
Temporal LogicTemporal Logic
BranchingBranching time logictime logic-- BranchingBranching--time logic time logic

Moonzoo Kim
CS Division of EECS Dept.

KAIST

CS655 System
Modeling and

Analysis 1

LTL vs. CTLLTL vs. CTL

LTL implicitly quantifies universally over paths
a state of a system satisfies an LTL formula if all paths from the given state
satisfy itsatisfy it
properties which use both universal and existential path quantifiers cannot in
general be model checked using LTL.

• property φ which use only universal path quantifiers can be checked using LTL by
checking ¬φ

Branching-time logic solve this limitation by quantifying paths explicitly
There is a reachable state satisfying q: EF q

• Note that we can check this property by checking LTL formula φ=G ¬q
– If φ is true, the property is false. If φ is false, the property is true

From all reachable states satisfying p, it is possible to maintain p
continuously until reaching a state satisfying q: AG (p → E (p U q))continuously until reaching a state satisfying q: AG (p → E (p U q))
Whenever a state satisfying p is reached, the system can exhibit q
continuously forevermore: AG (p → EG q)
There is a reachable state from which all reachable states satisfy p: EF AG p

CS655 System
Modeling and

Analysis

There is a reachable state from which all reachable states satisfy p: EF AG p

2

Syntax of Computation Tree Logic (CTL)Syntax of Computation Tree Logic (CTL)

Def 3.12 φ = ⊥ | > | p | ¬ φ | φ Æ φ | φ Ç φ | φ→ φ |AX φ
| EX φ | AF φ | EF φ | AG φ | EG φ | A (φ U φ) | E (φ U φ)

A: along all paths
E: along at least one path

P dPrecedence
AG, EG, AF, EF,AX, EX, Æ, Ç, →, AU, EU

Note that the following formulas are not well-formed CTL
formulasformulas

EF G r
A ¬G ¬ p
F (r U q)F (r U q)
EF (r U q)
AEF r
A ((r U q) Æ (p U r))

CS655 System
Modeling and

Analysis

(() ())

3

A [(AX ¬p) U (E [(EX pÆq) U ¬p)]]

Semantics of CTL (1/2)Semantics of CTL (1/2)
Def 3 15 Let M (S L) be a model for CTL s in S φ a CTLDef 3.15 Let M = (S, →, L) be a model for CTL, s in S, φ a CTL
formula. The relation M,s ² φ is defined by structural induction on φ.
We omit M if context is clear.

M s ² > and M s 2 ⊥M,s ² > and M,s 2 ⊥
M,s ² p iff p ∈ L(s)
M,s ² ¬ φ iff M,s 2 φ

M ² φ φ iff M ² φ d M ² φM,s ² φ1 Æ φ2 iff M,s ² φ1 and M,s ² φ2

M,s ² φ1 Ç φ2 iff M,s ² φ1 or M,s ² φ2

M,s ² φ1 → φ2 iff M,s 2 φ1 or M,s ² φ2

M,s ² AX φ iff for all s1 s.t. s → s1 we have M, s1 ² φ. Thus AX says
“in every next state”
M,s ² EX φ iff for some s1 s.t. s → s1 we have M, s1 ² φ. Thus EX

“i t t t ”says “in some next state”
M,s ² AX φ iff for all s1 s.t. s → s1 we have M, s1 ² φ. Thus AX says
“in every next state”
M s ² EX φ iff for some s s t s → s we have M s ² φ Thus EX

CS655 System
Modeling and

Analysis

M,s ² EX φ iff for some s1 s.t. s → s1 we have M, s1 ² φ. Thus EX
says “in some next state”

4

Semantics of CTL (2/2)Semantics of CTL (2/2)

Def 3.15 Let M = (S, →, L) be a model for CTL, s in S, φ
a CTL formula. The relation M,s ² φ is defined by
t t l i d ti φ W it M if t t i lstructural induction on φ. We omit M if context is clear.

M,s ² AG φ iff for all paths s1→s2→s3→... where s1 equals s,
and all si along the path, we have M,si ² φ.
M ² EG φ iff th i th h lM,s ² EG φ iff there is a path s1→s2→s3→... where s1 equals s,
and all si along the path, we have M,si ² φ.
M,s ² AF φ iff for all paths s1→s2→s3→... where s1 equals s,
and there is some s s t M s ² φand there is some si s.t. M,si ² φ.
M,s ² EF φ iff there is a path s1→s2→s3→... where s1 equals s,
and there is some si s.t. M,si ² φ.
M s ² A [φ U φ] iff for all paths s →s →s → where s equalsM,s ² A [φ1 U φ2] iff for all paths s1→s2→s3→... where s1 equals
s, that path satisfies φ1 U φ2

M,s ² E [φ1 U φ2] iff there is a path s1→s2→s3→... where s1
equals s, that path satisfies φ1 U φ2

