Re-engineering Software Architecture of Home Service
Robots: A Case Study

Moonzoo Kim, Jaejoon Lee,
Kyo Chul Kang

Computer Science and Engineering Department

Pohang University of Science and Technology
Pohang, South Korea

{maonzoo,gibman, kck;@postech.ac.kr

ABSTRACT

With the advances of robotics, computer science, and other
related areas, home service robotas attract much attention
from both academia and industry. Home service robots
present interesting technical challenges to the community in
that they have a wide range of potential applications, such
as home security, patient caring, cleaning, etc., and that the
services provided by the robots in each application area are
being defined as markets are formed and, therefore, they
change constantly.

Without architectural considerations to address these chal-
lenges, robot manufacturers often focus on developing tech-
nical components (e.g., vision recognizer, speech processor,
and actuator) and then attempt to develop service robots
by integrating these components. When prototypes are de-
veloped for a new application. or when services are added,
modified, or removed from existing robots, nnexpected, un-
desirable, and often dangerous side-effects, which are known
as feature interaction problem, happen frequently. Reengi-
neering of such robots can malie a serious impact in delivery
time and development cost

In this paper, we present our experience of re-engineering
a prototype of a home service robot developed by Samsung
Advanced Institute of Technology. First, we designed a mod-
ular and hierarchiecal software architeeture that makes inter-
action among the components visible. With the visibility of
interactions, we could assign functional responsibilities to
each component clearly. Then, we re-engineered existing
codes to conform to the new architecture using a reactive
language Esterel. As a result, we could detect and solve
feature interaction problems and alleviate the diffienlty of
adding or npdating components

Categories and Subject Descriptors
D.2.11 [Software Architecture]

Youngjin Hong, Seokwon Bang
Interaction Lab.
Samsung Advanced Institute of Technology
FP.O.Box 111, Suwon
440-600, South Korea

{bhong,banggar.hang}@samsung.com

General Terms
Design, Reliability

Keywords
software re-engineering, robot programming, reactive sys-
tems

1. INTRODUCTION

Home service robots have received much attention from
academia as well as industry in anticipation that home ser-
vice robots will potentially increase quality of human life
in a wide range of application areas. Thus, leading con-
sumer product companies such as Sony [2], Honda [1], and
Samsung have invested a great deal of efforts in developing
home service robots. Home service robots utilize various
technology-intensive components such as speech recognizers,
vision processors, and actuators to offe rice features. As
markets for home service robots are still being formed, how-
ever, these technical components undergo frequent changes
and new services are added or existing services are often
removed or updated to addr anging needs of the user.
Thus, home service robots pre interesting software en-
gineering challenges to the research and development com-
mimnity.

Due to limited development resonrces, developers of home
service robots tend to focus on technology intensive compo-
nents at an early stage of product development without an
architectural consideration of how they will he integrated to
create servi Furthermore, engineers are often grouped
into separate teams based on the underlying technologies
(e.g., speech processing, vision processing), which makes in-
tegration of these components more diffienlt. Without a
fore-thought architectural design, an initial product tends
to be developed by integrating these components in an ad-
hoc and bottom-up way. As a consequence, products often
suffer from featnre interaction problems [10, 24]. Featnre
interaction problems found in systems developed without

Re-engineering Home

Service Robots

Improving Software

Reliability: A Case Study

Agenda

Introduction

Re-engineering Software Architecture

Control Plane Re-engineering

Data Plane Re-engineering

Lessons Learned

2/34

Home Service Robots

¥ Designed for providing various services to human user

B

- Service areas : home security, patient caring, cleaning, etc
- Markets for home service robots are still being formed

At Home
-
;_rtl. J 1200
/ 1100
. 1000
900
800
TO0
600
500
400
300
200
100

4 sendmg /@‘
\\ _—
OK. I'll take

a picture.

_ d

Is she OK?

