
Model Checking Programs

Willem Visser
(wvisser@ptolemy.arc.nasa.gov)
RIACS/NASA Ames Research Center, Moffet Field, CA 94035, USA

Klaus Havelund
QSS/NASA Ames Research Center, Moffet Field, CA 94035, USA

Guillaume Brat
Kestrel Technologies/NASA Ames Research Center, Moffet Field, CA 94035, USA

SeungJoon Park and Flavio Lerda
RIACS/NASA Ames Research Center, Moffet Field, CA 94035, USA

April 19, 2002

Abstract.
The majority of work carried out in the formal methods community throughout the last

three decades has (for good reasons) been devoted to special languages designed to make it
easier to experiment with mechanized formal methods such as theorem provers, proof checkers
and model checkers. In this paper we will attempt to give convincing arguments for why we
believe it is time for the formal methods community to shift some of its attention towards
the analysis of programs written in modern programming languages. In keeping with this
philosophy we have developed a verification and testing environment for Java, called Java
PathFinder (JPF), which integrates model checking, program analysis and testing. Part of this
work has consisted of building a new Java Virtual Machine that interprets Java bytecode. JPF
uses state compression to handle big states, and partial order and symmetry reduction, slicing,
abstraction, and runtime analysis techniques to reduce the state space. JPF has been applied to
a real-time avionics operating system developed at Honeywell, illustrating an intricate error,
and to a model of a spacecraft controller, illustrating the combination of abstraction, runtime
analysis, and slicing with model checking.

Keywords: Model Checking, Java, Symmetry, Abstraction, Runtime Analysis, Static Analysis

1. Introduction

The majority of work carried out in the formal methods community through-
out the last three decades, since Hoare’s axiomatic method for proving pro-
grams correct (Hoare, 1969), has been devoted to special languages that dif-
fer from main stream programming languages. Typical examples are formal
specification languages (The RAISE Language Group, 1992; Bjørner and
Jones, 1982; Spivey, 1992), purely logic based languages used in theorem
provers (Gordon, 1988; Owre et al., 1996; Cornes et al., 1995), and guarded
command languages used in model checkers (Melton et al., 1996; McMillan,
1993; Larsen et al., 1998). In a few cases, modeling languages have been
designed to resemble programming languages (Holzmann, 1997b), although

c 2002Kluwer Academic Publishers. Printed in the Netherlands.

ase00.tex; 19/04/2002; 9:53; p.1

2 Visser, Havelund, Brat, Park and Lerda

the focus has been on protocol designs. Some of these linguistic choices have
made, and still make, it feasible to experiment more conveniently with new al-
gorithms and frameworks for analyzing system models. For example, a logic
based language is well suited for rewriting, and a rule based guarded com-
mand notation is convenient for a model checker. We believe that continued
research in special languages is important since this research investigates se-
mantically clean language concepts and will impact future language designs
and analysis algorithms.

We, however, want to argue that a next important step for the formal
methods subgroup of the software engineering community could be to fo-
cus some of its attention on real programs written in modern programming
languages. We believe that studying programming languages somehow will
result in some new challenges that will drive the research in new directions as
described in the first part of the paper. Our main interest is in multi-threaded,
interactive programs, where unpredictable interleavings can cause errors, but
the argument extends to sequential programs.

In the second part of the paper, we describe our own effort to follow this
vision by presenting the development of a verification, analysis and testing
environment for Java, called Java PathFinder (JPF). This environment com-
bines model checking techniques with techniques for dealing with large or
infinite state spaces. These techniques include static analysis for supporting
partial order reduction of the set of transitions to be explored by the model
checker, predicate abstraction for abstracting the state space, and runtime
analysis such as race condition detection and lock order analysis to pinpoint
potentially problematic code fragments. Part of this work has consisted of
building a new Java Virtual Machine (JVMJPF) that interprets Java bytecode.
JVMJPF is called from the model checking engine to interpret bytecode
generated by a Java compiler.

