Temporal Logic
- Branching-time logic

Moonzoo Kim
CS Division of EECS Dept.
KAIST

KAIST

CS655 System
Modeling and
Analysis

Semantics of LTL (3/3

B Def 3.8 Suppose M = (S, —, L)isamodel, s € S, and ¢
an LTL formula. We write M,s = ¢ if for every execution -~ ”

path 7 of M starting at s, we have 7 F ¢
+ |f M is clear from the context, we write s F ¢ <(E
E Example 1 g}
+ S, Fp Aqsince mE p A g for every path 7 beginning in sO sﬁ
+ SgF I, SoF T
+ SoFEXr, s X(QAT)
+ SgEG(pAT),s,EGT 5'
+ Foranysof M,sEF(—qAT)—=FGr
* Note that s, satisfies -q A r
+ SoFGFp o
* Sg—S,—~S,—~>s,...EGFp
* Sy —>S,—8S,—S,...FGFp 31 32 .
+ S)FGFp—=GFr
+ S0 FGFr—GFp
KAIST

: 2
CS655 System .
Modeling and « . . =
Analysis '

Practical patterns of specification

B For any state, if a request occurs, then it It is impossible to get to a state where a
will eventually be acknowledge system has started but is not ready
+ G(requested — F acknowledged) m ¢ =G —(started A —ready)
E A certain process is enabled infinitely = What s the meaning of (intuitive)
often on every computation path ”ega';"on of ¢ * - R
| or eve atn, It IS possivie 1o get to
+ GF enabled _ such a sr%/a‘t)e (startedp/\ﬁready).g
B Whatever happens, a certain process m There exists a such path that gets to
will eventually be permanently such a state.
deadlocked = we cannot express this meaning directly
+ F G deadlock LTL has limited expressive power
B If the process is enabled infinitely often, = Forexample, LTL cannot express
then it runs infinitely often g}a;eg?ﬁts which assert the existence
+ GF enabled — G F l.‘unning m From any state s, there exists a path =
B An upwards traveling lift at the second starting from s to get to a restart state
floor does not change its direction when = The lift can remain idle on the third floor
it has passengers wishing to go to the with its doors closed
fifth floor 0 Comptutatllgn Tree hoglc (CTL) h?ﬁ 5
S operators for quantifying over paths an
+ i({gic;:azct/i\oﬂll:gcﬂof?ouoeg) ButtonPresseds can express these properties
KAIST 3

CS655 System liq

Modeling and
Analysis

Summary of practical patterns

Gp always p invariance
Fp eventually p guarantee
p—(FQ) p implies eventually q response
p—(qUr) |pimplies quntilr precedence
GFp always, eventually p recurrence

(progress)
FGp eventually, always p stability (non-

progress)
Fp—Fq eventually p implies eventually q | correlation

KAIST

CS655 System .
Modeling and
Analysis

Equivalences between LTL formulas

Def 3.9 ¢ = o if for all models M and all paths rin M: nE o iff tE o
“G¢=F ¢ F¢p=C-¢ X¢=X¢
—(pUyY)=-9 R (¢ RY)= -9 U ¢

Flpvy)=FoVFy

GoNY)=CoNnGy

Fo=TUp,Gop= 1L R

oUyp=0oWypPAFy

pWyYp=9oUypVvGo

oWy =9R(oV)

Ry =y W(p A)

KAIST

CS655 System .
Modeling and
Analysis

LTL vs. CTL

B LTL implicitly quantifies universally over paths
+ a state of a system satisfies an LTL formula if all paths from the given state
satisfy it
+ properties which use both universal and existential path quantifiers cannot in
general be model checked using LTL.

