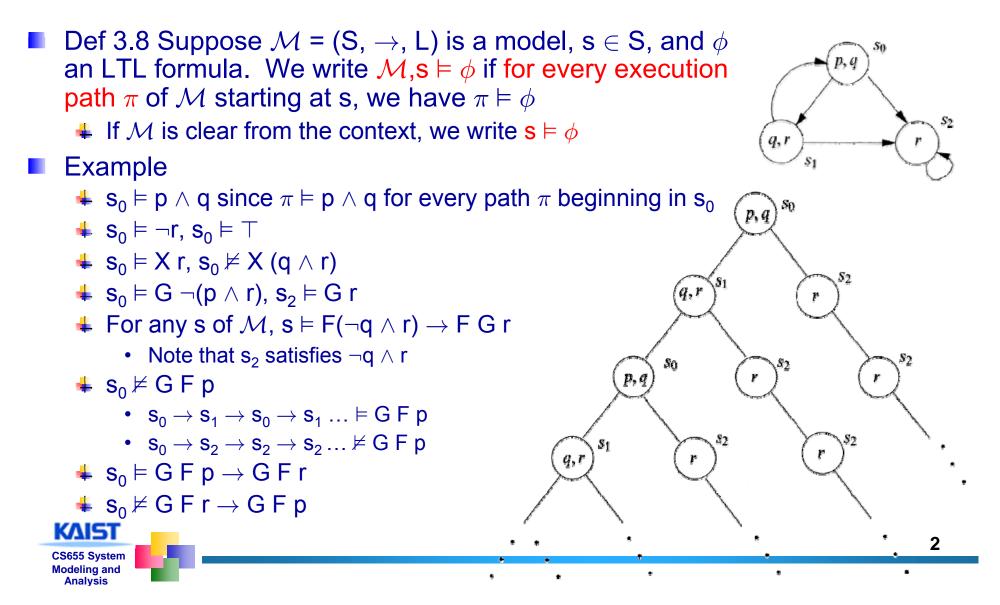
Temporal Logic - Branching-time logic

Moonzoo Kim CS Division of EECS Dept. KAIST

Semantics of LTL (3/3)



Practical patterns of specification

- For any state, if a request occurs, then it will eventually be acknowledge
- A certain process is enabled infinitely often on every computation path
 - 4 G F enabled
- Whatever happens, a certain process will eventually be permanently deadlocked
 - F G deadlock
- If the process is enabled infinitely often, then it runs infinitely often
 - $\blacksquare G F enabled \rightarrow G F running$
- An upwards traveling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor
 - **4** G (fllor2 \land directionup \land ButtonPressed5 \rightarrow (directionup U floor5)
 - KAIST

- It is impossible to get to a state where a system has started but is not ready
 - $\phi = G \neg (\text{started} \land \neg \text{ready})$
 - What is the meaning of (intuitive) negation of ϕ ?
 - For every path, it is possible to get to such a state (started ∧¬ready).
 - There exists a such path that gets to such a state.
 - we cannot express this meaning directly
- LTL has limited expressive power
 - For example, LTL cannot express statements which assert the existence of a path
 - From any state s, there exists a path π starting from s to get to a restart state
 - The lift can remain idle on the third floor with its doors closed
 - Computation Tree Logic (CTL) has operators for quantifying over paths and can express these properties

Summary of practical patterns

Gр	always p	invariance
Fр	eventually p	guarantee
p ightarrow (F q)	p implies eventually q	response
$p \rightarrow (q U r)$	p implies q until r	precedence
GFp	always, eventually p	recurrence (progress)
FGp	eventually, always p	stability (non- progress)
$F p \rightarrow F q$	eventually p implies eventually q	correlation

Equivalences between LTL formulas

Def 3.9 $\phi \equiv \psi$ if for all models \mathcal{M} and all paths π in \mathcal{M} : $\pi \vDash \phi$ iff $\pi \vDash \psi$

$$\neg \mathbf{G} \phi \equiv \mathbf{F} \neg \phi, \neg \mathbf{F} \phi \equiv \mathbf{G} \neg \phi, \neg \mathbf{X} \phi \equiv \mathbf{X} \neg \phi$$

F (
$$\phi \lor \psi$$
) = F $\phi \lor$ F ψ

$$G (\phi \land \psi) \equiv G \phi \land G \psi$$

- **F** $\phi \equiv \mathsf{T} \mathsf{U} \phi, \mathsf{G} \phi \equiv \bot \mathsf{R} \phi$
- $\phi \mathsf{W} \psi \equiv \phi \mathsf{U} \psi \lor \mathsf{G} \phi$
- $\phi \mathsf{W} \psi \equiv \psi \mathsf{R} (\phi \lor \psi)$

