
Proving Testing Preorders for Process Algebra Descriptions

Fulvio CORNO, Marco CUSINATO, Mario FERRERO, Paolo F”ElT0

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

Abstract*
Process Algebras are rapidly becoming a mathe-

matical model used by verification engineers to extend
the description capabilities of Finite State Machines
towards higher abstraction levels. As long as design
and verification methodologies at the system level are
developed, the wide spectrum of equivalence relations
that can be defined over processes receives an ever
increasing importance. Testing Equivalences and Test-
ing Preorders are particularly suited for formalizing the
relationships holding in top-down hierarchical meth-
odologies. The main deterrent to the widespread use of
Process Algebras seems to be the lack of eficient tools.
Very eficient algorithmic techniques, based on the
adoption of Binary Decision Diagrams, are now being
used in different fields. This paper presents algorithms
for the proof of testing preorders and equivalences that
are, to the best of our knowledge, the first successful
attempt to implement testing relations with BDDs. Ex-
perimental results show that the the implemented al-
gorithms are able to deal with medium- and large-size
systems.

1. Introduction
Finite State Machines (FSMs) are one of the most

popular formalisms for describing the behavior of sys-
tems. They proved an excellent formalism to describe
and manipulate systems when synchronous descriptions
are considered. Unfortunately, they lack versatility and
expressive power to be used in higher-level descrip-
tions, where more sophisticated models are needed. This
lead to the development of several extensions of FSMs,
in the directions of concurrence, non determinism, asyn-

* This work has been partially supported by the Esprit Project
6575 “ATSEC”, Human Capital and Mobility EEC-HCM-0061
“EUROFORM: Formal Methods for Correct System Design” and by
the Italian National Research Council “Progetto Speciale Specifica ad
alto Livello e Verifica Formale di Sistemi Digitali”. Contact address:
Paolo Prinetto, Dipartimento di Automatica e Informatica, Politecnico
di Torino, Corso Duca degli Abmzzi 24, 1-10129 Torino (Italy), e-
mailPaolo.Prinetto@polito.it

chronous evolution, hierarchy, communication, and data
handling.

Process Algebras (PAS) [14] [12] [16] are one such
extension, aiming at modeling concurrent communicat-
ing systems at a very high level of abstraction. They
overcome most limits of FSMs, especially for control-
dominated systems, and they profit by a sound mathe-
matical framework. In formal verification, PAS support
the powerful notion of observational equivalences and
preorders [8], which allow the designer to select the
resolution power he needs when comparing systems.

The main limit to the applicability of PAS is the lack
of efficient tools. The algorithms presented in this paper
have been implemented in SEVERO [4] [5], a BDD
based tool for Process Algebra manipulation. Its effi-
ciency is orders of magnitude superior to traditional
approaches [6] [9] and comparable or better to other
symbolic implementations [11. The PA impemented in
SEVERO is Circa1 [15] [17], whose capability of describ-
ing concurrent events and multi-point communications
is invaluable in describing hardware systems.

The goal of this paper is twofold: from one hand, it
presents Testing Preorders and Equivalences, showing
how they can be used in system design and verification.
From the other hand, it describes a set of symbolic al-
gorithms to minimize processes according to Testing
Equivalence and to check for testing relations.

The paper is structured as follows. Section 2 shortly
establishes the theoretical framework of PAS and Testing
Relations. Section 3 details the algorithms used in veri-
fication. Section 4 reports some experimental results
proving the efficiency of the approach, while in section
5 some conclusions are drawn.

2. Theoretical Framework

2.1. Process Algebras
A process is a black box offering to the external en-

vironment a set of communication ports, through which
events are exchanged. Following Circal’s paradigm [151,
actions can occur simultaneously and can be shared

333
1066-1409/95 $4.00 0 1995 IEEE

among processes according to multi-point rendez-vous
channels. When an external observer is not allowed to
monitor this exchange of actions the processes are said
to execute internal communications, called z or silent
actions.

The behavior of a process K is specified in terms of
the events it is able to exchange and Labeled Transition
Systems (LTSs) are used as a concrete representation. A
LTS is a 4-tuple K = (S, A, T, SO), where S is a set of
states, A is the set of actions that K is allowed to exe-
cute, where an action aEA is a set of events taken from
the set L of allowed events: A=2L, and SO is the initial
state s0eS. T is a relation TcSxAxS, called transition
relation, that determines the sequential behavior of the
process: it records the set of transitions (ss, a, as) that
can be traversed by the system, where ss,aseS are the
start and the arrival state, and a e A is an action.