CS655 System
Modeling and

Analysis

equals s, that path satisfies φ1 U φ2

5

Example (1/2)Example (1/2)EF φ

EG φEG φ

AG φ
AF φ

AG φ

CS655 System
Modeling and

Analysis 6

Example (2/2)Example (2/2)

M,s0²pÆq, M,s0²¬r, M,s0²>

M,s0² EX (qÆr)
M,s0² ¬AX(qÆr)
M,s0² ¬EF(pÆr)
M,s2² EG r
M,s0² AF r
M,s0² E [(p Æ q) U r]
M,s0² A [p U r]
M,s0² AG (p Ç q Ç r → EF EG r)

CS655 System
Modeling and

Analysis 7

Practical patterns of specification (1/2)Practical patterns of specification (1/2)
It is possible to get to a state where started holds, but ready doesn’t

EF (started Æ ¬ready)
For any state, if a request occurs, then it will eventually be acknowledged

AG (t d → AF k l d d)AG (requested → AF acknowledged)
A certain process is enabled infinitely often on every computation path

AG (AF enabled)
Whatever happens, a certain process will eventually be permanentlyWhatever happens, a certain process will eventually be permanently
deadlocked

AF (AG deadlock)
From any state it is possible to get to a restart state

AG (EF)AG (EF restart)
Mutual exclusion protocol

Non-blocking: a process can always request to
enter its critical sectionenter its critical section

• AG (n1 → EX t1)
• Note that this was not expressible in LTL

No strict sequencing: processes need not enter
their critical section in strict sequence

CS655 System
Modeling and

Analysis

8

their critical section in strict sequence.
• EF (c1 Æ E [c1 U (¬c1 Æ E[¬c2 U c1])])
• This was also not expressible in LTL, though we expressed its negation.

Practical patterns of specification (2/2)Practical patterns of specification (2/2)

An upwards travelling lift at the second floor does not change
its direction when it has passengers wishing to go to the fifthits direction when it has passengers wishing to go to the fifth
floor:

AG (floor2 Æ directionup Æ ButtonPressed5 → A [directionup U floor5])
The lift can remain idle on the third floor with its dorrs closed

AG (floor3 Æ idle Æ doorclosed → EG (floor3 Æ idle Æ doorclosed))
The property that if the process is enabled infinitely often thenThe property that if the process is enabled infinitely often, then
it runs infinitely often, is not expressible in CTL

What about AG AF enabled → AG AF running ?

er

CS655 System
Modeling and

Analysis

9

Equivalence between CTL formulasEquivalence between CTL formulas

Def 3.16 Two CTL formulas φ and ψ are said to be
semantically equivalent if any state in any model whichsemantically equivalent if any state in any model which
satisfies one of them also satisfies the other

φ ≡ ψφ ψ

¬ AF φ ≡ EG ¬φ

¬ EF φ ≡ AG ¬ φφ φ

¬ AX φ ≡ EX ¬ φ

AF φ ≡ A [T U φ]φ [φ]
EF φ ≡ E [T U φ]

CS655 System
Modeling and

Analysis

10

CTL is CTL is notnot more expressive than LTL more expressive than LTL

CTL cannot select a range of paths
M

F G p in LTL is not equivalent to AF AG p
• M,s0² F G p but M,s0 2 AF AG p
• AF AG p is strictly stronger than F G p

p ¬p p
s0

AF AG p is strictly stronger than F G p
• AF EG p is strictly weaker than F G p

Similarly, F p → F q is not equivalent to
p

¬ppAF p → AF q, neither to AG (p → AF q)
Remark

¬p
p

p
¬p

p¬p

p

p

p
F X p ≡ X F p in LTL
AF AX p is not equivalent to AX AF p

pp
p

¬p
p

p
¬p

p

p

CS655 System
Modeling and

Analysis

11

pp
p

Comparison between LTL and CTLComparison between LTL and CTL

LTLLTL CTLCTLLTLLTL CTLCTL

Difficulty of Difficulty of
specificationspecification

Intuitive and easierIntuitive and easier Difficult andDifficult and unintuitiveunintuitive
specificationspecification
Model checking Model checking
complexitycomplexity

Exponential timeExponential time Polynomial timePolynomial time

Li it tiLi it ti C t if b hiC t if b hi C t if fC t if fLimitationLimitation Cannot specify branching Cannot specify branching
behavior behavior

Cannot specify a range of Cannot specify a range of
pathspaths

Main target areaMain target area Requirement property for Requirement property for
ftft

Requirement property for Requirement property for
h dh dsoftwaresoftware hardwarehardware

ToolsTools FormalCheck, SPIN, FormalCheck, SPIN,
Intel’s Prover, NuSMVIntel’s Prover, NuSMV

NuSMVNuSMV, VIS, CWB, VIS, CWB--NCNC

CS655 System
Modeling and

Analysis

12

CTL* CTL*

CTL* combines the expressive powers of LTL and CTL
Syntax of CTL*

State formula φ ::= T | p | ¬ φ | φ Æ φ | A [α] | E[α]
Path formula α ::= φ | ¬ α | α Æ α | α U α | G α | F α | X α