- .:'-J.-
@1—-_-—_—-
» May I help you? | Cecking a Sick Remote Control |

Introduction

3/34

Home Service Robots Project Background

o SAIT started development of SHROO from 2002

— 4 separate teams (13 persons)

« Vision recognition, speech recognition, simultaneous localization
and mapping (SLAM), actuator

e Both SHROO and SHR50 suffered feature interaction

problems
— SAIT decided to develop SHR100 from scratch

o SAIT requested POSTECH to improve the reliability
of SHR100 in six months
— SHR100 is written in 17K line of C/C++

KAIST
_ 4134

Components of Home Service Robots Introduction

F Robots are created based on various technical components
- Speech recognizer, vision recognizer, actuator, etc

Front Camera

. 8-Channel
E single .controlling Microphones
c Board peripherals |Motor Controller
omputer =y Ceiling Map building Structured Light

\ / ‘wf Camera «Self-positioning ICeiIing Car

eFace Recognition
User following
*Remote Surveillance

((‘uh Speaker *Sound

generation

4

® 8 channel *Speaker
Microphones Localization \'

Structured « Obstacle Detection
F Light « Foot Step Detection
Sensor

.}‘ Lcp °Information
Dispiay

~
= § e
H Actuator -Moveme-ﬂi\%,,g

| L Wireless «Communication to H
- LAN ome Server

KAIST
5/34

Integration of Components Introduction

F Robot developers concentrate on technical components only,
resulting in integration in an ad-hoc and bottom-up way

- Difficult to coordinate components to provide services

PDA
Call & Come
Front Camera
Surveillance Tele-Presence
A 4 A \ 4
8-Channel . PRI
; > Surveillance Tele-Presence .
Microphones Call & Come User Following
A
A 4 A 4 I
Strﬁgﬁ,{red »| User Following > Navigation «—> SLAM
4&
v
Motor Controller Ceiling Camera
Legend
Name Sensor/Actuator Name External Device
Name Service Component — Data Flow

—_— 6/34

Problems Re-engineering Software Architecture

¥ Problems due to bottom-up integration
- Lack of global view
- Difficulty in analyzing the behavior of integrated systems
- Integration often requires modifications of other components

E Feature interaction problems

- Invisible interactions between the components
- Difficulty to trace the cause of problems (debugging difficulty)

Cannot develop products in reasonable project time
Cannot evolve according to quickly changed market demands

Cannot satisfy required quality attributes (e.g. safety and temporal properties)

—_— 7/34

Proposed Approach Re-engineering Software Architecture

¥ To provide hierarchical and modular SA
- Top-down global views
- Visualization of component interactions
- High adaptability for evolving features/ technologies

B To apply formal construction & verification

to the core of SW
- Rigorous and automated debugging support
- Explicit interaction mechanism among components
- Compact and easy-to-understand code
(domain specific programming language)

. 8/34

Proposed Approach Re-engineering Software Architecture

F Re-engineering based on the following three principles

1. Separation of control plane from computational plane
2. Distinction between global behavior and local behavior
3. Layering in accordance with data refinement hierarchy

KAIST
9/34

Re-engineering Principles

Re-engineering Software Architecture

F Principlel: Separation of Control Components from Computational

Components.

The first class of data is control g
. . ﬁ Apply
data for handling robot behaviors. Control Oriented Development Methodology

. correctness is the foremost
concern due to complexity of
reactive system.

The second class of data is
computational data for handling
robot function.

. efficient computation is the most
Important goal.

To the Control Plane

Control Plane

Control Control Control
Components Component 1 ¢ 00 Componentn
1 HEL
.. .
1 : |
Computational Computational Computational
Components Component 1 o o o Component m
Data Plane

Apply
Data Oriented Development Methodology
i To the Data Plane

Legend

Event (Up-stream)

Name | Component — ==~ Data Flow

............. Event (Down_stream) - Contl’0|

10/34

Re-engineering Principles Re-engineering Software Architecture

E Principle2: Separation of Local Behaviors from Global Behaviors

Control Plane
Mode manager components ll\

I lobal Behavi Mode
_deflnes _the svstem modes and _the Contio) Comoamonts Manager
Interaction pohcy between service !