We believe it is an attractive idea to develop a verification environment for
Java for three reasons. First, Java is a modern language featuring important
concepts such as object-orientation and multi-threading within one language.
Languages such as C and C++, for example, do not support multi-threading
as part of their core. Second, Java is simple, for example compared to C++.
Third, Java is compiled into bytecode, and hence, the analysis can be done
at the bytecode level. This implies that such a tool can be applied to any
language that can be translated into bytecode1. Bytecode furthermore seems
to be a convenient breakdown of Java into easily manageable bytecode in-
structions; and this seems to have eased the construction of our analysis tool.
JPF is the second generation of a Java model checker developed at NASA
Ames. The first generation of JPF (JPF1) (Havelund, 1999a; Havelund and

1 For example, there already exist translators from Eiffel, Ada, OCAML, Scheme and
Prolog to bytecode.

ase00.tex; 19/04/2002; 9:53; p.2

Model Checking Programs 3

Pressburger, 1999) was a translator from Java to the Promela language of the
Spin model checker.

The paper is organized as follows. Section 2 outlines our arguments for
applying formal methods to programs. Section 3 describes JPF and Section 4
its integration within the BANDERA toolset. Section 5 describes related work
on model checking C programs. Section 6 presents two applications of JPF:
a real-time avionics operating system developed at Honeywell, illustrating an
intricate error; and a model of a space craft controller, illustrating the com-
bination of abstraction, runtime analysis, and slicing with model checking to
locate a deadlock. Both of these errors were problems in the real code of these
systems. Finally, Section 7 contains conclusions and a description of future
work.

2. Why Analyze Code?

It is often argued that verification technologies should be applied to designs
rather than to programs since catching errors early at the design level will
reduce maintenance costs later on. We do agree that catching errors early is
crucial. State of the art formal methods also most naturally lend themselves
to designs, simply due to the fact that designs have less complexity, which
make formal analysis more feasible and practical. Hence, design verification
is a very important research topic, with the most recent popular subject being
analysis of statecharts (Harel, 1987), such as for example found in UML
(Booch et al., 1999). However, we want to argue that the formal methods
community should focus some of its attention on programs for a number of
reasons that we will describe below.

First of all, programs often contain fatal errors despite the existence of
careful designs. Many deadlocks and critical section violations, for example,
are introduced at a level of detail which designs typically do not deal with,
if formal designs are made at all. This was for example demonstrated in the
analysis of NASA’s Remote Agent spacecraft control system written in the
LISP programming language, and analyzed using the Spin model checker
(Havelund et al., 1998). Here several classical multi-threading errors were
found that were not really design errors, but rather programming mistakes
such as forgetting to enclose code in critical sections. One of the missing
critical section errors found using Spin was later introduced in a sibling mod-
ule, and caused a real deadlock during flight in space, 60,000 miles from
earth (Havelund et al., 2000); see Section 6.1. Another way of describing
the relationship between design and code is to distinguish between two kinds
of errors. On the one hand there are errors caused by flaws in underlying
complex algorithms. Examples of complex algorithms for parallel systems
are communication protocols (Havelund and Shankar, 1996; Helmink et al.,

ase00.tex; 19/04/2002; 9:53; p.3

4 Visser, Havelund, Brat, Park and Lerda

1994) and garbage collection algorithms (Havelund, 1999b; Russinoff, 1994).
The other kind of error is more simple minded concurrency programming
errors, such as forgetting to put code in a critical section or causing deadlocks.
Errors of this kind will typically not be caught in a design, and they are a real
hazard, in particular in safety critical systems. Complex algorithms should
probably be analyzed at the design level, although there is no reason such
designs cannot be expressed in a modern programming language. However,
as will be shown on a real example in Section 6.2, deep design errors can also
appear in the code.

Second, one can argue that since modern programming languages are the
result of decades of research, they are the result of good language design prin-
ciples. Hence, they may be good design/modeling languages. This is to some
extent already an applied idea within UML where statechart transitions (be-
tween control states) can be annotated with code fragments in your favorite
programming language. In fact, the distinction between design and program
gets blurred since final code may get generated from the UML designs. An
additional observation is that some program development methods suggest a
prototyping approach where the system is incrementally constructed using a
real programming language, rather than being derived from a pre-constructed
design. This was for example the case with the Remote Agent (Muscettola
et al., 1998) mentioned above. Furthermore, any research result on program-
ming languages can benefit design verification since designs typically are less
complex.

