Temporal Logic
- Branching-time logic

Moonzoo Kim
CS Division of EECS Dept.
KAIST

KAIST

CS655 System
Modeling and
Analysis

LTL vs. CTL

B LTL implicitly quantifies universally over paths
+ a state of a system satisfies an LTL formula if all paths from the given state
satisfy it
+ properties which use both universal and existential path quantifiers cannot in
general be model checked using LTL.

» property ¢ which use only universal path quantifiers can be checked using LTL by
checking —¢

B Branching-time logic solve this limitation by quantifying paths explicitly
+ There is a reachable state satisfying q: EF q

* Note that we can check this property by checking LTL formula ¢=G —q
— If ¢ is true, the property is false. If ¢ is false, the property is true

+ From all reachable states satisfying p, it is possible to maintain p
continuously until reaching a state satisfying q: AG (p — E (p U q))

+ Whenever a state satisfying p is reached, the system can exhibit g
continuously forevermore: AG (p — EG q)

+ There is a reachable state from which all reachable states satisfy p: EF AG p
KAIST

Modeling and
Analysis

CS655 System liq

Svntax of Computation Tree Logic (CTL

B Def3.12¢=L|T|p|-o|dAo
¢ | EG ¢

E Note that the following formulas are not well-formed CTL

|6V o|od— ¢ |AXS
|EX ¢ |AF ¢ |EF ¢ |AG ¢ | |A(pU@)|E(pU0)
+ A: along all paths @
+ E: along at least one path

B Precedence

+ AG, EG, AF, EF,AX, EX, A, Vv, —, AU, EU AX @

f I h
O ® ©

+

+ A-G-p

+ F(ruq) GD () ()

+« EF(rUQq)

+ AEFTr

+ A((rUg)A(pUr)) o o
KAIST A [(AX =p) U (E [(EX pAQ) U —p)]]

[%2]
28
» = O
a2
m§8

3

3

Semantics of CTL (1/2)

B Def3.15Let M = (S, —, L) be amodel for CTL,sin S, ¢ a CTL
formula. The relation M,s F ¢ is defined by structural induction on ¢.
We omit M if context is clear.

M,sETand M,s¥ L

M,sEpiff p € L(s)

M, sE - ¢iff M;sE ¢

MsEp, N, if MskE¢p, and M,sF ¢,

MsE@¢, Vo,iff MsE ¢ or MsE ¢,

MsE@¢, — ¢,iff M;sE ¢, or M;sFE ¢,

M,s E AX ¢ iff for all s,;s.t. s — s, we have M, s, F ¢. Thus AX says

“in every next state”

M,s F EX ¢ iff for some s,s.t. s -+ s, we have M, s, F ¢. Thus EX
says “in some next state”

+ M,sF AX ¢ iffforall s,;s.t. s — s, we have M, s, F ¢. Thus AX says
“in every next state”

+ M,s |= EX ¢ iff for some s,;s.t. s -+ s, we have M, s, F ¢. Thus EX
KAIST says “in some next state”

CS655 System .
Modeling and 4
Analysis

- FfFrfFreF

#

Semantics of CTL (2/2)

B Def3.15 Let M = (S, —, L) be a model for CTL, sin S, ¢
a CTL formula. The relation M,s E ¢ is defined by
structural induction on ¢. We omit M if context is clear.

+ M,s F AG ¢ iff for all paths s;,—s,—s;—... where s, equals s,
and all s; along the path, we have M,s; F ¢.

+ M,sF EG ¢ iff there is a path s;,—s,—s;—... where s, equals s,
and all s; along the path, we have M,s; F ¢.

+ M,s F AF ¢ iff for all paths s,—s,—s;—... where s, equals s,
and there is some s; s.t. M,s; F ¢.

+ M,s F EF ¢ iff there is a path s,—s,—s;—... where s, equals s,
and there is some s; s.t. M,s; F ¢.