Process Algebras provide operators for manipulating
processes described by LTSs. Process Algebra operators
are used to build composite systems starting from sim-
pler ones [171. The most important operators are:

Composition operators: the concurrent evolution of
two processes is defined by considering all the inter-
leavings of their actions and the synchronizazions
due to rendez-vous on shared actions, which model
communications.

0 Choice operators: the composite behavior is that of
one of the components.

0 Abstraction operators are defined to hide from an
external observer the inner communications and to
simplify processes according to the constraints im-
posed by their environment.
When Finite State Machines are considered, a simple

notion of equivalence is used, namely trace (or lan-
guage) equivalence. Unfortunately, trace equivalence is
not resolutive enough to catch some important proper-
ties of concurrent and not deterministic processes, such
as deadlock. Thus, more powerful notions of observa-
tional equivalence have to be defined.

A first approach to observational equivalence [141
defines two processes as indistinguishable if each one is
able to simulate the behavior of the other one, i.e., if it
is able to provide the same sets of events to the external
world. Two such processes are said to be bisimilar.
There are several possible definitions for bisimilarity, in
terms of increasing resolution power, e.g., weak,
branching, and strong bisimilarity. They differ mainly
for the kind of internal actions each process is allowed
to execute when trying to simulate the other.

An different approach to observational equivalence is
that of testing equivalence or, in general, testing rela-
tions [8]. This approach is truly observational since two

systems are said equivalent whenever they satisfy the
same set of observers. Depending on the definition of
the universe of observers and on the notion of satisfac-
tion, different testing equivalences can be defined.

‘ L I w - *

Figure 1 : Definition of an observer

2.2. Testing Relations
Given a system K defined on a set of events L, an ob-

server [7] 0 for K is a process defined over events
Lu{ w) . w is an additional event (“victory”) used by the
observer to report to the external world the success of
its observation. The observer and the system interact via
their common events L (Fig. 1).

To define the satisfaction of an observer, one consid-
ers the process obtained by composing the system and
the observer, i.e., the set of all possible common compu-
tation paths. Given an observer, a system must satisfy it
if, for every path, the observer is satisfied, whereas a
system may satisfy the observer if there exists at least
one path in which the observer is satisfied. If none of
these conditions holds, then the system can not satisfy
the observer.

For example, in Fig. 2 a system K is defined by its
LTS. By the above definitions, it turns out that:

K must satisfy O1 since in the process K*01, ob-
tained by parallel composition of the system and the
observer, the event w is inevitable;
K may satisfy O2 since in K*02 w is possible;

0 K can not satisfy O3 since K * 0 3 can’t execute w.
In this framework, all the possible relations among

processes are defined as relations between sets of ob-
servers. In particular:

the may preorder K1 Smay Kz between processes K1
and K2 holds iff the set of observers that K1 may
satisfy is contained in the set of observers that Kz
may satisfy. May preorder is equivalent to classical
trace inclusion: when completely specified and de-

334

terministic systems are considered (e.g., classical
FSMs), this is the only preorder of interest;
the must preorder Kl I,,,, K2 between processes K,
and K2 holds iff the set of observers that Kl must
satisfy is contained in the set of observers K2 must
satisfy; checking for must preorder amounts to a
comparison of the possible deadlock conditions for
the two processes;
according to [7], one can define a testing preorder
K1 lest K2 between processes K, and K2, which holds
iff KI lmay K2 and Kl ImUstK2; the testing preorder
specifies that K2 possesses all the traces of Kl and
does not present any deadlock condition which is not
in K l ;
as usual, equivalences can be defined from preor-
ders: two systems are must-equivalent if the sets of
observers they must satisfy is the same, they are
my-equivalent if they may satisfi the same sets of
observers, and they are testing equivalent if both sets
coincide.

K

f i b W W

K * 0 1

b 1 W

? c W

01

K * O z

0 2 03

0

K*O3

Figure 2: Satisfaction of observers

The above preorders play an important role in system
description and verification methodologies, since they
can describe the relation that holds between a specifica-
tion and a correct implementation. Given a specification
Spec:

0 the set of computations that the implementation is
requested to possess is modeled by the set of ob-
servers that Spec must satisfy;
the set of computations that should never happen in
a correct implementation is modeled by the observ-
ers that Spec can not satisfy.
During the design process (Fig. 3), one must generate

an implementation Impl and guarantee that both the

above sets of computations are not violated, while the
observers that Spec may satisfy are a degree of freedom
during design.

Design
step

Spec MUST MAY

1 7 /
MUST I MAY I CAN'T

Figure 3: Implementation Preorder

This intuitive relation is called implementation pre-
order, and is defined as follows:

Spec LPl Impl iff
Spec I,,,t Imp1 and Spec zmaY Impl.

