Model Checking
-NuSMV

Moonzoo Kim
CS Division of EECS Dept.
KAIST

KAIST

CS655 System
Modeling and
Analysis

Verification Frameworks for Various Abstraction Level

~
<::::::::> Compl <:f§/ComE;\ZEi> Comp3

‘ Cai o] Cous \

......... g Refinement
ol D validity

Ll verification
bl

A e |

.....

KAIST

(1
CS655 System
Modeling and 2
Analysis

Mutual exclusion example

B When concurrent processes share a resource, it may be
necessary to ensure that they do not have access to the
common resource at the same time

+ We need to build a protocol which allows only one process to
enter critical section

B Requirement properties
+ Safety:

* Only one process is in its critical section at anytime
+ Liveness:

* Whenever any process requests to enter its critical section, it will
eventually be permitted to do so

+ Non-blocking:

» A process can always request to enter its critical section
4+ No strict sequencing:
» processes need not enter their critical section in strict sequence
KAIST

CS655 System .
Modeling and 3
Analysis

1st model

B We model two processes

4+ each of whichis in
* non-critical state (n) or

 trying to enter its critical state S0 @
(t) or

e critical section (c) i
+ No self edges 0
B each process executes like ,,

n—-t—Cc—-n— ... @

+ but the two processes ,
interleave with each other @

» only one of the two
processes can make a
transition at a time
(asynchronous interleaving)

AYe
) O

t1€2

KAIST

CS655 System
Modeling and 4
Analysis

1st model for mutual exclusion

Safety: s, = G - (c; A C)) @
Liveness s, G(t; — F c,)
+ See S;—S;—+S;—S,—S;—S; =S,)

by}
Non-blocking @ ”‘fz

+ for every state satisfying n,, 5 S
there is a successor satisfying t; @ o @
* S, satisfies this property
+ We cannot express this property o 54 87
in LTL butin CTL @ tie
* Note that LTL specifies that ¢ is satisfied for all paths

No strict ordering
+ there is a path where ¢, and c, do not occur in strict order
+ Complement of this is
* G(c, = ¢y W(—C; A =€, W Gy))
« anytime we get into a c, state, either that condition persists indefinitely, or it ends

with a non-c, state and in that case there is no further c, state unless and until we
obtain a ¢, state

CS655 System .
Modeling and 5
Analysis

2nd model for mutual exclusion
B All 4 properties are satisfied

+ Safety

+Liveness

+Non-blocking , \ o
+ No strict sequencing

; \\\ $5
, /.

V@D
'

CS655 System .,
Modeling and 6
Analysis

NuSMV model checker

E NuSMYV programs consist of one or more modules.
+ one of the modules must be called main

E Modules can declare variables and assign to them.

B Assignments usually give the initial value of a variable x
(init(x)) and its next value (next(x)) as an expression in
terms of the current values of variables.

+ this expression can be non-deterministic
» denoted by several expressions in braces, or no assignment at all

KAIST

CS655 System .
Modeling and 7

Analysis

Example

B request is under-specified, i.e.,
not controlled by the program

#+ request is determined (randomly)
by external environment

+ thus, whole program works non-
deterministically
B Case statement is evaluated
top-to-bottom

MODULE main
VAR
request: boolean;
status: {ready,busy};
ASSIGN
init(status) := ready;
next(status) := case
request : busy;
1: {ready,busy};
esac;
LTLSPEC
G(request -> F status=busy)
KAIST

CS655 System .,
Modeling and
Analysis

Modules in NuSMV

E A module is instantiated when a variable

. : . MODULE main
having that module name as its type is

VAR
declared. bit0 : counter_cell(1l);
B A 3 bit counter increases from 000 to 111 bitl : counter_cell(bit0.carry_out);
repeatedly bit2 : counter_cell(hitl.carry_out);
SPEC

+ Req. property

o . o G F bit2.carry_out
* infinitely setting carry-out of most significant

bit as 1 _ MODULE counter_cell(carry_in)
B By default, modules in NUSMV are VAR
composed synchronously value : boolean;

4 there is a global clock and, each time it ticks, =~ ASSIGN

each of the modules executes in parallel mlti“aluei i= ‘;i)
. , . next(value) := (value + carry_in) mod 2;