: I

Components- Local Behavior Service Service !
/ Control Components Manager 1 ¢ 00 Manger n :

N B |

SerVI ce man ag er COmp0nentS \‘ :| .. ; :

I I I utati I utati i
defines the behav!or of service Cmputational | Computational | Computationa
feature by controlling the
computational components. Data Plane

Legend

Name | Component — — — = Event (Up-stream)

------------- Event (Down-stream)

11/34

Re-engineering Principles Re-engineering Software Architecture

E Principle3: Layering in Accordance with Data Refinement Hierarchy

Control Plane
QoS Manager determines the level Global Behavior Voge
at which the computation should be Control Components —
: _ e R
performed according to service i o oo A
>, Local Behavior Service Service | !
\ Control Components Managerl Manager n :
U S |
. - | . : T T , :
There exist data - Computational Computational
refinement hierarchy 4, QoS Manager [COmP‘;”eml R C°mp‘;”e”tm
|
for data computation and | ——
different service features Computation Layer k| " Repostiory
. |
may use different : : Data Plane
computational o !
|
:

component layers.

Computation Layer 1

S 12/34

New Software Architecture Re-engineering Software Architecture

Control Plane—

Data Plane <

vioae
ManaqerI
srnneneress s e SO |
: : P |
Call & User Tele- Security I
Caome Fnllnwing Presence Mnnifnring |
SR SR Y-S l.....
: : T
-———-=F | ety il S M i e el -y Rl
— 1 | | I | |
Structured User Vision Audio
SLAM Ligiht Interface Manager Manager
Data
Repasitary [} 4
: I 1
Y | i_ |
Vision QoS L. - Audio QoS
Manager Manager

Object Recognition
through Color
Analysis

Image Format
Conversion

Image
Acquisition

Data Repository

Legend
----- Event (Up-stream)
Name
--------------- Event (Down-stream)
Conceptual Data Flow
Component
_____ Control
KAIST

B e

Audio Source

Direction Analysis

Audio Pattern

Recognition

Audio

Acquisition

Data Repository

13/34

Re-engineering Control Plane (1/3) Re-engineered SHR100 Architecture

Mode
Manager
CALL_COME_DONE,CALL_STOP_DONE B e i
Control Plane T
Implementation | CALL_COME,: | . l H :
in Esterel CALL SIOR: i I : 1 E :
User Security :
Call & Come Following Tele-Presence Monitoring :
module cnc module uf module tp module sm l
|
1
: : : : EVENT
eeneenesrnnanens Stgpp@d() —- SN : :
CO() : human ;n ran () |
: H 1
Data Plane A R@TAEE_@__"__"T""dewad@"_"?":'
. $TORO

Implementation ! — Vision Manager .

n C/C++ SLAM Navigation User Interface Audio
Manager

I I | |
Data
Repository

14/34

Re-engineering Control Plane (2/3) Overview of the Previous CC

ImEIementation

F A main control procedure for the preempitive CC service

01:class CCallComeDlg { ° processState() iS
02: int m_order;) i
03 ... called periodically
04: void processState() { .
05: ... once in every 100
06: switch(m_order) { K
07° case 0 STOP(): milliseconds.
08: d ;
~ | o9 x Q;ZL;erH « (CC executes
10: case 1: ROTATE(); :
. T orderta: throug.h seggennal
New]g —» break; steps identified by
com-< | 14 - the value of
mands 15: else nCount = 0:
16: if (nCount > 2) m_order++; m_order
17: break; .
\ > e nCountis
19: case 9: CALL_N_COME_FINISHED();
20: m order = —1: declared as a
21: break; i
22: }/* End of processState()} Sta.tIC Iocal _
23} variable at line 13
E This straightforward pattern is error prone.
KAIST

— 15/34

Re-engineering Control Plane (33) ~ OVerview of the re-engineered CC

ImEIementation

E Esterel handles a

01:module control_plane: % Control Plane

02:input EVENT: integer;

03:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET,;
04:signal CALL_COME, CALL_STOP in

05:run mode_man| |run cncl [run uf||run tpllrun sm;
06:end signal

07:end module

08:

09:module cnc: % Call and Come service

10:function human_in_range() : boolean:

11:input CALL_COME,CALL_STOP; %come,stop commands
12:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET;
13:varpmv=talse-beolean-R-irtegerin

14.