As the above definitions imply, checking for testing
relations should involve the computation of all possible
observers, which is not feasible in any practical realiza-
tion. [8], to which the interested reader is referred, ef-
fectively bridges the gap between the abstract definition
and an operational view. It provides an alternative char-
acterization of the preorders which directly operates on
LTSs, based on the definition of the set of actions that
must be accepted afer a specified sequence of actions
has been executed.

3. Verification Algorithms
The algorithms implemented in SEVERO for the proof

of testing preorders and equivalences are patterned after
the conceptual procedure of [8] and are, to the best of
our knowledge, the first successful attempt to implement
testing relations with BDDs. The goal of this section is
to introduce the reader to the strategy adopted for proofs
and to give some details about the implemented sym-
bolic algorithms.

Procedures for checking relations between transition
systems have to solve two problems: the identification
of the couples of states that are in correspondence (i.e.,
are reachable under the same I/O conditions) and the
check of a given relation on such state couples. While
the former is usually complex and involves traversals
and fixed point computations on the state transition
graph, the latter is a static property check. Usually, the
two problems are solved together by means of some
fixed point computation interleaved with the check of
the property over each generated state set.

The implementation of testing relations we propose,
instead, solves the two problems separately, in two dif-
ferent computation steps. This is convenient since dif-

335

ferent possible preorders exist and the result of the
computation of the first step, by far more complex, can
be reused several times.

The whole procedure can be schematically described
as follows, assuming that one wants to check for some
testing relation 4 between processes Kl and K2:

Step 1: transform the LTS of K1 to a canonical form
181 by computing the smallest LTS K1’ still testing
equivalent to K1, and do the same for K2. Minimiza-
tion amounts to finding all the states that are reach-
able under the same conditions and which possess
the same deadlock properties. The algorithm for
minimization under the testing equivalence con-
straint is composed of two sub-steps:
-Step la: build a deterministic finite automaton

(DFA) Dl starting from the LTS of K1 by interpret-
ing the LTS as a non deterministic finite automaton
(NFA) and applying a BDD implementation of the
classical conversion algorithm [131. This sub-step
also computes a mapping function MI&, sD) be-
tween each state sD of the DFA D1 and the set of
states sK corresponding to it in the LTS K 1 . This in-
formation is needed in order to be able to detect, in
the following sub-step, all the deadlock conditions.

-Step lb: convert the DFA D1 to the canonical LTS
K,’ by splitting each state according to the possible
deadlock conditions it presents. This task is ac-
complished by identifying, through the mapping
function sD), the set of states sK correspond-
ing to each state sD and by partitioning them ac-
cording to the set of possible actions. For each
partition, a new state is generated in Kl’.

.Step 2: once the canonical forms Kl’ and K2’ are
available, check the desired property + on them.
This step has to check for local conditions only,
since the minimal form is canonical and non deter-
minism is confined to that introduced in Step lb.
This is again composed of two sub-steps:
-Step 2a: compute a relation R&, s2), called com-

patibility relation. This relation is the only part of
the algorithm depending on the relation to be
proven. It records which states s1 of Kl’ are in re-
lation with s2 in K2’. The equations for the com-
patibility relations of the different preorders and
equivalences are in Tab. 1, where O(s, a, p) is true
when a transition s a p 4 exists.

-Step 2b: check whether the possible combined
evolutions of K , and K2 are completely contained
in R&, s2), i.e., whether no state couple accessi-
ble to the systems violates the preorder or equiva-
lence. This is done by computing the reachable

4. Experimental results
This section presents an example to show the effi-

ciency of the algorithms. To quantify the complexity of
the proofs, a variant of the dining philosophers problem
has been considered. The system is modeled by defining
the behavior of each fork and philosopher as a separate
process, and composing them. The fork models a shared
resource, recording whether it is on the table or it is held
by some philosopher. Two different configurations of
the system were considered:

Case 1: each philosopher gets his left fork, then the
right one and releases them in the reverse order.
Case 2: in order to avoid deadlock, philosophers are
given the option of laying down their left fork when-
ever they are not able to acquire the right one.
The system has been chosen such that Case 2 can be

an implementation of Case 1, i.e., Case 1 IhPl Case 2 .
Tab. 2 and 3 summarize the results obtained with

SEVERO on a SparcStation2 with 32 Mbytes of memory.
A limit of 800,000 BDD nodes was set for all the com-
putations and CPU times are reported in seconds. Col-
umn (a) reports the number n of philosophers and the
system configuration. The size of the composite system,
in terms of number of states and transitions, and the
CPU time to compose it are in columns (b), (c), and (d),
respectively. Columns (e), (f) and (g) report results for
obtaining the minimal LTS (Step l), and (h) the time
needed to estabilish the existence of the implementation
preorder (Step 2).