» property ¢ which use only universal path quantifiers can be checked using LTL by
checking —¢

B Branching-time logic solve this limitation by quantifying paths explicitly
+ There is a reachable state satisfying q: EF q

* Note that we can check this property by checking LTL formula ¢=G —q
— If ¢ is true, the property is false. If ¢ is false, the property is true

+ From all reachable states satisfying p, it is possible to maintain p
continuously until reaching a state satisfying q: AG (p — E (p U q))

+ Whenever a state satisfying p is reached, the system can exhibit g
continuously forevermore: AG (p — EG q)

+ There is a reachable state from which all reachable states satisfy p: EF AG p
KAIST

Modeling and
Analysis

CS655 System liq

Svntax of Computation Tree Logic (CTL

B Def3.12¢=L|T|p|-o|dAo
¢ | EG ¢

E Note that the following formulas are not well-formed CTL

|6V o|od— ¢ |AXS
|EX ¢ |AF ¢ |EF ¢ |AG ¢ | |A(pU@)|E(pU0)
+ A: along all paths @
+ E: along at least one path

B Precedence

+ AG, EG, AF, EF,AX, EX, A, Vv, —, AU, EU AX @

f I h
O ® ©

+

+ A-G-p

+ F(ruq) GD () ()

+« EF(rUQq)

+ AEFTr

+ A((rUg)A(pUr)) o o
KAIST A [(AX =p) U (E [(EX pAQ) U —p)]]

[%2]
28
» = O
a2
m§8

3

v

Semantics of CTL (1/2)

B Def3.15Let M = (S, —, L) be amodel for CTL,sin S, ¢ a CTL
formula. The relation M,s F ¢ is defined by structural induction on ¢.
We omit M if context is clear.

M,sETand M,s¥ L

M,sEpiff p € L(s)

M, sE - ¢iff M;sE ¢

MsEp, N, if MskE¢p, and M,sF ¢,

MsE@¢, Vo,iff MsE ¢ or MsE ¢,

MsE@¢, — ¢,iff M;sE ¢, or M;sFE ¢,

M,s E AX ¢ iff for all s,;s.t. s — s, we have M, s, F ¢. Thus AX says

“in every next state”

M,s F EX ¢ iff for some s,s.t. s -+ s, we have M, s, F ¢. Thus EX
says “in some next state”

+ M,sF AX ¢ iffforall s,;s.t. s — s, we have M, s, F ¢. Thus AX says
“in every next state”

+ M,s |= EX ¢ iff for some s,;s.t. s -+ s, we have M, s, F ¢. Thus EX
KAIST says “in some next state”

CS655 System .
Modeling and 8
Analysis

- FfFrfFreF

#

Semantics of CTL (2/2)

B Def3.15 Let M = (S, —, L) be a model for CTL, sin S, ¢
a CTL formula. The relation M,s E ¢ is defined by
structural induction on ¢. We omit M if context is clear.

+ M,s F AG ¢ iff for all paths s;,—s,—s;—... where s, equals s,
and all s; along the path, we have M,s; F ¢.

+ M,sF EG ¢ iff there is a path s;,—s,—s;—... where s, equals s,
and all s; along the path, we have M,s; F ¢.

+ M,s F AF ¢ iff for all paths s,—s,—s;—... where s, equals s,
and there is some s; s.t. M,s; F ¢.

+ M,s F EF ¢ iff there is a path s,—s,—s;—... where s, equals s,
and there is some s; s.t. M,s; F ¢.

+ M,skFA[p, U, iff for all paths s,—s,—s;—... where s, equals
s, that path satisfies ¢, U ¢,

+ M,skFE|[¢, U¢o,) iff there is a path s,—s,—s;—... where s,
equals s, that path satisfies ¢, U ¢,

KAIST
CS655 System liq

Modeling and
Analysis

Example (2/2

M, soFpAQ, M,SgFE—r, M, sy =
M.,sF EX (QAT)

M., sF ~AX(QATr)

M.,sF ~EF(pAr)
M,s,FEGT

M,s,F AF r
MsgEE[(pAg)UT]
M,sgEAp Ur]

M,;sgcAG (pvagVvr— EFEGT) f (ra)
KAIST >
CS655 System .‘q

Modeling and
Analysis

CTL Is not more expressive than LTL

M
B CTL cannot select a range of paths N N
+ F GpinLTL is not equivalent to AF AG p @ @ Q

« M,soF F Gpbut M,s,”AF AG p
* AF AG p is strictly stronger than F G p
 AF EG p is strictly weaker than F G p

