Temporal Logic - Branching-time logic

Moonzoo Kim CS Division of EECS Dept. KAIST

LTL vs. CTL

LTL implicitly quantifies universally over paths

- a state of a system satisfies an LTL formula if all paths from the given state satisfy it
- properties which use both universal and existential path quantifiers cannot in general be model checked using LTL.
 - property ϕ which use only universal path quantifiers can be checked using LTL by checking $\neg\phi$

Branching-time logic solve this limitation by quantifying paths explicitly

- There is a reachable state satisfying q: EF q
 - Note that we can check this property by checking LTL formula ϕ =G \neg q
 - If ϕ is true, the property is false. If ϕ is false, the property is true
- ♣ From all reachable states satisfying p, it is possible to maintain p continuously until reaching a state satisfying q: AG (p → E (p U q))
- ♣ Whenever a state satisfying p is reached, the system can exhibit q continuously forevermore: AG (p \rightarrow EG q)
- There is a reachable state from which all reachable states satisfy p: EF AG p

Syntax of Computation Tree Logic (CTL)

Modeling and Analysis

Semantics of CTL (1/2)

- Def 3.15 Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation $\mathcal{M}, s \vDash \phi$ is defined by structural induction on ϕ . We omit \mathcal{M} if context is clear.
 - \clubsuit $\mathcal{M}, s \vDash \top$ and $\mathcal{M}, s \nvDash \bot$

 - $\clubsuit \ \mathcal{M}, \mathsf{S} \vDash \phi_{_1} \to \phi_{_2} \text{ iff } \mathcal{M}, \mathsf{S} \nvDash \phi_{_1} \text{ or } \mathcal{M}, \mathsf{S} \vDash \phi_{_2}$
 - ↓ \mathcal{M} ,s \models AX ϕ iff for all s₁ s.t. s \rightarrow s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus AX says "in every next state"
 - ↓ \mathcal{M} ,s \models EX ϕ iff for some s₁ s.t. s \rightarrow s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus EX says "in some next state"
 - ↓ \mathcal{M} ,s \models AX ϕ iff for all s₁ s.t. s \rightarrow s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus AX says "in every next state"
- **↓** \mathcal{M} ,s \models EX ϕ iff for some s₁ s.t. s → s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus EX says "in some next state"

Semantics of CTL (2/2)

- Def 3.15 Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation \mathcal{M} ,s $\models \phi$ is defined by structural induction on ϕ . We omit \mathcal{M} if context is clear.
 - ↓ \mathcal{M} ,s \models AG ϕ iff for all paths s₁→s₂→s₃→... where s₁ equals s, and all s_i along the path, we have \mathcal{M} ,s_i $\models \phi$.
 - **↓** \mathcal{M} ,s ⊨ **E**G ϕ iff there is a path s₁→s₂→s₃→... where s₁ equals s, and all s_i along the path, we have \mathcal{M} ,s_i ⊨ ϕ .
 - **↓** \mathcal{M} ,s ⊨ AF ϕ iff for all paths s₁→s₂→s₃→... where s₁ equals s, and there is some s_i s.t. \mathcal{M} ,s_i ⊨ ϕ .
 - **↓** \mathcal{M} ,s ⊨ EF ϕ iff there is a path s₁→s₂→s₃→... where s₁ equals s, and there is some s_i s.t. \mathcal{M} ,s_i ⊨ ϕ .
 - ↓ \mathcal{M} ,s \models A [ϕ_1 U ϕ_2] iff for all paths s₁→s₂→s₃→... where s₁ equals s, that path satisfies ϕ_1 U ϕ_2
 - ↓ \mathcal{M} ,s ⊨ E [ϕ_1 U ϕ_2] iff there is a path s₁→s₂→s₃→... where s₁ equals s, that path satisfies ϕ_1 U ϕ_2

- $\blacksquare \mathcal{M}, s_0 \vDash \mathsf{AG} (p \lor q \lor r \to \mathsf{EF} \mathsf{EG} \mathsf{r})$
- *M*,s₀⊨ A [p U r]
- *M*,s₀⊨ E [(p ∧ q) U r]
- *M*,s₀⊨ AF r
- *M*,s₂⊨ EG r
- *M*,s₀⊨ ¬EF(p∧r)
- *M*,s₀⊨ ¬AX(q∧r)
- *M*,s₀⊨ EX (q∧r)
- $\blacksquare \mathcal{M}, s_0 \vDash p \land q, \mathcal{M}, s_0 \vDash \neg r, \mathcal{M}, s_0 \vDash$

p,q

Practical patterns of specification (1/2)

- It is possible to get to a state where started holds, but ready doesn't
 - ♣ EF (started ∧ ¬ready)
- For any state, if a request occurs, then it will eventually be acknowledged
 - 4 AG (requested \rightarrow AF acknowledged)
- A certain process is enabled infinitely often on every computation path
 - AG (AF enabled)
- Whatever happens, a certain process will eventually be permanently deadlocked
 - AF (AG deadlock)
- From any state it is possible to get to a restart state
 - AG (EF restart)

CS655 System Modeling and Analysis

- Mutual exclusion protocol
 - Non-blocking: a process can always request to enter its critical section
 - AG (n₁ \rightarrow EX t₁)
 - Note that this was not expressible in LTL
 - No strict sequencing: processes need not enter their critical section in strict sequence.
 - EF $(c_1 \land E [c_1 \cup (\neg c_1 \land E [\neg c_2 \cup c_1])])$

• This was also not expressible in LTL, though we expressed its negation.

