
Temporal LogicTemporal Logic
BranchingBranching time logictime logic-- BranchingBranching--time logic time logic

Moonzoo Kim
CS Division of EECS Dept.

KAIST

CS655 System
Modeling and

Analysis 1

Semantics of LTL (3/3)Semantics of LTL (3/3)
Def 3 8 Suppose M = (S → L) is a model s ∈ S and φDef 3.8 Suppose M = (S, →, L) is a model, s ∈ S, and φ
an LTL formula. We write M,s ² φ if for every execution
path π of M starting at s, we have π ² φ

If M is clear from the context we write s ² φ
MM

If M is clear from the context, we write s ² φ

Example
s0 ² p Æ q since π ² p Æ q for every path π beginning in s0
s0 ² ¬r, s0 ² >

s0 ² X r, s0 2 X (q Æ r)
s0 ² G ¬(p Æ r), s2 ² G r
For any s of M, s ² F(¬q Æ r) → F G r

• Note that s2 satisfies ¬q Æ r
s0 2 G F p

• s0 → s1 → s0 → s1 … ² G F p
• s0 → s2 → s2 → s2 … 2 G F p

s0 ² G F p → G F r

CS655 System
Modeling and

Analysis

2

s0 2 G F r → G F p

Practical patterns of specificationPractical patterns of specification

For any state, if a request occurs, then it
will eventually be acknowledge

G(requested → F acknowledged)
A t i i bl d i fi it l

It is impossible to get to a state where a It is impossible to get to a state where a
system has started but is not readysystem has started but is not ready

φφ = G = G ¬¬(started (started ÆÆ ¬¬ready)ready)
What is the meaning of (intuitive)What is the meaning of (intuitive)A certain process is enabled infinitely

often on every computation path
G F enabled

Whatever happens, a certain process

What is the meaning of (intuitive) What is the meaning of (intuitive)
negation of negation of φφ ??

For every path, it is possible to get to For every path, it is possible to get to
such a state (started such a state (started Æ¬Æ¬ready).ready).
There exists a such path that gets toThere exists a such path that gets toWhatever happens, a certain process

will eventually be permanently
deadlocked

F G deadlock
If the process is enabled infinitely often

There exists a such path that gets to There exists a such path that gets to
such a state.such a state.

we cannot express this meaning directlywe cannot express this meaning directly

LTL has limited expressive powerLTL has limited expressive power
For example LTL cannot expressFor example LTL cannot expressIf the process is enabled infinitely often,

then it runs infinitely often
G F enabled → G F running

An upwards traveling lift at the second

For example, LTL cannot express For example, LTL cannot express
statements which assert the existence statements which assert the existence
of a pathof a path

From any state s, there exists a path From any state s, there exists a path ππ
starting from s to get to a restart statestarting from s to get to a restart statep g

floor does not change its direction when
it has passengers wishing to go to the
fifth floor

G (fllor2 Æ directionup Æ ButtonPressed5

The lift can remain idle on the third floor The lift can remain idle on the third floor
with its doors closedwith its doors closed

Computation Tree Logic (CTL) has Computation Tree Logic (CTL) has
operators for quantifying over paths and operators for quantifying over paths and
can express these propertiescan express these properties

CS655 System
Modeling and

Analysis

3

(Æ p Æ
→ (directionup U floor5) can express these propertiescan express these properties

Summary of practical patternsSummary of practical patterns

G pG p always palways p invarianceinvariance

FF t llt ll ttF pF p eventually peventually p guaranteeguarantee

p p →→ (F q)(F q) p implies eventually qp implies eventually q responseresponse

p p →→ (q U r)(q U r) p implies q until rp implies q until r precedenceprecedence

G F pG F p always, eventually palways, eventually p recurrence recurrence
(progress)(progress)

F G pF G p eventually, always peventually, always p stability (nonstability (non--
progress)progress)

F pF p →→ F qF q eventually p implies eventually qeventually p implies eventually q correlationcorrelation

CS655 System
Modeling and

Analysis

4

F p F p →→ F qF q eventually p implies eventually qeventually p implies eventually q correlationcorrelation

Equivalences between LTL formulasEquivalences between LTL formulas

Def 3.9 φ ≡ ψ if for all models M and all paths π in M: π ² φ iff π ² ψ

¬G φ ≡ F ¬φ, ¬F φ ≡ G ¬φ, ¬X φ ≡ X ¬φ
¬ (φ U ψ) ≡ ¬φ R ¬ψ, ¬(φ R ψ) ≡ ¬φ U ¬ψ
F (φ Ç ψ) ≡ F φ Ç F ψ
G (φ Æ ψ) ≡ G φ Æ G ψ
F φ ≡ T U φ G φ ≡ ⊥ R φF φ ≡ T U φ, G φ ≡ ⊥ R φ

φ U ψ ≡ φ W ψ Æ F ψ
φ W ψ ≡ φ U ψ Ç G φ

φ W ψ ≡ ψ R (φ Ç ψ)
φ R ψ ≡ ψ W (φ Æ ψ)

CS655 System
Modeling and

Analysis

5

LTL vs. CTLLTL vs. CTL

LTL implicitly quantifies universally over paths
a state of a system satisfies an LTL formula if all paths from the given state
satisfy itsatisfy it
properties which use both universal and existential path quantifiers cannot in
general be model checked using LTL.

