
Equivalence HierarchyEquivalence Hierarchy

Moonzoo Kim
CS Dept. KAIST

Korea Advanced Institute of
Science and Technology

Copyright © 2008 CS655
System Modeling and Analysis

OutlineOutline

Equivalence semantics and SW design
PreliminaryPreliminary
Hierarchy Diagram
Trace-based Semantics

Trace EQTrace EQ
Complete Trace EQ
Failure EQFailure EQ

Branching-based Semantics
Simulation EQ
Bisimulation EQ

CS655 System
Modeling and

Analysis

Equivalence Preserving Refinement and SW DesignEquivalence Preserving Refinement and SW Design

Design can start with a very abstract
specification representing the requirementsspecification, representing the requirements
Then, using equivalence-preserving
transformations this specification can betransformations, this specification can be
gradually refined into an implementation-
oriented specificationoriented specification.
Maintenance may require to replace some

t ith th hil i t i i thcomponents with others, while maintaining the
same system behavior (congruence property)

CS655 System
Modeling and

Analysis

Semantic MappingSemantic Mapping

An example of small language
SyntaxSyntax

• F := 0 | 1 | F + 1 | 1 + F
• Ex 0 0+1+1 1+0+1 but not 0+0Ex. 0, 0+1+1, 1+0+1, but not 0+0

Possible semantics
• 1 + 1 == 1 + 1 + 0 ?• 1 + 1 == 1 + 1 + 0 ?

– Yes (interpreting formula as a natural #),
• [1 + 1] N1 = 2 [1 + 1 + 0]N1 =2 1 + 1 =N1 1 + 1 + 0[1 1] N1 2, [1 1 0]N1 2 1 1 N1 1 1 0

– No (interpreting formula as string),
• [1+1] S=“1+1”,[1+1+0]S=“1+1+0” 1+1 !=S 1+1+0

– No (interpreting formula as a natural # of string length)
• [1 + 1] N2 = 3, [1 + 1 + 0]N2 =5 1 + 1 !=N2 1 + 1 + 0

CS655 System
Modeling and

Analysis

Semantic Mapping (cont.)Semantic Mapping (cont.)

Syntactic representation
of systems

1

Language Domain
y

sm1
sm2 sm3 sm4 sm5 sm6

Graph TermPetriNetNatural # Graph
domain

Term
domain

PetriNet
domain

Natural #
domain

Mathematical Domain

CS655 System
Modeling and

Analysis

Relation between (Equivalence) SemanticsRelation between (Equivalence) Semantics

Syntactic representation
of systems

0+1
1+2

0+1
1+2

1+1
2+2

sm1 sm2 =EO =NA

domain odd
1domain odd
3

even

0+1=EO1+2
1+1=EO2+2

0+1!=NA1+2

P =NA Q -> P =EO Q but not vice versa
Therefore, =EO < =NA

CS655 System
Modeling and

Analysis

Therefore, EO NA

bisimulation

l t

failuresimulation

complete
trace

CS655 System
Modeling and

Analysis

trace

Labeled Transition SystemLabeled Transition System

Process Theory
A process represents behavior of a system
Two main activities of process theory are modeling and verificationTwo main activities of process theory are modeling and verification

• The semantics of equalities is required to verify system
• Determine which semantics is suitable for which applications

Labeled Transition System (LTS)
Act: a set of actions which process performs
LTS (P)LTS: (P,→)

• Where P is a set of processes and →⊆ P x Act x P
In this presentation, we deal with only finitely branching, concrete,
seq ential processessequential processes

Useful notations
Equivalence notation for each semantics

• =T, =CT, =F, =R, =FT, =RT,=S,=RS,=B
• I(p) is {a ∈Act | ∃q. p -a->q}

CS655 System
Modeling and

Analysis

Trace v.s. Complete TraceTrace v.s. Complete Trace

Trace semantics (T)
σ∈ Act* is a trace of a process p if there is a process q s.t. p -
σ-> p
T(p) is a set of traces of a process p
p =T q iff T(p) = T(q)p T q iff T(p) T(q)

