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Semantics of LTL (3/3)Semantics of LTL (3/3)
Def 3 8 Suppose M = (S → L) is a model s ∈ S and φDef 3.8 Suppose M = (S, →, L) is a model, s ∈ S, and φ
an LTL formula.  We write M,s ² φ if for every execution
path π of M starting at s, we have π ² φ

If M is clear from the context we write s ² φ
MM

If M is clear from the context, we write s ² φ

Example
s0 ² p Æ q since π ² p Æ q for every path π beginning in s0
s0 ² ¬r, s0 ² >

s0 ² X r, s0 2 X (q Æ r)
s0 ² G ¬(p Æ r), s2 ² G r
For any s of M, s ² F(¬q Æ r) → F G r

• Note that s2 satisfies ¬q Æ r
s0 2 G F p

• s0 → s1 → s0 → s1 … ² G F p
• s0 → s2 → s2 → s2 … 2 G F p

s0 ² G F p → G F r
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s0 2 G F r → G F p



Practical patterns of specificationPractical patterns of specification

For any state, if a request occurs, then it 
will eventually be acknowledge

G(requested → F acknowledged)
A t i i bl d i fi it l

It is impossible to get to a state where a It is impossible to get to a state where a 
system has started but is not readysystem has started but is not ready

φφ = G = G ¬¬(started (started ÆÆ ¬¬ready)ready)
What is the meaning of (intuitive)What is the meaning of (intuitive)A certain process is enabled infinitely 

often on every computation path
G F enabled

Whatever happens, a certain process

What is the meaning of (intuitive) What is the meaning of (intuitive) 
negation of negation of φφ ??

For every path, it is possible to get to For every path, it is possible to get to 
such a state (started such a state (started Æ¬Æ¬ready).ready).
There exists a such path that gets toThere exists a such path that gets toWhatever happens, a certain process 

will eventually be permanently 
deadlocked

F G deadlock
If the process is enabled infinitely often

There exists a such path that gets to There exists a such path that gets to 
such a state.such a state.

we cannot express this meaning directlywe cannot express this meaning directly

LTL has limited expressive powerLTL has limited expressive power
For example LTL cannot expressFor example LTL cannot expressIf the process is enabled infinitely often, 

then it runs infinitely often
G F enabled → G F running

An upwards traveling lift at the second 

For example, LTL cannot express For example, LTL cannot express 
statements which assert the existence statements which assert the existence 
of a pathof a path

From any state s, there exists a path From any state s, there exists a path ππ
starting from s to get to a restart statestarting from s to get to a restart statep g

floor does not change its direction when 
it has passengers wishing to go to the 
fifth floor

G (fllor2 Æ directionup Æ ButtonPressed5 

The lift can remain idle on the third floor The lift can remain idle on the third floor 
with its doors closedwith its doors closed

Computation Tree Logic (CTL) has Computation Tree Logic (CTL) has 
operators for quantifying over paths and operators for quantifying over paths and 
can express these propertiescan express these properties
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( Æ p Æ
→ (directionup U floor5) can express these propertiescan express these properties



Summary of practical patternsSummary of practical patterns

G pG p always palways p invarianceinvariance

FF t llt ll ttF pF p eventually peventually p guaranteeguarantee

p p →→ (F q)(F q) p implies eventually qp implies eventually q responseresponse

p p →→ (q U r)(q U r) p implies q until rp implies q until r precedenceprecedence

G F pG F p always, eventually palways, eventually p recurrence recurrence 
(progress)(progress)

F G pF G p eventually, always peventually, always p stability (nonstability (non--
progress)progress)

F pF p →→ F qF q eventually p implies eventually qeventually p implies eventually q correlationcorrelation
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F p F p →→ F qF q eventually p implies eventually qeventually p implies eventually q correlationcorrelation



Equivalences between LTL formulasEquivalences between LTL formulas

Def 3.9 φ ≡ ψ if for all models M and all paths π in M: π ² φ iff π ² ψ

¬G φ ≡ F ¬φ, ¬F φ ≡ G ¬φ, ¬X φ ≡ X ¬φ
¬ (φ U ψ) ≡ ¬φ R ¬ψ, ¬(φ R ψ) ≡ ¬φ U ¬ψ
F (φ Ç ψ) ≡ F φ Ç F ψ
G (φ Æ ψ) ≡ G φ Æ G ψ
F φ ≡ T U φ G φ ≡ ⊥ R φF φ ≡ T U φ, G φ ≡ ⊥ R φ

φ U ψ ≡ φ W ψ Æ F ψ
φ W ψ ≡ φ U ψ Ç G φ 

φ W ψ ≡ ψ R (φ Ç ψ)
φ R ψ ≡ ψ W (φ Æ ψ)
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LTL vs. CTLLTL vs. CTL

LTL implicitly quantifies universally over paths
a state of a system satisfies an LTL formula if all paths from the given state 
satisfy itsatisfy it
properties which use both universal and existential path quantifiers cannot in 
general be model checked using LTL.