B Similarly, F p — F g is not equivalent to
AF p — AF q, neither to AG (p — AF q)

B Remark
+ FXp=XFpinLTL
+ AF AX pis not equivalent to AX AF p

KAIST

CS655 System
Modeling and
Analysis

CTL*

B CTL* combines the expressive powers of LTL and CTL

B Syntax of CTL*
+ Stateformula ¢ ::=T |p| - | oA | Ala] | E[a]
+ Pathformulaa:=¢|-a|laNha|laUa|Ga|Fa|Xa

B LTL is a subset of CTL*
+ LTL formula « is equivalent to A[a] in CTL*

B CTL is a subset of CTL*
+ Werestricta::=oU¢p|Go|Fop| X
« No boolean connectives in path formula
— Not real limitation. See page 6

* No nesting of the path modalities X,F, and G

KAIST

13
CS655 System .
Modeling and ﬂ

Analysis

Relationship between LTL,CTL, and CTL*

CTL*

CTL LTL

Yy

CS655 Syste m]
Modeling and
Analysis

GCTL Formulas in CWB-NC

B tt, ff : true, false
B {act list} is satisfied by an action a if a appears in act_list
B {- act_list} is satisfied by an action a if a is not included in
act_list
B ~pistrueifpis false
B Example
+ prop can_deadlock = E F ~{- }
+ prop recv_guarantee = A G ({send} -> F{'receive})

+ prop fair_recv_guarantee =
A ((GF{-1t})->(G{send}->F {‘receive}))

KAIST

CS655 System .
Mdlg and 15
nnnnn

Peterson’'s Mutua

proc Sys = (P1|P2|Flag_1_0|Flag_2_0|Turn1|NCRITO)
\{flag1_0,flag1_1.,flag2_0,flag2_1,turn1,turn2,test_flag1_0,test_flag1_1,t

est_flag2_O,test_flag2_1,test_turni,test_turn2,inc_cnt,dec_cnt}
proc P1 =flag1_1.turn1.P1'

proc P1' =test flag2 0.P1" + test_turn2.P1" + test_flag2_1.P1' +
test_turn1.P1’

proc P1" = inc_cnt.dec_cnt.flag1_0.P1
proc P2 = flag2_1.turn2.P2'

proc P2' =test flag1 0.P2" + test_turn1.P2" + test_flag1_1.P2' +
test_turn2.P2'

proc P2" = inc_cnt.dec_cnt.flag2_0.P2

proc UpdateF1 ='flag1_0.Flag_1_0 + 'flag1_1.Flag_1_1
proc Flag 1 0 ="'test_flag1_0.Flag_1_0 + UpdateF1
proc Flag_1_1 ="test flag1_1.Flag_1_1 + UpdateF1
proc UpdateF2 = 'flag2_0.Flag_2 0 + 'flag2_1.Flag_2_1
proc Flag 2 0 ="test_flag2_0.Flag_2 0 + UpdateF2
proc Flag_2 1 ="test flag2_1.Flag_2 1 + UpdateF2
proc UpdateT = "turn1.Turn1 + 'turn2.Turn2

proc Turn1 ="'test_turn1.Turn1 + UpdateT

proc Turn2 ='test_turn2.Turn2 + UpdateT

proc NCRITO ='inc_cnt.cnt_1.NCRIT1

proc NCRIT1 ='inc_cnt.cnt_2.NCRIT2 + 'dec_cnt.cnt_0.NCRITO
proc NCRIT2 ='dec_cnt.cnt_1.NCRIT1

— KAIST

CS655 System .

Modeling and
Analysis

Exclusion Protocol

* Verification through equivalence
* obseq, trace inclusion

proc Spec =cnt_1.cnt_0.Spec

* Verification through model checking
prop abl =
AG ({cnt_1} -> X ({t} W{cnt_0}))

prop ab2 =
AG ({cnt_0} > X ({t} W{cnt_1}))

prop ab3 =
A G ~{cnt_2}

prop REQ =abl Aab2 A\ ab3

16