15: present

16: case CALL_ COME do % come command
17: mv := true;

18: emit STOP: pause;

19: I riin rr _r‘lm%’

20:

21: emit CC_DONE;pause;

22: case CALL_STOP do % stop command
23: emit STOP;

24: if mv=true then emit CS_DONE;
25: else mv:=true:pausMend if;
26: end present;

27: mv := false;

28: end every

29:end var

30:end module

31:...

preemptive event e with a
preemption operator

EVERY e DO statements
END EVERY.

Interactions among Esterel
modules are clearly defined
via events

PRESENT CASE e DO
statements END PRESENT

Submodule can be
conveniently utilized

RUN module

16/34

Esterel Background (1/5) Reactive Synchronous Language Esterel

Input __
event

__, Output

event E Synchrony =

abstraction of the
real world

. F Cycle-based
* computation execution model,
_____ memory global clock

E Perfect synchrony

input output

time

-
-

—————
———————
———————

———————
- —— -

- -
- [y
- -
- -

17/34

Esterel Background (2/5) The Esterel Language

F Synchronous language
B Structural imperative style

B Basic constructs

e Classical control flow
p:q, pllg, loop p end

e Signals:
signal S In p end, emit S,
present S then p else g end

®Preemption
abort p when S, every s do p end every

e Exception handling
trap T In p end, exit T

—_— 18/34

Esterel Background (3/5) The Esterel Semantics

F ABRO example

Input A,B,R;

Output O;
avalt A
1
1: switch(state){
erﬁit 0- case 0: state=1; break;
’ case 1: 1T(IR) {0();state=4;}
hal
alt else state=2;
else state=3;break;
case 2: i1f(R)state=1;
else {0();state=4;} break;
case 3: i1If(R)state=1;
else {0();state=4;} break;
gase 4: 1T(R)state=1;break;

I 19/34

Esterel Background (4/5) Overview of Esterel Tools

callneome simulation main panel r- |

E The esterel Compiler:

Breakpoints (2iher Tree MainPanel Close Commands Fonts Windows Info 1

. |
- modnle ool Lo - | Pure Inputs | Pure Dutputs
2 C/VH DL/VerIIOg COde generatlon' function human in range() : boolean: _ COME COMMANHD STOP
input COME_COMMAND , STOP_COMMAND : _i ETODP _COMMAWD ROTATE
relation COME COMMAND # STOP COMMAND ; &0
output STOP, ROTATE, GO, CHA Do

® interface between Esterel and C. G DONE, HUMAN DETECTED, WUMAN NOT DETECT

=igmal Reset in
every immediate [COME COMMAND or STOP_COI

HUMAN DETECTED
HUMAN HOT DETECTED

reci
eeeee

F The xes Graphical Simulator:

® graphical interactive simulation

® session recording/replay.

¥ The xeve Model Checker:

F5 M Fils |Eallncome.blﬁ , | Relaion Fis |<4:a||ncome.rel.blif

® ar]alyzeS an ESte rel prog ram. werficalian Seleclion I S T e

_ T e | R —— . .
® check presence of an output signal | ... -

STOP_COMMAND IROTATE T
1 (GO
I n I Emcjmc
- HUMAN_DETEGCTED 7 s[=] I.’.o—’.o
|

NNNNN _DETECTED

STOP VI ATION

with given configuration of input ——— —— ‘ e

NN 20/34

Esterel Background (5/5)

B Esterel Studio - [elevator.etpl - [safety.scal

File Edit View Insert Format Project Simulation Tools Window Help

O 2E8d & [/ &F-=-

rREBRX | oo AW R Ivi @HaBeE »E | Q<Y [KO

= call_intf, strl

F& ButtonsAnd sabinStopped /

DoorlsOpen /

— OpenDoordotorOff
ElevatorEng n or Doorfensor |
Fa FloorSenso —.
=) cabin.scg [
Cahin
= [safety.scg Stop/ { StariTimer

safety —
=-[H] call.strl

ze CallHandler
= elevator, strl

TimerExpired or DoorCloss /
loseDoorfotorOn

N
o
Fa Timerlntf
3
@
(8
®
©
=
@

<&

B Elevator | o
[Extern =] ;
=23 Data v DoerlsClosod f
< w2
Project | | Modules | .