A third, and very different kind of, argument for studying verification of
real programs is that such research will force the community to deal with
very hard problems, and this will hopefully drive research into new areas. We
believe, for example, that it could be advantageous for formal methods to be
combined with other research fields that traditionally have been more focused
on programs, such as static program analysis and testing. Such techniques
are typically less complete, but they often scale better. We believe that the
objective of formal methods is not only to prove programs correct, but also
to debug programs and locate errors. With such a more limited ambition,
one may be able to apply techniques which are less complete and based on
heuristics, such as certain testing techniques.

Fourth, studying formal methods for programming languages may, fur-
thermore, have some derived advantages for the formal methods community
since there is a tendency to standardize programming languages. This may
make it feasible to compare and integrate different tools working on the same
language - or on “clean subsets” of these languages. As mentioned above, it
would be very useful to study the relationship between formal methods and
other areas such as program analysis and testing techniques. Working at the
level of programs will make it possible to better interact with these communi-
ties. We have already had one such experience in our informal collaboration

ase00.tex; 19/04/2002; 9:53; p.4

Model Checking Programs 5

with Kansas State University, where our tool generated a slicing criterion
based on runtime analysis, and their tool could slice the Java program based
on this criterion, where after we could apply our model checker to the result-
ing program. A final derived advantage will be the many orders of magnitude
increased access to real examples and users who may want to experiment with
the techniques produced. This may have a very important impact on driving
the research towards scalable solutions.

In general, it is our hope that formal methods will play a role for every-
day software developers. By focusing on real programming languages we
hope that our community will be able to interact more intensively on solving
common problems. Furthermore, the technology transfer problem so often
mentioned may vanish, and instead be replaced by a technology demand.

3. Model Checking Java Programs

It is well known that concurrent programs are non-trivial to construct, and
with Java essentially giving the capability for anyone to write concurrent
programs, we believe, a model checker for Java might have a bright future.
In fact, one area where we believe it can have an immediate impact is in
environments where Java is taught. In the rest of this section we will address
some of the most important issues in the model checking of programming lan-
guages. Specifically, we will highlight the major reasons why model checking
programs is considered hard, and then illustrate how we tackle these problems
within JPF.

3.1. COMPLEXITY OF LANGUAGE CONSTRUCTS

Input languages for model checkers are often kept relatively simple to allow
efficient processing during model checking. Of course there are exceptions
to this, for example Promela, the input notation of Spin (Holzmann, 1997b),
more resembles a programming language than a modeling language. General
programming languages, however, contain many new features almost never
seen in model checking input languages, for example, classes, dynamic mem-
ory allocation, exceptions, floating point numbers, method calls, etc. How
will these be treated? Three solutions are currently being pursued by differ-
ent groups trying to model check Java: one can translate the new features
to existing ones, one can create a model checker that can handle these new
features, or, one can use a combination of translation and a new/extended
model checker.

3.1.1. Translation
The first version of JPF (Havelund and Pressburger, 1999), as well as the
JCAT system (Demartini et al., 1999a), was based on a translation from Java

ase00.tex; 19/04/2002; 9:53; p.5

6 Visser, Havelund, Brat, Park and Lerda

to Promela. Although both these systems were successful in model checking
some interesting Java programs (Havelund and Skakkebaek, 1999; Demar-
tini et al., 1999a), such source-to-source translations suffer from two serious
drawbacks:

Language Coverage— Each language feature of the source language must
have a corresponding feature in the destination language. This is not
true of Java and Promela, since Promela for example, does not support
floating point numbers.

Source Required— In order to translate one source to another, the original
source is required, which is often not the case for Java, since only the
bytecodes are available — for example in the case of the libraries and
code loaded over the WWW.

For Java, the requirement that the source exists can be overcome by trans-
lating directly from bytecodes. This is the approach used by the BANDERA
tool (Corbett et al., 2000a), where bytecodes, after some manipulation, are
translated to either Promela or the SMV model checker’s input notation. The
Stanford Java model checker also uses this approach, by translating byte-
codes to the SAL intermediate language for model checking (Park et al.,
2000). Their SAL model checker is however specifically developed for the
purpose of checking programs with dynamic data-structures and hence could
be argued to fall into the custom-made model checker category below.

