of the resultant system

Size can be one indicator of design complexity

Size can always an indicator of increased coding,
iIntegration, and testing efforts
Example

= Function-based metrics
= Metrics for specification quality

11

Function-Based Metrics

The first proposed by Albrecht [ALB79],
can be used effectively as a means for measuring the functionality
delivered by a system.

Function points are derived using an empirical relationship based on
countable (direct) measures of software's information domain and
assessments of software complexity
Information domain values are defined in the following manner:

number of external inputs (Els)

often used to update internal logical files

number of external outputs (EOs)

number of external inquiries (EQSs)

number of internal logical files (ILFs)

Number of external interface files (EIFs) (

12

Function Points

Information Weighting factor
Domain Value Count simple average complex

External Inputs (Els)

External Outputs (EOs)

3 3 4 6 =
4 5 7
External Inquiries (EQS) 3 4 6 =

Internal Logical Files (ILFs) 10 15 =

JULLL

External Interface Files (EIFs) 5 7 10 =

[pooc

Count total v

FP = count total x (0.65 + 0.01 x 5 (F,))

where Fi’s are value adjustment factors based on
responses to the 14 questions (473 pg of SEPA)

KAIST

Test sensor

Password

Zone inguiry _ / SafeHome

Sensor inguir

vser Messages

User ‘ .
Interaction

Panic buiion

Zone sefiing

Sensors

> function
Activaie /deactivaie

Passweord, sensors . . .

System configuration data I

Weighting Factor

Sensor status

Activate /deactivate

User

Menilering
& response
subsystem

Measurement parameter Count Simple Average Complex

Number of user inputs 4
Number of user outputs

Number of user inquiries
Number of files 10

Number of external interfaces

SEEEE
ofelelele

o]

Jooooe

Y

Count total

20

50

14

Value Adjustment Factors (F.)

Following questions should be answered using a scale that
ranges from 0 (not important) to 5 (absolutely essential)
Does the system require reliable backup and recovery?

Are specialized data communications required to transfer information
to or from the application?

Are there distributed processing functions?
|s performance critical?

Will the system run in an existing, heavily utilized operational
environment?

Does the system require on-line data entry?

Does the on-line data entry require the input transaction to be built
over multiple screens or operations?

KAIST 15

Usage of Function Points

Assume that
past data indicates that one FP translates into 60 lines of code
12 FPs are produced for each person-month of effort

Past projects have found an average of 3 errors per FP during analysis and
design reviews

4 errors per FP during unit and integration testing
These data can help SW engineers assess the completeness of their review
and testing activities.
Suppose that Safehome has 56 FPs

56 =50 x [0.65 +0.01 x S(F.) (= 46)]

Safehome will be
Expected size: 60 lines * 56 =3360 lines
Expected required man-month: 1/12 MM * 56 = 4.7 MM
Total analysis/design errors expected: 3 * 56 = 168 errors

Total testing errors expected: 4 * 56 = 224 errors
KAIST 16

—_—

Metrics for the Design Model

The design of engineering products (i.e. a new aircraft, a

new computer chip, or a new building) is conducted with

well-defined design metrics for various design qualities
Ex 1. Quality does matter, see AMD’s success in 2000~2006.

Ex 2. Pentium X should have
Heat dispense ratio < 100 Kcal/s
Should operate 99.99% time correctly at 10 Ghz
Should consume less than 100 watts/h electric power

The design of complex software, however, often proceeds

with virtually no metric measurement

Although design metric is not perfect, design without metric is not

acceptable.
KAIST

e ——

Architectural Design Metrics

Architectural design metrics put emphasis on the
effectiveness of modules or components within the
architecture

These metrics are “black box”

Architectural design metrics
Structural complexity of a module m= (# of fan-out of module m)?

Fan-out is the number of modules immediately subordinate to
the module
i.e. the # of modules that are directly invoked by the module

Data complexity = (# of input & output variables)/ (fan-out+1)
System complexity = structural complexity + data complexity

18

Morphology Metrics

a function of the number of modules
and the number of interfaces between modules
Size=n+a
Depth = the longest path from the root node to a leaf node
Width =maximum # of nodes at any one level of the architecture

Arc-to-node ratio

19

Metrics for OO Design-i

Whitmire [WHI97] describes nine distinct and measurable
characteristics of an OO design:

Size is defined in terms of the following four views:

Population: a static count of OO entities such as classes
Volume: a dynamic count of OO entities such as objects

Length: a measure of a chain of interconnected design elements
Functionality: value delivered to the customer

How classes of an OO design are interrelated to one another

The physical connections between elements of the OO design
The # of collaborations between classes

“the degree to which an abstraction possesses the features required of it, ...
from the point of view of the current application.”