CabinStopped f

Cabin moves

zustain assert OK = not D:

#5tart f

Label [Danger [EL, ? | [Module v| & [] []
Trees 3] | """ [S15] 78 safety,scg - [safety]
= [B elevator.etp L Cabin safet sl
=53 Muodel ¥
= (3 data,strl DoorlsClosed
o[B8y SizeData DoorlsOpen =2
=[G cabin_intf, strl i
% Cabinint fOpenDoartotorOn zustain Danger
= Open Danger # OpenDoorMotorOn f

& = Project lnaded
C¥Program FilesWEsterel TechnologiesWEsterelStudioWesamplesWadvancedWElevatorelevator, etp

Console

Lag |Errors | Find | Qutput | Browsing |

Ready

Commercial Esterel Studio 5.21

21/34

Formal Verification of Stopping Behaviors (1/5) Behavior of CC

#S‘TMH?ETHES‘TWHEMWE

o N * IS indicates output
I signal
e« ?S Iindicates presence

*‘”""@””‘E of the input signal S
LEST S ROTATE: . .
M * e #S indicates absence

of the input signal S
STUSTOP ONC DONE+IN_DET

CMAST ICNC_DONE#CM. IS8T ISTOP, ICNC_DONE

P

LML ISTISTOP ICNC_DONE

\ ML ISTASTOP SONC_DONF, #CMASTSTOP
@_ WM.ISTOP

fan @ #CM.ISTISTOPR.ICNC_DONE

22/34

Formal Verification of Stopping Behaviors (2/5) Requirement Properties

E Stopping behaviors are safety critical

E Three properties on the stopping behaviors
P1: If a user does not give a command to the robot, the robot must not move.

e P2: If a user does not give a “come” command, but may give a “stop” command to
the robot, the robot must not move.

P3: If a user gives a “stop” command, the robot must stop and not move without
any new command.

¥ We verify whether P1,P2, and P3 are satisfied in the following
two cases

¢ \When the CC service runs solely

¢ \When the CC service and the UF service run concurrently

KAIST
23/34

Formal Verification of Stopping Behaviors (3/5) Verification Result |

F We check P1 by setting

e |[nput signals COME_COMMAND and STOP_COMMAND as “always
absent”

e Output signal GO to check.
F Both cases satisfy P1

.. XEVE: Estersl Verification Environment . Check Oulput Aesults
Fiks ‘“aification Oplions 7 Beginner's Mads
Execution comoleles

Fim Selection . :

T—— “.eii generated files (il aryl can ba simulated using "ras”

“Wolking Dreclory: [/ pape=s /200405 CAA_ESTEREL

: : FSM Sizrz
Faul Fim [CEINCome. bt Aeleton Fis IEINCOME, Fel bl f
5 JE] BE It
Aeachabla SLaleal 18
Venfication 5 election
: Output Chacking Resudiz
 CHECE OUTPUTE =l
: Al L < it
" REDUCE
IGCI
Signal Sekeczion .
IHPUTS QuTPITS MEVER EMITTED
=iy 1

COME_COMMAND «||sTOP -

STOP COHAMAND ROTATE S
(] :
CHEC_DONE
HINAAM_DETECTED a| I I: FIOETE
HUAAM_NOT_DETECTED : ; z
STOP WICLATHOMN I

24/34

Formal Verification of Stopping Behaviors (4/5) Verification Result 11

B The CC service satisfies P2, but not CC and UF together.