Complete trace semantics (CT)
σ∈ Act* is a complete trace of a process p if there is a process
q s.t. p -σ-> q and I(q) = ∅
CT(p) is a set of complete traces of a process p qp(p) p p p
p =CT q iff T(p) = T(q) and CT(p) = CT(q)
Note that CT(p) = CT(q) does not imply T(p) = T(q) a

q

a

p

b

=T < =CT
p =CT q implies p =T q, but not vice versa

c

CS655 System
Modeling and

Analysis

p CT q implies p T q, but not vice versa

Counter Example 1Counter Example 1

p qp q

coin coin coin

cola cola

p = q p ≠CT qp =T q
T(p) = {coin.cola, coin}
T(q) = {coin cola coin}

p ≠CT q
CT(p) = {coin.cola}
CT(q) = {coin cola coin}T(q) = {coin.cola, coin} CT(q) = {coin.cola, coin}

CS655 System
Modeling and

Analysis

Failure SemanticsFailure Semantics

Failure Semantics (F)
<σ X>∈ Act* x Π(Act) is a failure pair of p if∃q s t p<σ,X> ∈ Act x Π(Act) is a failure pair of p if ∃q s.t. p
–σ-> q and I(q) ∩ X =∅
F(p) is a set of failure pairs of pF(p) is a set of failure pairs of p
p =F q iff F(p) = F(q)

=CT < =F
i lip =F q implies p =CT q

• σ∈ CT(p) iff <σ,Act> ∈ F(p)
• σ∈ T(p) iff <σ X>∈ F(p) for some X s t X ∩ I(q) =∅Whereσ∈ T(p) iff <σ,X> ∈ F(p) for some X s.t. X ∩ I(q) =∅Where

p–σ-> q

not vice versa

CS655 System
Modeling and

Analysis

Counter Example 2Counter Example 2

p qp q

coin coincoin coin

cola Juice colacola juice

p =CT q
CT(p)={coin.cola, coin.juice}

p ≠F q
{<coin,{coin,cola}>} ∈ F(p)(p) { , j }

CT(q)={coin.cola, coin.juice} {<coin,{coin,cola}>} ∈ F(q)

CS655 System
Modeling and

Analysis

Simulation SemanticsSimulation Semantics

The set Fs of simulation formulas over Act is
defined inductively by

True ∈ Fs
If Φ,Ψ ∈ Fs then Φ∧Ψ ∈ Fs
If Φ F d A t th Φ FIf Φ ∈ Fs and a∈ Act, then a.Φ ∈ Fs

The satisfaction relation ╞ ⊆P x Fs is defined ╞ s
inductively by

p╞ True for all p ∈P
╞ Φ∧Ψ if ╞ Φ d ╞ Ψp╞ Φ∧Ψ if p╞ Φ and p╞ Ψ

p╞ a.Φ if for some q∈P: p –a->q and q ╞ Φ

p =S q iff S(p) = S(q) where S(p)={Φ∈Fs|p╞ Φ}

CS655 System
Modeling and

Analysis

==T T < =< =SS

=T < =S
p =S q implies p =T

p q

ii ip S q implies p T
q

• =T < =S by σ∈ T(p)

coin

l J i

coin coin

l j iT S by σ T(p)
iff σ.True ∈ S(p)

not vice versa

cola Juicecola juice

p ≠S q
S(p)= {True coin True coin cola True coin juice TrueS(p) {True, coin.True, coin.cola.True, coin.juice.True, …,

coin.cola.True ∧ coin.juice.True}
S(q) = {True, coin.True, coin.cola.True, coin.cola.True, …,

coin.cola.True ∧ coin.juice.True,
coin.(cola.True∧juice.True) }

CS655 System
Modeling and

Analysis

Simulation v.s. BisimulationSimulation v.s. Bisimulation

A simulation is a binary relation R on processes
satisfying for a ∈ Act

If pRq and p-a->p’ , then ∃q’:q-a->q’ and p’Rq’

iff th i t i l ti l ti R dp =S q iff there exist simulation relations R1 and
R2 such that pR1q and qR2p

A bisimulation is a binary relation R on
processes satisfying for a∈ Actprocesses satisfying for a ∈ Act

If pRq and p-a->p’ , then ∃q’:q-a->q’ and p’Rq’
If pRq and q-a->q’ , then ∃p’:p-a->p’ and p’Rq’

P =B q if there exists a bisimulation R with pRq

CS655 System
Modeling and

Analysis

Counter Example 3Counter Example 3Counter Example 3Counter Example 3

p qp q

coin coin coin coin
coin

p =B q

p = q
cola cola

cola

p =s q

p q

coincoin coin
p ≠ B q

p = q
cola Juicecola juiceJuice

p =s q

CS655 System
Modeling and

Analysis