8

Practical patterns of specification (2/2)

An upwards travelling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor:

↓ AG (floor2 ∧ directionup ∧ ButtonPressed5 → A [directionup U floor5])

- The property that if the process is enabled infinitely often, then it runs infinitely often, is not expressible in CTL

4 What about AG AF enabled \rightarrow AG AF running ?

Equivalence between CTL formulas

Def 3.16 Two CTL formulas \u03c6 and \u03c6 are said to be semantically equivalent if any state in any model which satisfies one of them also satisfies the other

 $\clubsuit \ \phi \equiv \psi$

$$\blacksquare \neg \mathsf{AF} \phi \equiv \mathsf{EG} \neg \phi$$

$$\neg \mathsf{EF} \phi \equiv \mathsf{AG} \neg \phi$$

$$\neg \mathsf{AX} \phi \equiv \mathsf{EX} \neg \phi$$

• AF $\phi \equiv A [T U \phi]$ • EF $\phi \equiv E [T U \phi]$

CTL is not more expressive than LTL

CTL cannot select a range of paths ♣ F G p in LTL is not equivalent to AF AG p • $\mathcal{M}, s_0 \vDash \mathsf{F} \mathsf{G} \mathsf{p}$ but $\mathcal{M}, s_0 \nvDash \mathsf{AF} \mathsf{AG} \mathsf{p}$ AF AG p is strictly stronger than F G p • AF EG p is strictly weaker than F G p Similarly, $F p \rightarrow F q$ is not equivalent to AF $p \rightarrow AF q$, neither to AG ($p \rightarrow AF q$) Remark = F X p = X F p in LTLAF AX p is not equivalent to AX AF p

Comparison between LTL and CTL

	LTL	CTL
Difficulty of specification	Intuitive and easier	Difficult and unintuitive
Model checking complexity	Exponential time	Polynomial time
Limitation	Cannot specify branching behavior	Cannot specify a range of paths
Main target area	Requirement property for software	Requirement property for hardware
Tools	FormalCheck, SPIN, Intel's Prover, NuSMV	NuSMV, VIS, CWB-NC

- CTL* combines the expressive powers of LTL and CTL
- Syntax of CTL*
 - **4** State formula $\phi ::= T | p | \neg \phi | \phi \land \phi | A [\alpha] | E[\alpha]$
 - **4** Path formula $\alpha ::= \phi \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \cup \alpha \mid \mathsf{G} \mid \alpha \mid \mathsf{F} \mid \alpha \mid \mathsf{X} \mid \alpha$
- LTL is a subset of CTL*
 - **4** LTL formula α is equivalent to A[α] in CTL*
- CTL is a subset of CTL*
 - **4** We restrict $\alpha ::= \phi \cup \phi \mid G \phi \mid F \phi \mid X \phi$
 - No boolean connectives in path formula
 - Not real limitation. See page 6
 - No nesting of the path modalities X,F, and G

Relationship between LTL,CTL, and CTL*

Complexity of Model Checking

- Let \mathcal{M} be a target transition system with N states and M transitions
- Upper bound of model checking complexity
 - **4** LTL-formula ϕ : $O((N+M)\cdot 2^{|\phi|})$
 - + CTL-formula ϕ : $O((N+M)\cdot|\phi|)$
- Lower bound of model checking complexity
 - **4** LTL-formula ϕ : PSpace-hard -> PSpace-complete
 - Note that $P \subseteq NP \subseteq PSpace \subseteq EXP \subseteq EXPSpace$
 - **4** CTL-formula ϕ : P-hard -> P-complete
 - **4** CTL*-formula ϕ : PSpace-hard -> PSpace-complete
- For more details, "The Complexity of Temporal Logic Model Checking" by Ph. Schnoebelen

4 Advances in Modal Logic, Volume 4, 1-44, 2002

GCTL Formulas in CWB-NC

- tt, ff : true, false
- {act_list} is satisfied by an action a if a appears in act_list
- {- act_list} is satisfied by an action a if a is not included in act_list
- p is true if p is false
- Example
 - # prop can_deadlock = E F ~{- }
 - # prop recv_guarantee = A G ({send} -> F{'receive})
 - prop fair_recv_guarantee =
 A ((G F {- t}) -> (G {send} -> F {'receive}))

Peterson's Mutual Exclusion Protocol

* Verification through equivalence * obseq, trace inclusion

proc Spec = cnt_1.cnt_0.Spec

* Verification through model checking
prop ab1 =
 A G ({cnt_1} -> X ({t} W {cnt_0}))

prop ab2 = A G ({cnt_0} -> X ({t} W {cnt_1}))

prop ab3 = A G ~{cnt_2}

prop REQ = $ab1 \wedge ab2 \wedge ab3$