LTL is a subset of CTL*LTL is a subset of CTL
LTL formula α is equivalent to A[α] in CTL*

CTL is a subset of CTL*
We restrict α ::= φ U φ | G φ | F φ | X φ

• No boolean connectives in path formula
– Not real limitation. See page 6ot ea tat o See page 6

• No nesting of the path modalities X,F, and G

CS655 System
Modeling and

Analysis

13

Relationship between LTL,CTL, and CTL*Relationship between LTL,CTL, and CTL*

CTL*CTL

CTL LTL

ψ1 ψ2 ψ3 ψ4
ψ2 ψ3 ψ4

CS655 System
Modeling and

Analysis

14

Complexity of Model CheckingComplexity of Model Checking

Let M be a target transition system with N states and M
transitions
Upper bound of model checking complexityUpper bound of model checking complexity

LTL-formula φ : O((N+M)·2|φ|)
CTL-formula φ : O((N+M)·|φ|)
CTL*-formula φ : O((N+M)·2|φ|)

Lower bound of model checking complexity
LTL-formula φ : PSpace-hard -> PSpace-completeLTL formula φ : PSpace hard PSpace complete

• Note that P ⊆ NP ⊆ PSpace ⊆ EXP ⊆ EXPSpace
CTL-formula φ : P-hard -> P-complete
CTL*-formula φ : PSpace-hard -> PSpace-completeCTL formula φ : PSpace hard PSpace complete

For more details, “The Complexity of Temporal Logic
Model Checking” by Ph. Schnoebelen

Advances in Modal Logic Volume 4 1 44 2002

CS655 System
Modeling and

Analysis

Advances in Modal Logic, Volume 4, 1-44, 2002

GCTL Formulas in CWBGCTL Formulas in CWB--NCNC

tt, ff : true, false
{act_list} is satisfied by an action a if a appears in act_list
{- act_list} is satisfied by an action a if a is not included in
act_list
~ p is true if p is false
Example

prop can_deadlock = E F ~{- }
prop recv_guarantee = A G ({send} -> F{‘receive})
prop fair recv guarantee =prop fair_recv_guarantee =
A ((G F {- t}) -> (G {send} -> F {‘receive}))

CS655 System
Modeling and

Analysis 16

Peterson’s Mutual Exclusion ProtocolPeterson’s Mutual Exclusion Protocol
proc Sys = (P1|P2|Flag_1_0|Flag_2_0|Turn1|NCRIT0)
\{flag1 0 flag1 1 flag2 0 flag2 1 turn1 turn2 test flag1 0 test flag1 1 t\{flag1_0,flag1_1,flag2_0,flag2_1,turn1,turn2,test_flag1_0,test_flag1_1,t

est_flag2_0,test_flag2_1,test_turn1,test_turn2,inc_cnt,dec_cnt}
proc P1 = flag1_1.turn1.P1'
proc P1' = test_flag2_0.P1'' + test_turn2.P1'' + test_flag2_1.P1' +

test_turn1.P1'

* Verification through equivalence
* obseq, trace inclusion

S Sproc P1'' = inc_cnt.dec_cnt.flag1_0.P1
proc P2 = flag2_1.turn2.P2'
proc P2' = test_flag1_0.P2'' + test_turn1.P2'' + test_flag1_1.P2' +

test_turn2.P2'

proc Spec = cnt_1.cnt_0.Spec

proc P2'' = inc_cnt.dec_cnt.flag2_0.P2
proc UpdateF1 = 'flag1_0.Flag_1_0 + 'flag1_1.Flag_1_1
proc Flag_1_0 = 'test_flag1_0.Flag_1_0 + UpdateF1
proc Flag_1_1 = 'test_flag1_1.Flag_1_1 + UpdateF1

* Verification through model checking
prop ab1 =

proc UpdateF2 = 'flag2_0.Flag_2_0 + 'flag2_1.Flag_2_1
proc Flag_2_0 = 'test_flag2_0.Flag_2_0 + UpdateF2
proc Flag_2_1 = 'test_flag2_1.Flag_2_1 + UpdateF2
proc UpdateT = 'turn1.Turn1 + 'turn2.Turn2

A G ({cnt_1} -> X ({t} W {cnt_0}))

prop ab2 =
A G ({cnt_0} -> X ({t} W {cnt_1}))

proc Turn1 = 'test_turn1.Turn1 + UpdateT
proc Turn2 = 'test_turn2.Turn2 + UpdateT
proc NCRIT0 = 'inc_cnt.cnt_1.NCRIT1
proc NCRIT1 = 'inc_cnt.cnt_2.NCRIT2 + 'dec_cnt.cnt_0.NCRIT0

prop ab3 =
A G ~{cnt_2}

prop REQ = ab1 /\ ab2 /\ ab3

CS655 System
Modeling and

Analysis

proc NCRIT2 = 'dec_cnt.cnt_1.NCRIT1

17

