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Abstract* 
Process Algebras are rapidly becoming a mathe- 

matical model used by verification engineers to extend 
the description capabilities of Finite State Machines 
towards higher abstraction levels. As long as design 
and verification methodologies at the system level are 
developed, the wide spectrum of equivalence relations 
that can be defined over processes receives an ever 
increasing importance. Testing Equivalences and Test- 
ing Preorders are particularly suited for formalizing the 
relationships holding in top-down hierarchical meth- 
odologies. The main deterrent to the widespread use of 
Process Algebras seems to be the lack of eficient tools. 
Very eficient algorithmic techniques, based on the 
adoption of Binary Decision Diagrams, are now being 
used in different fields. This paper presents algorithms 
for the proof of testing preorders and equivalences that 
are, to the best of our knowledge, the first successful 
attempt to implement testing relations with BDDs. Ex- 
perimental results show that the the implemented al- 
gorithms are able to deal with medium- and large-size 
systems. 

1. Introduction 
Finite State Machines (FSMs) are one of the most 

popular formalisms for describing the behavior of sys- 
tems. They proved an excellent formalism to describe 
and manipulate systems when synchronous descriptions 
are considered. Unfortunately, they lack versatility and 
expressive power to be used in higher-level descrip- 
tions, where more sophisticated models are needed. This 
lead to the development of several extensions of FSMs, 
in the directions of concurrence, non determinism, asyn- 
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chronous evolution, hierarchy, communication, and data 
handling. 

Process Algebras (PAS) [14] [12] [16] are one such 
extension, aiming at modeling concurrent communicat- 
ing systems at a very high level of abstraction. They 
overcome most limits of FSMs, especially for control- 
dominated systems, and they profit by a sound mathe- 
matical framework. In formal verification, PAS support 
the powerful notion of observational equivalences and 
preorders [8], which allow the designer to select the 
resolution power he needs when comparing systems. 

The main limit to the applicability of PAS is the lack 
of efficient tools. The algorithms presented in this paper 
have been implemented in SEVERO [4] [5], a BDD 
based tool for Process Algebra manipulation. Its effi- 
ciency is orders of magnitude superior to traditional 
approaches [6] [9] and comparable or better to other 
symbolic implementations [ 11. The PA impemented in 
SEVERO is Circa1 [15] [17], whose capability of describ- 
ing concurrent events and multi-point communications 
is invaluable in describing hardware systems. 

The goal of this paper is twofold: from one hand, it 
presents Testing Preorders and Equivalences, showing 
how they can be used in system design and verification. 
From the other hand, it describes a set of symbolic al- 
gorithms to minimize processes according to Testing 
Equivalence and to check for testing relations. 

The paper is structured as follows. Section 2 shortly 
establishes the theoretical framework of PAS and Testing 
Relations. Section 3 details the algorithms used in veri- 
fication. Section 4 reports some experimental results 
proving the efficiency of the approach, while in section 
5 some conclusions are drawn. 

2. Theoretical Framework 

2.1. Process Algebras 
A process is a black box offering to the external en- 

vironment a set of communication ports, through which 
events are exchanged. Following Circal’s paradigm [ 151, 
actions can occur simultaneously and can be shared 
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among processes according to multi-point rendez-vous 
channels. When an external observer is not allowed to 
monitor this exchange of actions the processes are said 
to execute internal communications, called z or silent 
actions. 

The behavior of a process K is specified in terms of 
the events it is able to exchange and Labeled Transition 
Systems (LTSs) are used as a concrete representation. A 
LTS is a 4-tuple K = (S, A, T, SO), where S is a set of 
states, A is the set of actions that K is allowed to exe- 
cute, where an action aEA is a set of events taken from 
the set L of allowed events: A=2L, and SO is the initial 
state s0eS. T is a relation TcSxAxS,  called transition 
relation, that determines the sequential behavior of the 
process: it records the set of transitions (ss, a,  as) that 
can be traversed by the system, where ss,aseS are the 
start and the arrival state, and a e A  is an action. 

Process Algebras provide operators for manipulating 
processes described by LTSs. Process Algebra operators 
are used to build composite systems starting from sim- 
pler ones [ 171. The most important operators are: 

Composition operators: the concurrent evolution of 
two processes is defined by considering all the inter- 
leavings of their actions and the synchronizazions 
due to rendez-vous on shared actions, which model 
communications. 

0 Choice operators: the composite behavior is that of 
one of the components. 

0 Abstraction operators are defined to hide from an 
external observer the inner communications and to 
simplify processes according to the constraints im- 
posed by their environment. 
When Finite State Machines are considered, a simple 

notion of equivalence is used, namely trace (or lan- 
guage) equivalence. Unfortunately, trace equivalence is 
not resolutive enough to catch some important proper- 
ties of concurrent and not deterministic processes, such 
as deadlock. Thus, more powerful notions of observa- 
tional equivalence have to be defined. 