• property φ which use only universal path quantifiers can be checked using LTL by
checking ¬φ

Branching-time logic solve this limitation by quantifying paths explicitly
There is a reachable state satisfying q: EF q

• Note that we can check this property by checking LTL formula φ=G ¬q
– If φ is true, the property is false. If φ is false, the property is true

From all reachable states satisfying p, it is possible to maintain p
continuously until reaching a state satisfying q: AG (p → E (p U q))continuously until reaching a state satisfying q: AG (p → E (p U q))
Whenever a state satisfying p is reached, the system can exhibit q
continuously forevermore: AG (p → EG q)
There is a reachable state from which all reachable states satisfy p: EF AG p

CS655 System
Modeling and

Analysis

There is a reachable state from which all reachable states satisfy p: EF AG p

6

Syntax of Computation Tree Logic (CTL)Syntax of Computation Tree Logic (CTL)

Def 3.12 φ = ⊥ | > | p | ¬ φ | φ Æ φ | φ Ç φ | φ→ φ |AX φ
| EX φ | AF φ | EF φ | AG φ | EG φ | A (φ U φ) | E (φ U φ)

A: along all paths
E: along at least one path

P dPrecedence
AG, EG, AF, EF,AX, EX, Æ, Ç, →, AU, EU

Note that the following formulas are not well-formed CTL
formulasformulas

EF G r
A ¬G ¬ p
F (r U q)F (r U q)
EF (r U q)
AEF r
A ((r U q) Æ (p U r))

CS655 System
Modeling and

Analysis

(() ())

7

A [(AX ¬p) U (E [(EX pÆq) U ¬p)]]

Semantics of CTL (1/2)Semantics of CTL (1/2)
Def 3 15 Let M (S L) be a model for CTL s in S φ a CTLDef 3.15 Let M = (S, →, L) be a model for CTL, s in S, φ a CTL
formula. The relation M,s ² φ is defined by structural induction on φ.
We omit M if context is clear.

M s ² > and M s 2 ⊥M,s ² > and M,s 2 ⊥
M,s ² p iff p ∈ L(s)
M,s ² ¬ φ iff M,s 2 φ

M ² φ φ iff M ² φ d M ² φM,s ² φ1 Æ φ2 iff M,s ² φ1 and M,s ² φ2

M,s ² φ1 Ç φ2 iff M,s ² φ1 or M,s ² φ2

M,s ² φ1 → φ2 iff M,s 2 φ1 or M,s ² φ2

M,s ² AX φ iff for all s1 s.t. s → s1 we have M, s1 ² φ. Thus AX says
“in every next state”
M,s ² EX φ iff for some s1 s.t. s → s1 we have M, s1 ² φ. Thus EX

“i t t t ”says “in some next state”
M,s ² AX φ iff for all s1 s.t. s → s1 we have M, s1 ² φ. Thus AX says
“in every next state”
M s ² EX φ iff for some s s t s → s we have M s ² φ Thus EX

CS655 System
Modeling and

Analysis

M,s ² EX φ iff for some s1 s.t. s → s1 we have M, s1 ² φ. Thus EX
says “in some next state”

8

Semantics of CTL (2/2)Semantics of CTL (2/2)

Def 3.15 Let M = (S, →, L) be a model for CTL, s in S, φ
a CTL formula. The relation M,s ² φ is defined by
t t l i d ti φ W it M if t t i lstructural induction on φ. We omit M if context is clear.

M,s ² AG φ iff for all paths s1→s2→s3→... where s1 equals s,
and all si along the path, we have M,si ² φ.
M ² EG φ iff th i th h lM,s ² EG φ iff there is a path s1→s2→s3→... where s1 equals s,
and all si along the path, we have M,si ² φ.
M,s ² AF φ iff for all paths s1→s2→s3→... where s1 equals s,
and there is some s s t M s ² φand there is some si s.t. M,si ² φ.
M,s ² EF φ iff there is a path s1→s2→s3→... where s1 equals s,
and there is some si s.t. M,si ² φ.
M s ² A [φ U φ] iff for all paths s →s →s → where s equalsM,s ² A [φ1 U φ2] iff for all paths s1→s2→s3→... where s1 equals
s, that path satisfies φ1 U φ2

M,s ² E [φ1 U φ2] iff there is a path s1→s2→s3→... where s1
equals s, that path satisfies φ1 U φ2

CS655 System
Modeling and

Analysis

equals s, that path satisfies φ1 U φ2

9

Example (1/2)Example (1/2)EF φ

EG φEG φ

AG φ
AF φ

AG φ

CS655 System
Modeling and

Analysis 10

Example (2/2)Example (2/2)

M,s0²pÆq, M,s0²¬r, M,s0²>

M,s0² EX (qÆr)
M,s0² ¬AX(qÆr)
M,s0² ¬EF(pÆr)
M,s2² EG r
M,s0² AF r
M,s0² E [(p Æ q) U r]
M,s0² A [p U r]
M,s0² AG (p Ç q Ç r → EF EG r)