LTL vs. CTL

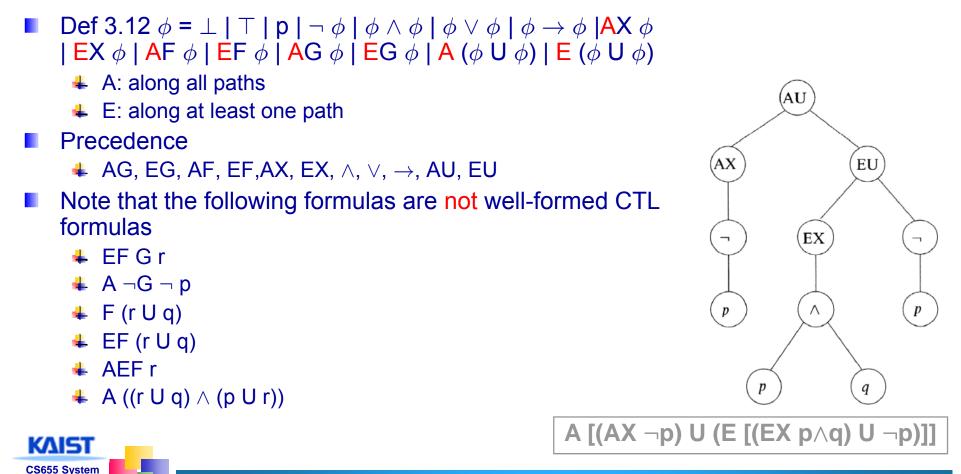
LTL implicitly quantifies universally over paths

- a state of a system satisfies an LTL formula if all paths from the given state satisfy it
- properties which use both universal and existential path quantifiers cannot in general be model checked using LTL.
 - property ϕ which use only universal path quantifiers can be checked using LTL by checking $\neg\phi$

Branching-time logic solve this limitation by quantifying paths explicitly

- There is a reachable state satisfying q: EF q
 - Note that we can check this property by checking LTL formula ϕ =G \neg q
 - If ϕ is true, the property is false. If ϕ is false, the property is true
- ♣ From all reachable states satisfying p, it is possible to maintain p continuously until reaching a state satisfying q: AG (p → E (p U q))
- ↓ Whenever a state satisfying p is reached, the system can exhibit q continuously forevermore: AG (p \rightarrow EG q)
- There is a reachable state from which all reachable states satisfy p: EF AG p

Syntax of Computation Tree Logic (CTL)



Modeling and Analysis

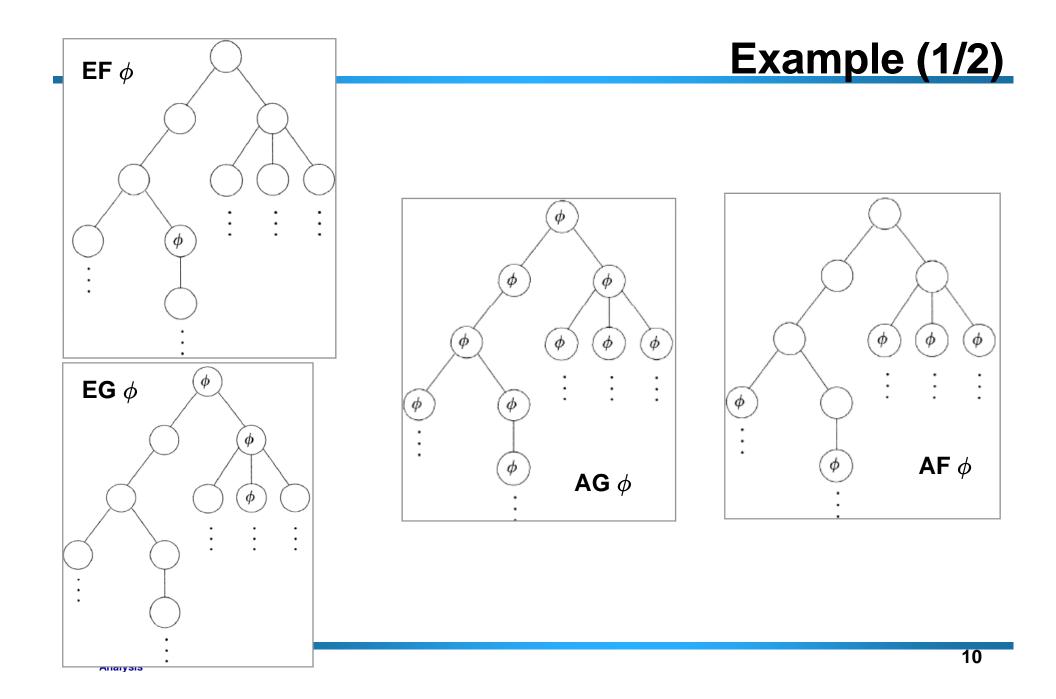
Semantics of CTL (1/2)