• property φ which use only universal path quantifiers can be checked using LTL by 
checking ¬φ

Branching-time logic solve this limitation by quantifying paths explicitly 
There is a reachable state satisfying q: EF q

• Note that we can check this property by checking LTL formula φ=G ¬q
– If φ is true, the property is false.  If φ is false, the property is true

From all reachable states satisfying p, it is possible to maintain p 
continuously until reaching a state satisfying q: AG (p → E (p U q))continuously until reaching a state satisfying q: AG (p → E (p U q))
Whenever a state satisfying p is reached, the system can exhibit q 
continuously forevermore: AG (p → EG q)
There is a reachable state from which all reachable states satisfy p: EF AG p
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Syntax of Computation Tree Logic (CTL)Syntax of Computation Tree Logic (CTL)

Def 3.12 φ = ⊥ | > | p | ¬ φ | φ Æ φ | φ Ç φ | φ→ φ |AX φ
| EX φ | AF φ | EF φ | AG φ | EG φ | A (φ U φ) | E (φ U φ)

A: along all paths
E: along at least one path

P dPrecedence
AG, EG, AF, EF,AX, EX, Æ, Ç, →, AU, EU

Note that the following formulas are not well-formed CTL 
formulasformulas

EF G r
A ¬G ¬ p
F (r U q)F (r U q)
EF (r U q)
AEF r
A ((r U q) Æ (p U r))

CS655 System 
Modeling and 

Analysis  

(( ) ( ))

7

A [(AX ¬p) U (E [(EX pÆq) U ¬p)]]



Semantics of CTL (1/2)Semantics of CTL (1/2)
Def 3 15 Let M (S L) be a model for CTL s in S φ a CTLDef 3.15 Let M = (S, →, L) be a model for CTL, s in S, φ a CTL 
formula.  The relation M,s ² φ is defined by structural induction on φ.  
We omit M if context is clear.

M s ² > and M s 2 ⊥M,s ² > and M,s 2 ⊥
M,s ² p iff p ∈ L(s)
M,s ² ¬ φ iff M,s 2 φ

M ² φ φ iff M ² φ d M ² φM,s ² φ1 Æ φ2 iff M,s ² φ1 and M,s ² φ2

M,s ² φ1 Ç φ2 iff M,s ² φ1 or M,s ² φ2

M,s ² φ1 → φ2 iff M,s 2 φ1 or M,s ² φ2

M,s ² AX φ iff for all s1 s.t. s → s1 we have M, s1 ² φ.  Thus AX says 
“in every next state”
M,s ² EX φ iff for some s1 s.t. s → s1 we have M, s1 ² φ.  Thus EX

“i t t t ”says “in some next state”
M,s ² AX φ iff for all s1 s.t. s → s1 we have M, s1 ² φ.  Thus AX says 
“in every next state”
M s ² EX φ iff for some s s t s → s we have M s ² φ Thus EX
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Semantics of CTL (2/2)Semantics of CTL (2/2)

Def 3.15 Let M = (S, →, L) be a model for CTL, s in S, φ
a CTL formula.  The relation M,s ² φ is defined by 
t t l i d ti φ W it M if t t i lstructural induction on φ.  We omit M if context is clear.

M,s ² AG φ iff for all paths s1→s2→s3→... where s1 equals s, 
and all si along the path, we have M,si ² φ. 
M ² EG φ iff th i th h lM,s ² EG φ iff there is a path s1→s2→s3→... where s1 equals s, 
and all si along the path, we have M,si ² φ. 
M,s ² AF φ iff for all paths s1→s2→s3→... where s1 equals s, 
and there is some s s t M s ² φand there is some si s.t. M,si ² φ. 
M,s ² EF φ iff there is a path s1→s2→s3→... where s1 equals s, 
and there is some si s.t. M,si ² φ. 
M s ² A [φ U φ ] iff for all paths s →s →s → where s equalsM,s ² A [φ1 U φ2]  iff for all paths s1→s2→s3→... where s1 equals 
s, that path satisfies φ1 U φ2

M,s ² E [φ1 U φ2]  iff there is a path s1→s2→s3→... where s1
equals s, that path satisfies φ1 U φ2
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Example (1/2)Example (1/2)EF φ

EG φEG φ

AG φ
AF φ

AG φ
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Example (2/2)Example (2/2)

M,s0²pÆq, M,s0²¬r, M,s0²> 

M,s0² EX (qÆr) 
M,s0² ¬AX(qÆr)
M,s0² ¬EF(pÆr)
M,s2² EG r
M,s0² AF r
M,s0² E [(p Æ q) U r] 
M,s0² A [p U r]
M,s0² AG (p Ç q Ç r → EF EG r)
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CTL is CTL is notnot more expressive than LTL more expressive than LTL 