5. Conclusions
This paper presented some sophisticated equivalence

notions for Process Algebra descriptions and the corre-
sponding proof algorithms. Testing equivalences and
testing preorders are shown to be much more expressive

336

and suitable for system-level descriptions than trace
equivalence or bisimulations. In particular, the imple-
mentation preorder models the relation that must hold
between a specification and one of its correct implemen-
tations.

For the first time, testing relations are implemented
resorting to symbolic techniques and BDDs, and are
implemented in the efficient tool SEVERO. Experimental
results show that proofs of testing relations can be ac-
complished in acceptable time.

Acknowledgments

the useful discussions.

References

The authors wish to thank Prof. Rocco De Nicola for

611
612
7/ 1
712

A. Bouali, R. de Simone: Symbolic Bisimulation Mini-
mization, CAV’92: 4‘h Workshop on Computer-Aided
Verification, June 1992, pp. 97-108
K.S. Brace, R.L. Rudell, R.E. Bryant: ESJicient Imple-
mentation of a BDD Package, DAC’90: 27th
ACMIIEEE Design Automation Conference, Orlando,
FL (USA), June 1990, pp. 40-45
R. E. Bryant: Graph-based Algorithms for Boolean
Function Manipulation, IEEE Transactions on Comput-
ers, vol. C-35, N. 8, August 1986, pp. 677-691
P. Camurati, F. Como, P. Prinetto: Exploiting symbolic
traversal techniques for eSJicient Process Algebra Ma-
nipulation, CHDL’93: IFIP Conference on Hardware
Description Languages, Ottawa (CAN), pp. 21-34
P. Camurati, F. Corno, P. Prinetto: An eficient tool for
system-level verification of behaviors and temporal
properties, EURO-DAC’93: IEEE European Design
Automation Conference, Hamburg (D), September

R. Cleaveland, J. Parrow, B. Steffen: The Concurrency
Workbench, “Automatic Verification Methods for Finite
State Systems,” J. Sifakis Editor, LNCS 407, Springer
Verlag, Berlin (Germany), pp. 24-37
R. De Nicola: Extensional Equivalences for Transition
Systems, Acta Informatica, vol. 24, pp. 21 1-237,
Springer-Verlag, New York, NY (USA), 1987
R. De Nicola, M. Hennessy: Testing Equivalences for
Processes, Theoretical Computer Science, ~01.34, pp.
83-133, North Holland, Amsterdam (NL), 1984
J. C. Godskesen, K. G. Larsen, M. Zeeberg: TAV (Tools
for Automatic Verification) Users Manual, Dept. of
Mathematics and Computer Science, Institute for Elec-
tronic Systems, Aalborg (DK), August 1989
M. Hennessy, R. Milner: Algebraic Laws for Nonde-
terminism and Concurrency, J. ACM, 32 (1985), pp.

M. Hennessy: Algebraic Theory of Processes, MIT
Press, Cambridge, Mass. (USA), 1988

1993, pp. 124-129

137-161

1297 28890 20.34
1297 72890 27.53
4286 160317 70.66
4286 47 1454 83.63

[12] C. A. R. Hoare, Communicating Sequential Processes,
International Series in Computer Science, Prentice Hall,
Englewood Cliffs, NJ (USA), 1985

[13] J. E. Hopcrofr, J. D. Ullman: Introduction to Automata
Theory, Languages, and Computation, Addison-
Wesley, Reading, Mass, 1979

[14] R. Milner: A Calculus of Communicating Systems,
Lecture Notes Computer Science, vol. 92, Springer-
Verlag, New York, NY (USA), 1980

[15] G. J. Milne: Circa1 and the Representation of Commu-
nication, Concurrency and Time, ACM Transactions on
Programming Languages and Systems, vol. 7, 1985

[161 R. Milner: Communication and Concurrency, Prentice
Hall, Englewood Cliffs, NJ (USA), 1989

[171 G. J. Milne: The Formal Description and Verification of
Hardware Timing, IEEE Trans. on Computers, 40, N. 7,
July 1991, pp. 811-826

S stem Builds stem
n I case Time [SI

512 392 1 1254 6.76

(a) (b) (c) (4
Table 2: Experimental results

(e) (f) (g)

Table 3: Experimental results (cont’d)

337

