
Model CheckingModel CheckingModel Checking Model Checking
--NuSMVNuSMV

Moonzoo Kim
CS Division of EECS DeptCS Division of EECS Dept.

KAIST

CS655 System
Modeling and

Analysis 1

Verification Frameworks for Various Abstraction LevelVerification Frameworks for Various Abstraction Level

H i t lFeature interaction

Comp1

Horizontal
Integration

Feature interaction
verification

Comp2 Comp3AbstractAbstract CCS Comp1 Comp2 Comp3Abstract Abstract
modelmodel

CCS

Ca1 Cb1

Refinement
validity

ifi ti

NuSMV

Vertical

Ca1 ‘ Cb1 ‘

Cc1 ‘

verification
Spin

Vertical
Refinement

Detailed Detailed
ImplemeImpleme
ntation ntation Ca1 ‘ Cb1 ‘

CS655 System
Modeling and

Analysis 2

Cc1 ‘Cc1 ‘
CBMC

Mutual exclusion exampleMutual exclusion example

When concurrent processes share a resource, it may be
necessary to ensure that they do not have access to the
common resource at the same timecommon resource at the same time

We need to build a protocol which allows only one process to
enter critical section

Requirement propertiesRequirement properties
Safety:

• Only one process is in its critical section at anytime
LiLiveness:

• Whenever any process requests to enter its critical section, it will
eventually be permitted to do so

Non blocking:Non-blocking:
• A process can always request to enter its critical section

No strict sequencing:
• processes need not enter their critical section in strict sequence

CS655 System
Modeling and

Analysis

• processes need not enter their critical section in strict sequence

3

11stst model model
W d l tWe model two processes

each of which is in
• non-critical state (n) or()
• trying to enter its critical state

(t) or
• critical section (c)()

No self edges
each process executes like
n→ t → c → n →n→ t → c → n → …

but the two processes
interleave with each other

• only one of the two
processes can make a
transition at a time
(asynchronous interleaving)

CS655 System
Modeling and

Analysis

(asynchronous interleaving)

4

11stst model for mutual exclusionmodel for mutual exclusion

Safety: s0 ² G ¬ (c1 Æ c2)
Liveness s0 2 G(t1 → F c1)

see s0→s1→s3→s7→s1→s3 →s7…see s0→s1→s3→s7→s1→s3 →s7…
Non-blocking

for every state satisfying ni,
there is a successor satisfying tiy g i

• s0 satisfies this property
We cannot express this property
in LTL but in CTL

• Note that LTL specifies that φ is satisfied for all paths
No strict ordering

there is a path where c1 and c2 do not occur in strict order
C l t f thi iComplement of this is

• G(c1 → c1 W (¬c1 Æ ¬c1 W c2))
• anytime we get into a c1 state, either that condition persists indefinitely, or it ends

with a non-c1 state and in that case there is no further c1 state unless and until we

CS655 System
Modeling and

Analysis

1 1
obtain a c2 state

5

2nd model for mutual exclusion2nd model for mutual exclusion
All 4 properties are satisfiedAll 4 properties are satisfied

Safety
LiLiveness
Non-blocking
No strict sequencing

CS655 System
Modeling and

Analysis 6

NuSMV model checkerNuSMV model checker

NuSMV programs consist of one or more modules.
one of the modules must be called main

Modules can declare variables and assign to them.
Assignments usually give the initial value of a variable x
(i i ()) d i l (()) i i(init(x)) and its next value (next(x)) as an expression in
terms of the current values of variables.

this expression can be non deterministicthis expression can be non-deterministic
• denoted by several expressions in braces, or no assignment at all

CS655 System
Modeling and

Analysis 7

ExampleExample

request is under-specified, i.e.,
not controlled by the program

request is determined (randomly)

MODULE mainMODULE main
VARVAR

request is determined (randomly)
by external environment
thus, whole program works non-

requestrequest: : booleanboolean;;
status: {status: {ready,busyready,busy};};

ASSIGNASSIGN deterministically

Case statement is evaluated
top to bottom

ASSIGNASSIGN
init(status) := ready;init(status) := ready;
next(status) := casenext(status) := case top-to-bottom()()

request : busy;request : busy;
1: {1: {ready,busyready,busy};};
esacesac;;

LTLSPECLTLSPEC
G(requestG(request --> F status=busy)> F status=busy)

CS655 System
Modeling and

Analysis 8

G(request G(request --> F status=busy)> F status=busy)

Modules in NuSMVModules in NuSMV

A module is instantiated when a variable
having that module name as its type is
declared.
A 3 bit counter increases from 000 to 111
repeatedlyrepeatedly

Req. property
• infinitely setting carry-out of most significant

bit as 1
By default, modules in NuSMV are
composed synchronously

there is a global clock and, each time it ticks,
each of the modules executes in paralleleach of the modules executes in parallel
By use of the ‘process’ keyword, it is
possible to compose the modules
asynchronously

CS655 System
Modeling and

Analysis 9

NuSMVNuSMV specification of the 1specification of the 1stst mutual exclusion (1/2)mutual exclusion (1/2)
MODULE main
VARVAR

state : {nn,tn,cn,tt,ct,nt,nc,tc,cc} ;
ASSIGN

init(state) := nn;
t(t t)next(state) :=

case
(state=nn) : {tn, nt};
(state=tn) : {cn,tt};
(t t) { t}(state=cn) : {nn,ct};
(state=tt) : {ct,tc};
(state=ct) : nt;
(state=nt) : {tt,nc};
(t t) { t }(state=nc) : {nn,tc};
(state=tc) : tn;

1 : state;
esac;
f t-- safety

LTLSPEC G !(state=cc)
-- liveness
LTLSPEC G ((state=tn|state=tt|state=tc) -> F (state=cn|state=ct|state=cc))

CS655 System
Modeling and

Analysis

10

NuSMVNuSMV specification of the 1specification of the 1stst mutual exclusion (2/2)mutual exclusion (2/2)

Wh t if th 3 ?What if there are 3 processes?
We need a more realistic
compositional model

Does this way of modeling
reflect real implementation?

There might be no globalThere might be no global
scheduler, which allows only 1
process to execute 1 step only.
For soft are processFor software process,
asynchronous interleaving is
more realistic

CS655 System
Modeling and

Analysis

11

Revised mutual exclusion model in Revised mutual exclusion model in NuSMVNuSMV (1/2)(1/2)

This code consists of two modules,
main and prc

main
• turn determines whose turn it is to

enter the critical section if both are
trying to entery g

prc
• st: the status of a process
• other-st: the status of the other

FAIRNESS φ restrict search tree to
execution paths along which φ is
infinitely often true

i.e., limit the search space
FAIRNESS running enforces that
the process should execute infinitely
ft

CS655 System
Modeling and

Analysis

12

often

Revised mutual exclusion model in NuSMV (2/2)Revised mutual exclusion model in NuSMV (2/2)

FAIRNESS !(st=c)
This prevents a process from
staying at critical section forever

• this prevents to detects silly
violation of liveness property
d t h it tidue to such situation

FAIRNESS running
This prevents a process from p p
executing all the time

• this prevents to detects silly
violation of liveness property
due to such situation

CS655 System
Modeling and

Analysis

13

Transition systemTransition system

CS655 System
Modeling and

Analysis

14