+ M,skFA[p, U, iff for all paths s,—s,—s;—... where s, equals
s, that path satisfies ¢, U ¢,

+ M,skFE|[¢, U¢o,) iff there is a path s,—s,—s;—... where s,
equals s, that path satisfies ¢, U ¢,

KAIST
CS655 System liq

Modeling and
Analysis

Example (2/2

M, soFpAQ, M,SgFE—r, M, sy =
M.,sF EX (QAT)

M., sF ~AX(QATr)

M.,sF ~EF(pAr)
M,s,FEGT

M,s,F AF r
MsgEE[(pAg)UT]
M,sgEAp Ur]

M,;sgcAG (pvagVvr— EFEGT) f (ra)
KAIST >
CS655 System .‘q

Modeling and
Analysis

Practical patterns of specification (1/2)

B |tis possible to get to a state where started holds, but ready doesn’t
+ EF (started A —ready)

B For any state, if a request occurs, then it will eventually be acknowledged
+ AG (requested — AF acknowledged)

B A certain process is enabled infinitely often on every computation path
+ AG (AF enabled)

E Whatever happens, a certain process will eventually be permanently

deadlocked
4+ AF (AG deadlock) \
E From any state it is possible to get to a restart state ///;\("f; I
4+ AG (EF restart) ; " .

B Mutual exclusion protocol
+ Non-blocking: a process can always request to Qﬁ\ T ""'3/\
enter its critical section ’
« AG (n, — EXt,)
* Note that this was not expressible in LTL
+ No strict sequencing: processes need not enter

their critical section in strict sequence. eyt ([fre

KAIST . is was also not expressible in LTL, though we expressed its negation. 8
CS655 System

Modeling and
Analysis

Practical patterns of specification (2/2)

B An upwards travelling lift at the second floor does not change
its direction when it has passengers wishing to go to the fifth
floor:

+ AG (floor2 A directionup A ButtonPressed5 — A [directionup U floor5])

B The lift can remain idle on the third floor with its dorrs closed
+ AG (floor3 A idle A doorclosed — EG (floor3 A idle A doorclosed))

B The property that if the process is enabled infinitely often, then
it runs infinitely often, is not expressible in CTL
+ What about AG AF enabled — AG AF running ?

KAIST
CS655 System l H
Mo dI g and i

SSSSS

Equivalence between CTL formulas

B Def 3.16 Two CTL formulas ¢ and) are said to be
semantically equivalent if any state in any model which
satisfies one of them also satisfies the other

* 9=v

~ AF ¢ = EG —¢
~EF ¢ = AG - ¢
- AXp=EX-0¢
AF ¢ = AT U 4]
EF ¢ = E[T U ¢]

KAIST 10

CS655 System .
Modeling and
Analysis

CTL Is not more expressive than LTL

M
B CTL cannot select a range of paths N N
+ F GpinLTL is not equivalent to AF AG p @ @ Q

« M,soF F Gpbut M,s,”AF AG p
* AF AG p is strictly stronger than F G p
 AF EG p is strictly weaker than F G p

B Similarly, F p — F g is not equivalent to
AF p — AF q, neither to AG (p — AF q)

B Remark
+ FXp=XFpinLTL
+ AF AX pis not equivalent to AX AF p

KAIST

CS655 System
Modeling and
Analysis

ComEarison between LTL and CTL

LTL CTL
Difficulty of Intuitive and easier Difficult and unintuitive
specification
Model checking Exponential time Polynomial time
complexity
Limitation Cannot specify branching | Cannot specify a range of
behavior paths
Main target area Requirement property for | Requirement property for
software hardware
Tools FormalCheck, SPIN, NuSMV, VIS, CWB-NC
Intel’s Prover, NuSMV

KAIST

CS655 System
Modeling and
Analysis

12

CTL*

B CTL* combines the expressive powers of LTL and CTL

B Syntax of CTL*
+ Stateformula ¢ ::=T |p| - | oA | Ala] | E[a]
+ Pathformulaa:=¢|-a|laNha|laUa|Ga|Fa|Xa

B LTL is a subset of CTL*
+ LTL formula « is equivalent to A[a] in CTL*

B CTL is a subset of CTL*
+ Werestricta::=oU¢p|Go|Fop| X
« No boolean connectives in path formula
— Not real limitation. See page 6