A first approach to observational equivalence [ 141 
defines two processes as indistinguishable if each one is 
able to simulate the behavior of the other one, i.e., if it 
is able to provide the same sets of events to the external 
world. Two such processes are said to be bisimilar. 
There are several possible definitions for bisimilarity, in 
terms of increasing resolution power, e.g., weak, 
branching, and strong bisimilarity. They differ mainly 
for the kind of internal actions each process is allowed 
to execute when trying to simulate the other. 

An different approach to observational equivalence is 
that of testing equivalence or, in general, testing rela- 
tions [8]. This approach is truly observational since two 

systems are said equivalent whenever they satisfy the 
same set of observers. Depending on the definition of 
the universe of observers and on the notion of satisfac- 
tion, different testing equivalences can be defined. 

‘ L  I w  - *  

Figure 1 : Definition of an observer 

2.2. Testing Relations 
Given a system K defined on a set of events L, an ob- 

server [7] 0 for K is a process defined over events 
Lu{ w ) .  w is an additional event (“victory”) used by the 
observer to report to the external world the success of 
its observation. The observer and the system interact via 
their common events L (Fig. 1). 

To define the satisfaction of an observer, one consid- 
ers the process obtained by composing the system and 
the observer, i.e., the set of all possible common compu- 
tation paths. Given an observer, a system must satisfy it 
if, for every path, the observer is satisfied, whereas a 
system may satisfy the observer if there exists at least 
one path in which the observer is satisfied. If none of 
these conditions holds, then the system can not satisfy 
the observer. 

For example, in Fig. 2 a system K is defined by its 
LTS. By the above definitions, it turns out that: 

K must satisfy O1 since in the process K*01, ob- 
tained by parallel composition of the system and the 
observer, the event w is inevitable; 
K may satisfy O2 since in K*02 w is possible; 

0 K can not satisfy O3 since K * 0 3  can’t execute w. 
In this framework, all the possible relations among 

processes are defined as relations between sets of ob- 
servers. In particular: 

the may preorder K1 Smay Kz between processes K1 
and K2 holds iff the set of observers that K1 may 
satisfy is contained in the set of observers that Kz 
may satisfy. May preorder is equivalent to classical 
trace inclusion: when completely specified and de- 

334 



terministic systems are considered (e.g., classical 
FSMs), this is the only preorder of interest; 
the must preorder Kl I,,,, K2 between processes K, 
and K2 holds iff the set of observers that Kl must 
satisfy is contained in the set of observers K2 must 
satisfy; checking for must preorder amounts to a 
comparison of the possible deadlock conditions for 
the two processes; 
according to [7], one can define a testing preorder 
K1 lest K2 between processes K, and K2, which holds 
iff KI lmay K2 and Kl ImUstK2; the testing preorder 
specifies that K2 possesses all the traces of Kl and 
does not present any deadlock condition which is not 
in K l ;  
as usual, equivalences can be defined from preor- 
ders: two systems are must-equivalent if the sets of 
observers they must satisfy is the same, they are 
my-equivalent if they may satisfi the same sets of 
observers, and they are testing equivalent if both sets 
coincide. 
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Figure 2: Satisfaction of observers 

The above preorders play an important role in system 
description and verification methodologies, since they 
can describe the relation that holds between a specifica- 
tion and a correct implementation. Given a specification 
Spec: 

0 the set of computations that the implementation is 
requested to possess is modeled by the set of ob- 
servers that Spec must satisfy; 
the set of computations that should never happen in 
a correct implementation is modeled by the observ- 
ers that Spec can not satisfy. 
During the design process (Fig. 3), one must generate 

an implementation Impl and guarantee that both the 

above sets of computations are not violated, while the 
observers that Spec may satisfy are a degree of freedom 
during design. 

Design 
step 

Spec MUST MAY 

1 7 / 
MUST I MAY I CAN'T 

Figure 3: Implementation Preorder 

This intuitive relation is called implementation pre- 
order, and is defined as follows: 

Spec LPl Impl iff 
Spec I,,,t Imp1 and Spec zmaY Impl. 

As the above definitions imply, checking for testing 
relations should involve the computation of all possible 
observers, which is not feasible in any practical realiza- 
tion. [8], to which the interested reader is referred, ef- 
fectively bridges the gap between the abstract definition 
and an operational view. It provides an alternative char- 
acterization of the preorders which directly operates on 
LTSs, based on the definition of the set of actions that 
must be accepted afer  a specified sequence of actions 
has been executed. 

3. Verification Algorithms 
The algorithms implemented in SEVERO for the proof 

of testing preorders and equivalences are patterned after 
the conceptual procedure of [8] and are, to the best of 
our knowledge, the first successful attempt to implement 
testing relations with BDDs. The goal of this section is 
to introduce the reader to the strategy adopted for proofs 
and to give some details about the implemented sym- 
bolic algorithms. 