CS655 System
Modeling and

Analysis 11

CTL is CTL is notnot more expressive than LTL more expressive than LTL

CTL cannot select a range of paths
M

F G p in LTL is not equivalent to AF AG p
• M,s0² F G p but M,s0 2 AF AG p
• AF AG p is strictly stronger than F G p

p ¬p p
s0

AF AG p is strictly stronger than F G p
• AF EG p is strictly weaker than F G p

Similarly, F p → F q is not equivalent to
p

¬ppAF p → AF q, neither to AG (p → AF q)
Remark

¬p
p

p
¬p

p¬p

p

p

p
F X p ≡ X F p in LTL
AF AX p is not equivalent to AX AF p

pp
p

¬p
p

p
¬p

p

p

CS655 System
Modeling and

Analysis

12

pp
p

CTL* CTL*

CTL* combines the expressive powers of LTL and CTL
Syntax of CTL*

State formula φ ::= T | p | ¬ φ | φ Æ φ | A [α] | E[α]
Path formula α ::= φ | ¬ α | α Æ α | α U α | G α | F α | X α

LTL is a subset of CTL*LTL is a subset of CTL
LTL formula α is equivalent to A[α] in CTL*

CTL is a subset of CTL*
We restrict α ::= φ U φ | G φ | F φ | X φ

• No boolean connectives in path formula
– Not real limitation. See page 6ot ea tat o See page 6

• No nesting of the path modalities X,F, and G

CS655 System
Modeling and

Analysis

13

Relationship between LTL,CTL, and CTL*Relationship between LTL,CTL, and CTL*

CTL*CTL

CTL LTL

ψ1 ψ2 ψ3 ψ4
ψ2 ψ3 ψ4

CS655 System
Modeling and

Analysis

14

GCTL Formulas in CWBGCTL Formulas in CWB--NCNC

tt, ff : true, false
{act_list} is satisfied by an action a if a appears in act_list
{- act_list} is satisfied by an action a if a is not included in
act_list
~ p is true if p is false
Example

prop can_deadlock = E F ~{- }
prop recv_guarantee = A G ({send} -> F{‘receive})
prop fair recv guarantee =prop fair_recv_guarantee =
A ((G F {- t}) -> (G {send} -> F {‘receive}))

CS655 System
Modeling and

Analysis 15

Peterson’s Mutual Exclusion ProtocolPeterson’s Mutual Exclusion Protocol
proc Sys = (P1|P2|Flag_1_0|Flag_2_0|Turn1|NCRIT0)
\{flag1 0 flag1 1 flag2 0 flag2 1 turn1 turn2 test flag1 0 test flag1 1 t\{flag1_0,flag1_1,flag2_0,flag2_1,turn1,turn2,test_flag1_0,test_flag1_1,t

est_flag2_0,test_flag2_1,test_turn1,test_turn2,inc_cnt,dec_cnt}
proc P1 = flag1_1.turn1.P1'
proc P1' = test_flag2_0.P1'' + test_turn2.P1'' + test_flag2_1.P1' +

test_turn1.P1'

* Verification through equivalence
* obseq, trace inclusion

S Sproc P1'' = inc_cnt.dec_cnt.flag1_0.P1
proc P2 = flag2_1.turn2.P2'
proc P2' = test_flag1_0.P2'' + test_turn1.P2'' + test_flag1_1.P2' +

test_turn2.P2'

proc Spec = cnt_1.cnt_0.Spec

proc P2'' = inc_cnt.dec_cnt.flag2_0.P2
proc UpdateF1 = 'flag1_0.Flag_1_0 + 'flag1_1.Flag_1_1
proc Flag_1_0 = 'test_flag1_0.Flag_1_0 + UpdateF1
proc Flag_1_1 = 'test_flag1_1.Flag_1_1 + UpdateF1

* Verification through model checking
prop ab1 =

proc UpdateF2 = 'flag2_0.Flag_2_0 + 'flag2_1.Flag_2_1
proc Flag_2_0 = 'test_flag2_0.Flag_2_0 + UpdateF2
proc Flag_2_1 = 'test_flag2_1.Flag_2_1 + UpdateF2
proc UpdateT = 'turn1.Turn1 + 'turn2.Turn2

A G ({cnt_1} -> X ({t} W {cnt_0}))

prop ab2 =
A G ({cnt_0} -> X ({t} W {cnt_1}))

proc Turn1 = 'test_turn1.Turn1 + UpdateT
proc Turn2 = 'test_turn2.Turn2 + UpdateT
proc NCRIT0 = 'inc_cnt.cnt_1.NCRIT1
proc NCRIT1 = 'inc_cnt.cnt_2.NCRIT2 + 'dec_cnt.cnt_0.NCRIT0

prop ab3 =
A G ~{cnt_2}

prop REQ = ab1 /\ ab2 /\ ab3

CS655 System
Modeling and

Analysis

proc NCRIT2 = 'dec_cnt.cnt_1.NCRIT1

16