3.1.2. Custom-made Model Checker
In order to overcome the language coverage problem it is obvious that ei-
ther the current model checkers need to be extended, or a new custom-made
model checker must be developed. Some work is being done on extending the
Spin model checker to handle dynamic memory allocation (Demartini et al.,
1999b; Visser et al., 1999), but again in terms of Java this only covers a part of
the language and much more is required before full Java language coverage
will be achieved this way. With JPF we took the other route, we developed our
own custom-made model checker that can execute all the bytecode instruc-
tions, and hence allow the whole of Java to be model checked. The model
checker consists of our own Java Virtual Machine (JVMJPF) that executes
the bytecodes and a search component that guides the execution. Note that the
model checker is therefore an explicit state model checker, similar to Spin,
rather than a symbolic one based on Binary Decision Diagrams such as SMV
(McMillan, 1993). Also, we decided that a depth-first traversal with back-
tracking would be most appropriate for checking temporal liveness properties
(breadth-first liveness checking is inefficient due to the problems in detecting
cycles). A nice side-effect of developing our own model checker was the ease
with which we are able to extend the model checker with interesting new

ase00.tex; 19/04/2002; 9:53; p.6

Model Checking Programs 7

search algorithms—this would, in general, not have been easy to achieve with
existing model checkers (especially not with Spin). A major design decision
for JPF was to make it as modular and understandable to others as possible,
but we sacrificed speed in the process — Spin is at least an order of magnitude
faster than JPF. We believe this is a price worth paying in the long run.

JPF is written in Java and uses the JavaClass package2 to manipulate
classfiles. Although we again sacrifice speed to some extent by not using
C/C++, there is no doubt in our minds that doing JPF in Java has saved us
months on development time. The initial system, which could only handle
integer based bytecodes (i.e. the same language subset as the Java model
checkers translating to Spin), was developed in 3 man-months. The system
as described in this paper, required approximately 15 man-months.

Language and Properties Supported
The JVMJPF supportsall Java bytecodes, hence any program written inpure
Java can be analyzed. Unfortunately, not all Java programs consist ofpure
Java code - one often finds that certain methods are defined as beingnative
to the operating system. When a Java program calls methods that have no
corresponding bytecodes, then JPF cannot determine what the state of these
code fragments will be and hence cannot handle programs that, for example,
access the file system (user-defined class-loaders, file I/O operations, etc.),
or communicate over a network, contains GUI code, etc. Fortunately, many
native methods do not have side-effects and hence simple wrapper-methods
can be written that translate the inputs and outputs to the native method, which
then allow the original method to be called and all state changes to happen
after returning from the call. However, if the native method itself causes an
error, JPF will not be able to detect it, unless its output also causes an error in
the Java code. Furthermore, JPF can only handleclosedsystems, i.e. a system
and the environment it will execute in. This however is also the case in testing,
where a test-harness is required toclosea system, and is not considered a
drawback of the approach.

The current model checker can check for deadlocks, invariants and user-
defined assertions in the code, as well as Linear Time Temporal Logic (LTL)
properties. In fact JPF supports all properties expressible in the BANDERA
tool, the interested reader is referred to (Corbett et al., 2000b) for more detail.

3.2. COMPLEX STATES

In order to ensure termination during explicit state model checking one must
know when a state is revisited. It is common for a hashtable to be used to
store states, which means an efficient hash function is required as well as fast
state comparison.

2 http://www.inf.fu-berlin.de/˜dahm/JavaClass/

ase00.tex; 19/04/2002; 9:53; p.7

8 Visser, Havelund, Brat, Park and Lerda

The Verisoft system (Godefroid, 1997) was developed to model check
software, but the design premise was that thestateof a software system is
too complex to be encoded efficiently, hence Verisoft does not store any of
the states it visits (Verisoft limits the depth of the search to get around the
termination problem mentioned above). Since the Verisoft system executes
the actual code (C/C++), and has little control over the execution, except
for some user-defined “hooks” into communication statements, it is almost
impossible to encode the system state efficiently. This insight also convinced
us that we cannot tie our model checking algorithm in with an existing JVM,
which is in general highly optimized for speed, but will not allow the memory
to be encoded easily. In (Stoller, 2000), a state-less model checking algorithm
similar to that of Verisoft is described for Java. This system instruments the
bytecodes for a program with “hooks” to allow model checking.