- Def 3.15 Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation $\mathcal{M}, s \vDash \phi$ is defined by structural induction on ϕ . We omit \mathcal{M} if context is clear.
 - \clubsuit $\mathcal{M}, s \vDash \top$ and $\mathcal{M}, s \nvDash \bot$

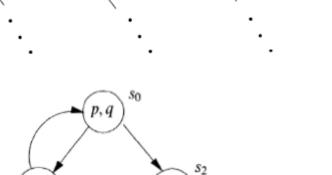
 - $\clubsuit \ \mathcal{M}, \mathsf{S} \vDash \phi_{_1} \to \phi_{_2} \text{ iff } \mathcal{M}, \mathsf{S} \nvDash \phi_{_1} \text{ or } \mathcal{M}, \mathsf{S} \vDash \phi_{_2}$
 - **↓** \mathcal{M} ,s \models AX ϕ iff for all s₁ s.t. s → s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus AX says "in every next state"
 - ↓ \mathcal{M} ,s \models EX ϕ iff for some s₁ s.t. s \rightarrow s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus EX says "in some next state"
 - ↓ \mathcal{M} ,s \models AX ϕ iff for all s₁ s.t. s \rightarrow s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus AX says "in every next state"
- ↓ \mathcal{M} ,s \models EX ϕ iff for some s₁ s.t. s \rightarrow s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus EX says "in some next state"

Semantics of CTL (2/2)

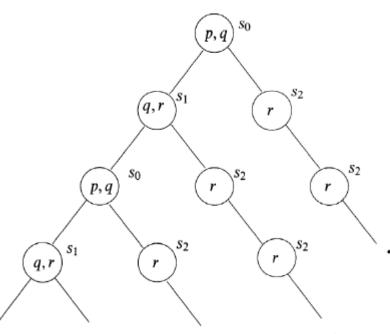
- Def 3.15 Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation \mathcal{M} ,s $\models \phi$ is defined by structural induction on ϕ . We omit \mathcal{M} if context is clear.
 - ↓ \mathcal{M} ,s \models AG ϕ iff for all paths s₁→s₂→s₃→... where s₁ equals s, and all s_i along the path, we have \mathcal{M} ,s_i $\models \phi$.
 - **↓** \mathcal{M} ,s ⊨ **E**G ϕ iff there is a path s₁→s₂→s₃→... where s₁ equals s, and all s_i along the path, we have \mathcal{M} ,s_i ⊨ ϕ .
 - **↓** \mathcal{M} ,s ⊨ AF ϕ iff for all paths s₁→s₂→s₃→... where s₁ equals s, and there is some s_i s.t. \mathcal{M} ,s_i ⊨ ϕ .
 - **↓** \mathcal{M} ,s ⊨ EF ϕ iff there is a path s₁→s₂→s₃→... where s₁ equals s, and there is some s_i s.t. \mathcal{M} ,s_i ⊨ ϕ .
 - ↓ \mathcal{M} ,s \models A [$\phi_1 \cup \phi_2$] iff for all paths s₁→s₂→s₃→... where s₁ equals s, that path satisfies $\phi_1 \cup \phi_2$
 - ↓ \mathcal{M} ,s ⊨ E [ϕ_1 U ϕ_2] iff there is a path s₁→s₂→s₃→... where s₁ equals s, that path satisfies ϕ_1 U ϕ_2



- $\blacksquare \mathcal{M}, \mathbf{s}_0 \vDash \mathsf{AG} (\mathbf{p} \lor \mathbf{q} \lor \mathbf{r} \to \mathsf{EF} \mathsf{EG} \mathsf{r})$
- *M*,s₀⊨ A [p U r]
- *M*,s₀⊨ E [(p ∧ q) U r]
- $\blacksquare \mathcal{M}, s_0 \vDash \mathsf{AFr}$
- $\blacksquare \mathcal{M}, s_2 \vDash \mathsf{EG} \mathsf{r}$
- *M*,s₀⊨ ¬EF(p∧r)
- *M*,s₀ ⊨ ¬AX(q∧r)
- *M*,s₀ ⊨ EX (q∧r)
- $\blacksquare \ \mathcal{M}, s_0 \vDash p \land q, \ \mathcal{M}, s_0 \vDash \neg r, \ \mathcal{M}, s_0 \vDash$