- Verification result said that ROTATE and GO could be possibly
emitted when COME_COMMAND command was absent and
STOP_COMMAND might be given

- l.e. feature interaction happens

¥ UF should had been triggered only after a “come”
command

1. We refined CNC_DONE into CNC_COME_DONE and
CNC_STOP_DONE.

2. We modified the UF implementation so that only
CNC_COME_DONE could invoke UF.

3. After this modification, we could see that P2 was satisfied by the
concurrent CC and UF services.

—_— 25/34

Formal Verification of Stopping Behaviors (5/5) Verification Result 111

¥ The property P3.
® P3: If a user gives a “stop” command, the robot stops and does not move
without any new command.

¥ To verify P3, we need to build an observer to detect violations

01:module obasrver:

D21input STOP COMMAND , COME COMMAND , ROTATE , 8TOF , GO ;
02 :output STOP VIOLATION;

0d:weak abort

05: every immediate STOP COMMAND do

& present STOP then

27 loop

0g: present [ROTATE or GO]

09 then emit STOP VIOLATION;
10: end preasnt;

11: pauaes;

12: end loop;

132: end preassnt

14: emit STOP VIOLATION;

15: end every

16 :when COME COMMAND ;
17 :ennd modules

. 26/34

Re-engineering Data Plane (1/2) Experimental Results

E Layered Implementation of Vision Manager
- The layered architectural pattern is organized based on the
data refinement hierarchy.

Interface Implementation
class Layer3 { class Vision_ L3 FaceRecognition /]_. |fT1EigJE§ (jfitfi fr()rT] tf]EB fr()r1t
protected : : public Layer3 {
Layer2 *lowerLayer; bublic - camera are captured
virtual bool L3Service()
public : e (Layer 1),
virtual bool L3Service()= 0; if(lowerLayer->L2Service()){ . .
void setLowerLayer(Layer2 *I){ 2. then converted into a file
lowerLayer = I; } if(m_faceRec.Rec()){
} DR: :setData(m_facePattern); f()ffT]Eit (l_Ei)/EEF :2)
.} . .

i : 3. finally a human face is
class Layer2 { class Vision_L2 FormatConversion |dent|f|ed by analyzing
protected : : pu?lic Layer2 { .]

Layerl *lowerLayer; public : _ colors in the file (Layer 3).
virtual bool L2Service()
public : <<F{m
virtual bool L2Service()= 0; if(lowerLayer->L1Service()){
void setLowerLayer(Layerl *1){ .
lowerLayer = I; } if(m_frmtConversion.Conv()){
} DR: :setData(m_imgFormat);
-}
' ¥
KAIST

S 27/34

Re-engineering Data Plane (2/2)

F Vision QoS Manager
- The QoS manager layer selects the ‘right’ level of data refinements.

Vision Computation

-

Nlnitialize
Vision

tm(100)
/| Recognize Face

UF vision

fie

Req UF Vision
| Recognize Face ——_\

Req CC Vision
/ Recognize Face

Stop U
Vision

Nl

Vision Ready Detected

NI

Format
Conversion

Done
Req TP Vision
/Convert Format
TP Vision

Face Not Detected

Req SM Vision
Foxmat /Convert Format
Convelsjon

L/

\

4

Experimental Results

Vision
QoS
Manager

4

y]

T~

Vision QoS
Manager

Face
Recognition

Image
Conversion

Image
Acquisition

P R [—

28/34

Necessity of Re-engineering Lessons Learned

F From the experience of re-engineering SHR100, we are
convinced that re-engineering is essential

- Due to the limited development time, developers tend to
concentrate only on technical components at the early state
without considering how they will be integrated.

- Once feasibility of the project is confirmed through an early
prototype, re-engineering the product at later stage should be
enforced for increased quality of the product.

—_—— 29/34

Separation of Priority Management essons Learned

Global Priority Scheme Required\ - We found that unclear global
— Front Camera . .
\}f N priority scheme was one of the
E-Channel can s come]\ primary causes of feature
interaction problems.

\ A // A 4

Structured

Light ﬁ‘\\User FoIIowing// Navigation
= = Global Priority Scheme
==- = = g«
7 Local Scheme Mode Manag’h \
-With the new architecture, the ((/\ a—
. . . M . I
global priority scheme is {cane come o | J
separated from the service = i Z
ags, @ asesssesesssssansssss \ ;'"'Q) ¢ !
components and manageability of S === _I___i_g
priority was increased drastically. Ne;vi B Structured Vision Audio
gation Light Manager Manager Manager

S 30/34

Needs of Monitoring Capability Lessons Learned

F A monitoring capability is an important aid for tracking down
possible sources of a problem.