Procedures for checking relations between transition 
systems have to solve two problems: the identification 
of the couples of states that are in correspondence (i.e., 
are reachable under the same I/O conditions) and the 
check of a given relation on such state couples. While 
the former is usually complex and involves traversals 
and fixed point computations on the state transition 
graph, the latter is a static property check. Usually, the 
two problems are solved together by means of some 
fixed point computation interleaved with the check of 
the property over each generated state set. 

The implementation of testing relations we propose, 
instead, solves the two problems separately, in two dif- 
ferent computation steps. This is convenient since dif- 
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ferent possible preorders exist and the result of the 
computation of the first step, by far more complex, can 
be reused several times. 

The whole procedure can be schematically described 
as follows, assuming that one wants to check for some 
testing relation 4 between processes Kl and K2: 

Step 1: transform the LTS of K1 to a canonical form 
181 by computing the smallest LTS K1’ still testing 
equivalent to K1, and do the same for K2. Minimiza- 
tion amounts to finding all the states that are reach- 
able under the same conditions and which possess 
the same deadlock properties. The algorithm for 
minimization under the testing equivalence con- 
straint is composed of two sub-steps: 
-Step la: build a deterministic finite automaton 

(DFA) Dl starting from the LTS of K1 by interpret- 
ing the LTS as a non deterministic finite automaton 
(NFA) and applying a BDD implementation of the 
classical conversion algorithm [ 131. This sub-step 
also computes a mapping function MI&, sD) be- 
tween each state sD of the DFA D1 and the set of 
states sK corresponding to it in the LTS K 1 .  This in- 
formation is needed in order to be able to detect, in 
the following sub-step, all the deadlock conditions. 

-Step lb: convert the DFA D1 to the canonical LTS 
K,’ by splitting each state according to the possible 
deadlock conditions it presents. This task is ac- 
complished by identifying, through the mapping 
function sD), the set of states sK correspond- 
ing to each state sD and by partitioning them ac- 
cording to the set of possible actions. For each 
partition, a new state is generated in Kl’. 

.Step 2: once the canonical forms Kl’ and K2’ are 
available, check the desired property + on them. 
This step has to check for local conditions only, 
since the minimal form is canonical and non deter- 
minism is confined to that introduced in Step lb. 
This is again composed of two sub-steps: 
-Step 2a: compute a relation R&, s2), called com- 

patibility relation. This relation is the only part of 
the algorithm depending on the relation to be 
proven. It records which states s1 of Kl’ are in re- 
lation with s2 in K2’. The equations for the com- 
patibility relations of the different preorders and 
equivalences are in Tab. 1, where O(s, a, p )  is true 
when a transition s a p 4  exists. 

-Step 2b: check whether the possible combined 
evolutions of K ,  and K2 are completely contained 
in R&, s2), i.e., whether no state couple accessi- 
ble to the systems violates the preorder or equiva- 
lence. This is done by computing the reachable 

4. Experimental results 
This section presents an example to show the effi- 

ciency of the algorithms. To quantify the complexity of 
the proofs, a variant of the dining philosophers problem 
has been considered. The system is modeled by defining 
the behavior of each fork and philosopher as a separate 
process, and composing them. The fork models a shared 
resource, recording whether it is on the table or it is held 
by some philosopher. Two different configurations of 
the system were considered: 

Case 1: each philosopher gets his left fork, then the 
right one and releases them in the reverse order. 
Case 2: in order to avoid deadlock, philosophers are 
given the option of laying down their left fork when- 
ever they are not able to acquire the right one. 
The system has been chosen such that Case 2 can be 

an implementation of Case 1, i.e., Case 1 IhPl Case 2 .  
Tab. 2 and 3 summarize the results obtained with 

SEVERO on a SparcStation2 with 32 Mbytes of memory. 
A limit of 800,000 BDD nodes was set for all the com- 
putations and CPU times are reported in seconds. Col- 
umn (a) reports the number n of philosophers and the 
system configuration. The size of the composite system, 
in terms of number of states and transitions, and the 
CPU time to compose it are in columns (b), (c), and (d), 
respectively. Columns (e), (f) and (g) report results for 
obtaining the minimal LTS (Step l), and (h) the time 
needed to estabilish the existence of the implementation 
preorder (Step 2). 

5. Conclusions 
This paper presented some sophisticated equivalence 

notions for Process Algebra descriptions and the corre- 
sponding proof algorithms. Testing equivalences and 
testing preorders are shown to be much more expressive 
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and suitable for system-level descriptions than trace 
equivalence or  bisimulations. In particular, the imple- 
mentation preorder models the relation that must hold 
between a specification and one of its correct implemen- 
tations. 

For the first time, testing relations are implemented 
resorting to  symbolic techniques and BDDs, and are 
implemented in the efficient tool SEVERO. Experimental 
results show that proofs of testing relations can be ac- 
complished in acceptable time. 
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