* No nesting of the path modalities X,F, and G

KAIST

13
CS655 System .
Modeling and ﬂ

Analysis

Relationship between LTL,CTL, and CTL*

CTL*

CTL LTL

Yy

CS655 Syste m]
Modeling and
Analysis

Complexity of Model Checking

B Let M be a target transition system with N states and M
transitions

B Upper bound of model checking complexity
+ LTL-formula ¢ : O((N+M)-2/¢l)
+ CTL-formula ¢ : O((N+M)-|¢|)
+ CTL*-formula ¢ : O((N+M)-2/4l)

B Lower bound of model checking complexity

+ LTL-formula ¢ : PSpace-hard -> PSpace-complete
* Note that P C NP C PSpace C EXP C EXPSpace
+ CTL-formula ¢ : P-hard -> P-complete
+ CTL*-formula ¢ : PSpace-hard -> PSpace-complete

B For more details, “The Complexity of Temporal Logic
Model Checking” by Ph. Schnoebelen

+ Advances in Modal Logic, Volume 4, 1-44, 2002

KAIST
CS655 System liq

Modeling and
Analysis

GCTL Formulas in CWB-NC

B tt, ff : true, false
B {act list} is satisfied by an action a if a appears in act_list
B {- act_list} is satisfied by an action a if a is not included in
act_list
B ~pistrueifpis false
B Example
+ prop can_deadlock = E F ~{- }
+ prop recv_guarantee = A G ({send} -> F{'receive})

+ prop fair_recv_guarantee =
A ((GF{-1t})->(G{send}->F {‘receive}))

KAIST

CS655 System .
Mdlg and 16
nnnnn

Peterson’'s Mutua

proc Sys = (P1|P2|Flag_1_0|Flag_2_0|Turn1|NCRITO)
\{flag1_0,flag1_1.,flag2_0,flag2_1,turn1,turn2,test_flag1_0,test_flag1_1,t

est_flag2_O,test_flag2_1,test_turni,test_turn2,inc_cnt,dec_cnt}
proc P1 =flag1_1.turn1.P1'

proc P1' =test flag2 0.P1" + test_turn2.P1" + test_flag2_1.P1' +
test_turn1.P1’

proc P1" = inc_cnt.dec_cnt.flag1_0.P1
proc P2 = flag2_1.turn2.P2'

proc P2' =test flag1 0.P2" + test_turn1.P2" + test_flag1_1.P2' +
test_turn2.P2'

proc P2" = inc_cnt.dec_cnt.flag2_0.P2

proc UpdateF1 ='flag1_0.Flag_1_0 + 'flag1_1.Flag_1_1
proc Flag 1 0 ="'test_flag1_0.Flag_1_0 + UpdateF1
proc Flag_1_1 ="test flag1_1.Flag_1_1 + UpdateF1
proc UpdateF2 = 'flag2_0.Flag_2 0 + 'flag2_1.Flag_2_1
proc Flag 2 0 ="test_flag2_0.Flag_2 0 + UpdateF2
proc Flag_2 1 ="test flag2_1.Flag_2 1 + UpdateF2
proc UpdateT = "turn1.Turn1 + 'turn2.Turn2

proc Turn1 ="'test_turn1.Turn1 + UpdateT

proc Turn2 ='test_turn2.Turn2 + UpdateT

proc NCRITO ='inc_cnt.cnt_1.NCRIT1

proc NCRIT1 ='inc_cnt.cnt_2.NCRIT2 + 'dec_cnt.cnt_0.NCRITO
proc NCRIT2 ='dec_cnt.cnt_1.NCRIT1

— KAIST

CS655 System .

Modeling and
Analysis

Exclusion Protocol

* Verification through equivalence
* obseq, trace inclusion

proc Spec =cnt_1.cnt_0.Spec

* Verification through model checking
prop abl =
AG ({cnt_1} -> X ({t} W{cnt_0}))

prop ab2 =
AG ({cnt_0} > X ({t} W{cnt_1}))

prop ab3 =
A G ~{cnt_2}

prop REQ =abl Aab2 A\ ab3

17