Front Camera
P w ;CJ) -Determining where to put probes
‘D j;!?f « cone s difficult, if the role of each
I '_I component and the ways they

snuctured &}‘ 1= interact each other are not clear
ﬁ‘ Light .'.I er Following i Navigation

otor Controller

Mode Manager

-The new SA that we proposed call & Come User
. . . . Following
could alleviate this difficulty with :
clear interaction strategy R R S Femm -
between components Novigaion | | Stutured || vislon Auto

31/34

Advantage of a Reactive PL

JJCF‘I nnnnn L" [&ll class memhers];” ¢ pinFuncCallCome ;I E |JJ@ ¥
=1

=28 Beamformer c lasses =] m_bHaiiEn = FELSE; §
El-=T5 BFCOV MY_TRACE({"[CALL AND COMEJ#n %d",|
=5 EBSYSTEM \ switch (param.order
=--®% EigenBeamformer Iy
=--*5 MultiFiltering % a:)

=& Common c lasses { —_— —_—
™8 CFFT i} :
=--®= CircularBuffer2D<class T> :F {m_pSLHMain)
[J...E C|rculf3rEluﬂer<class T> MY_TRACE([SSL Proce:
E-215 CMyFile<class T> m_pSLMain->SetProces:
™% MultiFileRead<class T> 3 -
== MultiFile ReadMultiBuffer FF=eF
=--*= Thread m_tracker ..cmdTurn{body .dx
-0 Globals param.order++;

=-E8 Exe_dialog classes
-2 Call Come MY_TRACE("[plnCallCome T
&-E3 Common ;reak_
-3 Data it —

case HE-—

=1 Grabber §
~[Z2 Grid Map static CPose befPose; 4\
=423 Motion static int nCnt = 8;)
H ".'[j_DasaStatus
-13 _PInParam %se Museﬁtrackm

essons Learned

-We uncovered subtle bugs
which decrease the accuracy of
detecting a user

- Implementing preemption in
C++ Is error prone.

- Esterel enalbes clear interactions
among the components

- Esterel has formal semantics as
Mealy machine, which allows

module

=i

breakpoinks | = le

oal I ome
Ffunction huwnan in range() :
input COHE COMUAND, STOF_«<OHMAHD ;
relation COME_COMARND # STOM CNAMAHLD ;
oukput ETOPF . BROTATE, GO,
CHC DONE, HUMEN DETECTED , HUMAN HOT DETECTI
signal Beset in
erecy immediate [COME COMMAHD ox STOP_ 0
weak aboxrt
preasent

COME—CIMHIHD do
£ oroe iz =]

rigorously analysis such as model P S

Tonte Windows

| " Puxe Inputs Pure ﬂut-pnx
¥ — COME COMMIND STOF

ROTATE

rect

checking

R

| HIHEE Hil| [
\Eb@ Veilcatin Optices 9
\ —

S
File Sekclion

—

32/34

Industrial Viewpoints Lessons Learned

o After all, SAIT decided not to adopt re—

engineered robot sw in their robot
prototype ®

e EXCUSeS are

— QOverhead of using a new language
 Most robot developers are not from CS field

— |nability to optimize final code manually

 For consumer products, resource constraints are still
major ISsues

— Version discrepancy

 While re—engineering was going on at POSTECH,
SAIT constantly add/updated features, which our re—
engineered code did not cover

e 33/34

Conclusion

E A Case Study of Re-engineering Home Service Robot

- Based on the three engineering principles, we designed a new
SA and re-engineered existing source code.

- By this re-engineering, interactions among the components
became visible and the responsibility of behaviors could be
assigned to components clearly, which enhance the reliability

- By this re-engineering, we can apply model checking technique

to improve the reliability of the control plane
F Future work

- Resource management problem

- Guideline for reverse-engineering

KAIST
—— 34/34