Whether the abstraction (class) possesses the features required of it

KAIST 20

KAIST

Metrics for OO Design-lI

An indirect implication about the degree to which the abstraction or
design component can be reused

The degree to which all operations working together to achieve a
single, well-defined purpose

Applied to both operations and classes, the degree to which an
operation is atomic

The degree to which two or more classes are similar in terms of
their structure, function, behavior, or purpose

Measures the likelihood that a change will occur

21

Distinguishing Characteristics

Berard [BER95] argues that the following characteristics require
that special OO metrics be developed:

the packaging of data and processing

the way in which information about operational details is hidden by a
secure interface

the manner in which the responsibilities of one class are propagated to
another

the mechanism that allows a design to focus on essential details

the way in which information is concentrated in a program
KAIST 22

e ——

Class-Oriented Metrics

Weighted methods per class) (C,) where C.is
a normalized complexity for method i

The # of methods and their complexity are reasonable
indicators of the amount of effort required to implement and
test a class

As the # of methods grows for a given class, it is likely to
become more application specific -> less reusability

Counting the # of methods is not trivial

Depth of the inheritance tree

As DIT grow, potential difficulties when attempting
to predict the behavior of a class

23

Class-Oriented Metrics

Number of children (NOC)

As NOC grows, more reuse, but the abstraction of the parent class
is diluted

As NOC grows, the amount of testing will also increase
Coupling between object classes (CBO)

CBO is the # of collaborations listed on CRC index cards

As CBO increases, reusability decreases
Response for a class (RFC)

A set of methods that can be executed in response

to a request

As RFC increases, test sequence grows (e) (en) [cz Cz
Lack of cohesion in methods (LCOM)]] {]

A # of methods that access same attributes

(can
KAISY 2

Applying CK Metrics (pg483-484)

The scene:
= Vinod's cubicle.

The players:
m Vinod, Jamie, Shakira, Ed

members of the SafeHome software
engineering team, who are continuing
work on component-level design and test
case design.

The conversation:

Vinod: Did you guys get a chance
to read the description of the CK
metrics suite | sent you on
Wednesday and make those
measurements?

Shakira: Wasn't too complicated. |
went back to my UML class and
sequence diagrams, like you
suggested, and got rough counts
for DIT, RFC, and LCOM. | couldn't
find the CRC model, so | didn't
count CBO.

Jamie (smiling): You couldn't find
the CRC model because | had it.

Shakira: That's what | love about
this team, superb communication.

Vinod: | did my counts . . . did you
guys develop numbers for the CK
metrics?

(Jamie and Ed nod in the affirmative.)

Jamie: Since | had the CRC cards, |
took a look at CBO, and it looked
pretty uniform across most of the
classes. There was one exception,
which | noted.

Ed: There are a few classes where
RFC is pretty high, compared with the
averages . . . maybe we should take a
look at simplifying them.

Jamie: Maybe yes, maybe no. I'm still
concerned about time, and | don't
want to fix stuff that isn't really broken.

Vinod: | agree with that. Maybe we

should look for classes that have bad
numbers in at least two or more of the
CK metrics. Kind of two strikes and

you're modified.

Shakira (looking over Ed's list of

classes with high RFC): Look, see
this class? It's got a high LCOM as

well as a high RFC. Two strikes?

Vinod: Yeah | think so . . . it'll be
difficult to implement because of
complexity and difficult to test for the
same reason. Probably worth
designing two separate classes to
achieve the same behavior.

Jamie: You think modifying it'll save
us time?

Vinod: Over the long haul, yes.

Class-Oriented Metrics

Method inheritance factor (MIF) MIF = ¥ M,(C,)/ SM,(C))
M.(C,) = the # of methods inherited (and not overridden) in C,
M,(C)) = My(C)) + M(C))

M,(C,) = the # of methods declared in the class C,

Coupling factor CF =y 3 is_client(C,,C;)/ (T 2-T.)

Is_client = 1 if and only if a relationship exists between the client class C_

andC_(C. I=C))
High CF makes trouble to understandability, maintainability and reusability.

27

Class-Oriented Metrics

class size
number of operations overridden by a subclass
number of operations added by a subclass

28

Component-Level Design Metrics

a function of data objects and the locus of their definition

a function of input and output parameters, global
variables, and modules called

hundreds have been proposed (e.g., cyclomatic
complexity)

29

Operation-Oriented Metrics

average operation size

of messages sent by the operation
operation complexity

average number of parameters per operation

30

Metrics for Testing

Testing effort can also be estimated using metrics derived
from Halstead measures

Binder [BIN94] suggests a broad array of design metrics
that have a direct influence on the “testability” of an OO
system.

31

Metrics for Maintenance

IEEE Std 982.1-1998 Software Maturity Index (SMI)
SMI = [My - (F, + F; + Fy)l/M7
M, = # of modules in the current release
F. = # of modules in the current release that have been changed

F, = # of modules in the current release that have been added

F, = # of modules from the preceding release that were deleted
in the current release

KAIST 32