+ By use of the ‘process’ keyword, it is e
possible to compose the modules N .
asynchronously carry_out := value & carry_in;

KAIST

CS655 System .,
Modeling and 9
Analysis

NuSMV specification of the 15t mutual exclusion (1/2)

MODULE main
VAR
state : {nn,tn,cn,tt,ct,nt,nc,tc,cc} ;
ASSIGN
init(state) := nn;
next(state) :=
case
(state=nn) : {tn, nt},
(state=tn) : {cn,tt},
(state=cn) : {nn,ct};
(state=tt) : {ct,tc};
(state=ct) : nt;
(state=nt) : {tt,nc},
(state=nc) : {nn,tc};
(state=tc) :tn;

1 : state;
esac;
-- safety
LTLSPEC G !(state=cc)
-- liveness

LTLSPEC G ((state=tn|state=tt|state=tc) -> F (state=cn|state=ct|state=cc))

KAIST 10

CS655 System
Modeling and
Analysis

NuSMYV specification of the 15t mutual exclusion (2/2)

E What if there are 3 processes?

+ \We need a more realistic
compositional model

E Does this way of modeling
reflect real implementation? % (nymy

+ There might be no global
scheduler, which allows only 1
process to execute 1 step only.

+ For software process,
asynchronous interleaving is 0 (e,
more realistic
\Q(Z
KAIST

S

11
CS655 System .
MdI g and
nnnnn

Revised mutual exclusion model in NuSMV g1/22

MODULE main

E This code consists of two modules, VAR _
_ prl: process prcipr2.st, turn, 0);
mailn and prC pr2: process prciprl.st, turn, 1};
_ turn: boolean;
+ Maln ASSIGN
. L init({turn) := 0;
e turn determines whose turnitis to -~ safety
enter the critical section if both are R T e
trying to enter SPEC G((prl.st = t) -» F (prl.st = c))
* prc SPEC G((pr2.st = t) -= F (prd.st = c))
e st: the status of a process MODULE prci{other-st, turn, myturn)
= other-st: the status of the other VAR L (n, t, &}
. ASSIGN
BE FAIRNESS ¢ restrict search tree to init(st) := n
. . . t{st) :=
execution paths along which ¢ is P ane
. . . { = | - {tr :’F
infinitely often true (8t = £} & (other-st = n) .
. . . (st = t) & {other-st = t}) & {(turn = myturn): c:
+ I.e., limit the search space (st = c) : {c,n);
- 1 : st;
+ FAIRNESS running enforces that esac;
the process should execute infinitely mextllurn) i=
Often '1:1.11'1"; = myturn & st = C :ﬁ?;l-“
KAIST o

FAIRNESS running
FAIRNESS l{st = ¢}

CS655 System .,
Modeling and
Analysis

Revised mutual exclusion model in NuSMV (2/2)

B FAIRNESS ! (st=cC)

4+ This prevents a process from
staying at critical section forever
 this prevents to detects silly

violation of liveness property
due to such situation

E FAIRNESS running
4+ This prevents a process from
executing all the time

* this prevents to detects silly
violation of liveness property
due to such situation

CS655 System .,
Modeling and
Analysis

MODULE main

VAR
prl: proceas prcipr2.st, turn, 0);
pr2: process prciprl.st, turn, 1);
turn: boolean;

ASSIGN
init{turn) := 0;

-- gafety

SPEC G!{{prl.st = ¢} & (pr2.st = c)}

-- liveness

SPEC G{{prl.st = t) - F (prl.st = c}))

SPEC G(({pr2.st = t) -» F (pr2.st = c))

MODULE proc(other-st, turn, myturn)

VAR
st: {n, t, c}:
ASSIGHN
init(st) :
next (st) :
case

I}

{st = n) : {t,n};
(st = t) & (other-st = n) r O3
(st = t) & (other-st = t)} & (turn = myturn}: c;
(st = C) : {c,n};
1 : st;
esac;
next (turn) :=
case
turn = myturn & st = ¢ : !turn;
1 : turn:
aesac;
FAIRNESS running
FAIRNESS st = c)

Transition system