CTL cannot select a range of paths
M

F G p in LTL is not equivalent to AF AG p
• M,s0² F G p but M,s0 2 AF AG p
• AF AG p is strictly stronger than F G p

p ¬p p
s0

AF AG p is strictly stronger than F G p  
• AF EG p is strictly weaker than F G p  

Similarly, F p → F q is not equivalent to 
p

¬ppAF p → AF q, neither to AG (p → AF q) 
Remark

¬p
p

p
¬p

p¬p

p

p

p
F X p ≡ X F p in LTL 
AF AX p is not equivalent to AX AF p

pp
p

¬p
p

p
¬p

p

p
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CTL* CTL* 

CTL* combines the expressive powers of LTL and CTL
Syntax of CTL*

State formula φ ::= T | p | ¬ φ | φ Æ φ | A [α] | E[α]
Path formula α ::= φ | ¬ α | α Æ α | α U α | G α | F α | X α

LTL is a subset of CTL*LTL is a subset of CTL
LTL formula α is equivalent to A[α] in CTL* 

CTL is a subset of CTL*
We restrict α ::= φ U φ | G φ | F φ | X φ

• No boolean connectives in path formula 
– Not real limitation.  See page 6ot ea tat o See page 6

• No nesting of the path modalities X,F, and G
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Relationship between LTL,CTL, and CTL*Relationship between LTL,CTL, and CTL*

CTL*CTL

CTL LTL

ψ1 ψ2 ψ3 ψ4
ψ2 ψ3 ψ4
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GCTL Formulas in CWBGCTL Formulas in CWB--NCNC

tt, ff : true, false
{act_list} is satisfied by an action a if a appears in act_list
{- act_list} is satisfied by an action a if a is not included in 
act_list
~ p is true if p is false
Example

prop can_deadlock = E F ~{- }
prop recv_guarantee = A G ({send} -> F{‘receive})
prop fair recv guarantee =prop fair_recv_guarantee =
A ((G F {- t} ) -> (G {send} -> F {‘receive}))
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Peterson’s Mutual Exclusion ProtocolPeterson’s Mutual Exclusion Protocol
proc Sys = (P1|P2|Flag_1_0|Flag_2_0|Turn1|NCRIT0)
\{flag1 0 flag1 1 flag2 0 flag2 1 turn1 turn2 test flag1 0 test flag1 1 t\{flag1_0,flag1_1,flag2_0,flag2_1,turn1,turn2,test_flag1_0,test_flag1_1,t

est_flag2_0,test_flag2_1,test_turn1,test_turn2,inc_cnt,dec_cnt}
proc P1 = flag1_1.turn1.P1'
proc P1'  = test_flag2_0.P1'' + test_turn2.P1'' + test_flag2_1.P1' + 

test_turn1.P1'

* Verification through equivalence
* obseq, trace inclusion

S Sproc P1'' = inc_cnt.dec_cnt.flag1_0.P1
proc P2 = flag2_1.turn2.P2'
proc P2'  = test_flag1_0.P2'' + test_turn1.P2'' + test_flag1_1.P2' + 

test_turn2.P2'

proc Spec = cnt_1.cnt_0.Spec  

proc P2'' = inc_cnt.dec_cnt.flag2_0.P2
proc UpdateF1 = 'flag1_0.Flag_1_0 + 'flag1_1.Flag_1_1
proc Flag_1_0 = 'test_flag1_0.Flag_1_0 + UpdateF1
proc Flag_1_1 = 'test_flag1_1.Flag_1_1 + UpdateF1

* Verification through model checking
prop ab1 = 

proc UpdateF2 = 'flag2_0.Flag_2_0 + 'flag2_1.Flag_2_1
proc Flag_2_0 = 'test_flag2_0.Flag_2_0 + UpdateF2
proc Flag_2_1 = 'test_flag2_1.Flag_2_1 + UpdateF2
proc UpdateT = 'turn1.Turn1 + 'turn2.Turn2

A G ({cnt_1} -> X ( {t} W {cnt_0}) ) 

prop ab2 = 
A G ({cnt_0} -> X ( {t} W {cnt_1}) ) 

proc Turn1 = 'test_turn1.Turn1 + UpdateT 
proc Turn2   = 'test_turn2.Turn2 + UpdateT 
proc NCRIT0 = 'inc_cnt.cnt_1.NCRIT1
proc NCRIT1  = 'inc_cnt.cnt_2.NCRIT2 + 'dec_cnt.cnt_0.NCRIT0

prop ab3 = 
A G ~{cnt_2} 

prop REQ = ab1 /\ ab2 /\ ab3 
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proc NCRIT2  = 'dec_cnt.cnt_1.NCRIT1
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