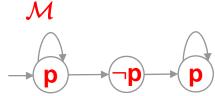
11

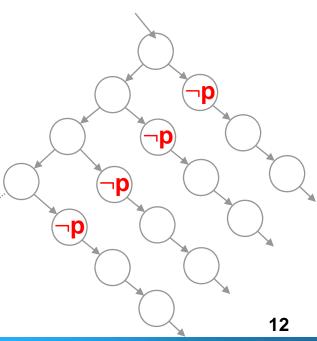


q, r

CTL is not more expressive than LTL

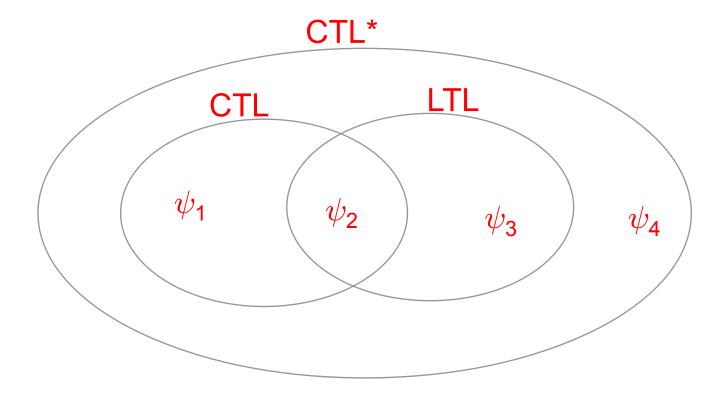
CTL cannot select a range of paths ♣ F G p in LTL is not equivalent to AF AG p • $\mathcal{M}, s_0 \vDash \mathsf{F} \mathsf{G} \mathsf{p}$ but $\mathcal{M}, s_0 \nvDash \mathsf{AF} \mathsf{AG} \mathsf{p}$ AF AG p is strictly stronger than F G p AF EG p is strictly weaker than F G p Similarly, $F p \rightarrow F q$ is not equivalent to AF $p \rightarrow AF q$, neither to AG ($p \rightarrow AF q$) Remark = F X p = X F p in LTLAF AX p is not equivalent to AX AF p





- CTL* combines the expressive powers of LTL and CTL
- Syntax of CTL*
 - **4** State formula $\phi ::= T | p | \neg \phi | \phi \land \phi | A [\alpha] | E[\alpha]$
 - **4** Path formula $\alpha ::= \phi \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \cup \alpha \mid \mathsf{G} \mid \alpha \mid \mathsf{F} \mid \alpha \mid \mathsf{X} \mid \alpha$
- LTL is a subset of CTL*
 - **4** LTL formula α is equivalent to A[α] in CTL*
- CTL is a subset of CTL*
 - **4** We restrict $\alpha ::= \phi \cup \phi \mid G \phi \mid F \phi \mid X \phi$
 - No boolean connectives in path formula
 - Not real limitation. See page 6
 - No nesting of the path modalities X,F, and G

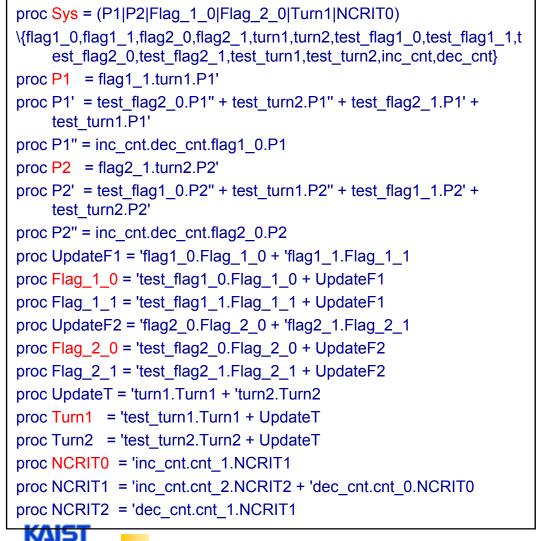
Relationship between LTL, CTL, and CTL*



GCTL Formulas in CWB-NC

- tt, ff : true, false
- {act_list} is satisfied by an action a if a appears in act_list
- {- act_list} is satisfied by an action a if a is not included in act_list
- p is true if p is false
- Example
 - # prop can_deadlock = E F ~{- }
 - # prop recv_guarantee = A G ({send} -> F{'receive})
 - prop fair_recv_guarantee =
 A ((G F {- t}) -> (G {send} -> F {'receive}))

Peterson's Mutual Exclusion Protocol



* Verification through equivalence * obseq, trace inclusion

proc Spec = cnt_1.cnt_0.Spec

* Verification through model checking
prop ab1 =
 A G ({cnt_1} -> X ({t} W {cnt_0}))

prop ab2 = A G ({cnt_0} -> X ({t} W {cnt_1}))

prop ab3 = A G ~{cnt_2}

prop REQ = ab1 Λ ab2 Λ ab3