Our design philosophy was to keep the states of the JVM in a complex
data-structure, but one that would allow us to encode the states in an efficient
fashion in order to determine if we have visited states before. Specifically,
each state consists of three components: information for each thread in the
Java program, the static variables (in classes) and the dynamic variables (in
objects) in the system. The information for each thread consists of a stack
of frames, one for each method called, whereas the static and dynamic in-
formation consists of information about the locks for the classes/objects and
the fields in the classes/objects. Each of the components mentioned above is
a Java data-structure. In early stages of JPF development we did store these
structures directly in a hashtable, but with terrible results in terms of memory
and speed: 512Mb would be exhausted after only storing�50000 states, and
�20 states could be evaluated each second (on a SPARC ULTRA60).

The solution we adopted to make the storing of states more efficient, was
a generalization of theCollapsemethod from Spin (Holzmann, 1997a): each
component of the JVM state is stored separately in a table, and the index
at which the component is stored is then used to represent the component.
More specifically, each component (for example the fields in a class/object)
is inserted in a table for that component; if the specific component is already
in the table its index is returned, and if it is unique it is stored at the next open
slot and that index is returned. This has the effect of encoding a large structure
into no more than an integer3 (see Figure 1). Collapsing states in this fashion
allows fast state comparisons, since only the indexes need to be compared and
not the structures themselves. The philosophy behind the collapsing scheme
is that although many states can be visited by a program the underlying com-
ponents of many of these states will be the same. A somewhat trivial example
of this is when a statement updates a local variable within a method: the only

3 All the tables are implemented as hashtables, and in some cases the “index” used will be
a reference to an object rather than an integer value.

ase00.tex; 19/04/2002; 9:53; p.8

Model Checking Programs 9

part of the system that changes is the frame representing the method, all the
other parts of the system state are unaffected and willcollapseto the same
indexes. This actually alludes to the other optimization we added: only update
the part of the system that changes, i.e., keep the indexes calculated for the
previous state the same, only calculate the one that changed (to date we have
only done this optimization in some parts of the system). After making these
changes the system could store millions of states in 512Mb and could evaluate
between 500 and 1500 states per second depending on the size of the state (on
a SPARC ULTRA60).

Static Area

Mon i tor

Fi e l ds

Dynamic Area

Mon i tor

Fi e l ds

Thread List

Threa dI nf o

Frame

Fields
Pool

Monitor
Pool

Frame
Pool

Java Vi r t ual Machi ne St at e

I nt eger Vec t or

CC
oo
ll
ll
aa
pp
ss
ee

UU
nn
cc
oo
ll
ll
aa
pp
ss
ee

Figure 1. Collapsing and Recreating the JVM state

It was however clear from profiling the system execution that there was
still one major source of inefficiency - the collapsing of states was only used
for the states stored in the hashtable, but in order to allow backtracking the
un-collapsed states are stored in a stack. More specifically, whenever a new
state is generated a copy of this state is made and put on the stack, during
backtracking this state is removed again and execution continues. The Java
“clone” operation is used to make copies of states, but this operation is noto-
riously slow since our states are represented by such a complex data-structure.
Memory consumption was also high due to the complexity of each state, and
we could seldom analyze a system with more than 10000 states in a depth-first
path. A very simple, and above all novel solution, however presented itself:
use the reverse of the collapse operation to recreate a state from its collapsed
description (see Figure 1). We could now use the collapsed state description
in both the hashtable and the stack, and during backtracking the collapsed
state is uncompressed by reversing the lookup in the tables (i.e. use the index
to retrieve the original object from the table). This saves time since recreating
the state from its collapsed form is faster than copying the state, and also saves

ase00.tex; 19/04/2002; 9:53; p.9

10 Visser, Havelund, Brat, Park and Lerda

memory since we now only create one collapsed copy of the state, which is
stored in the hashtable, and we keep a reference to this state in a stack entry.
Lastly, as before, since only part of the state changes during each transition
we can also just uncollapse the parts that changed during backtracking. These
last changes improved memory usage 4 fold and the model checker can now
evaluate between 6000 and 10000 states per second depending on the size
of the state (on a SPARC ULTRA60). For a more detailed description of the
state compression used within JPF the interested reader is referred to (Lerda
and Visser, 2001).

JPF in its current state already illustrates that software systems with com-
plex states can be efficiently analyzed (see section 6), but with some further
extensions and better hardware platforms to run it on, we believe, systems of
up to 10k lines of code could be analyzed.

3.3. CURBING THE STATE SPACE EXPLOSION

Maybe the most challenging part of model checking is reducing the size of
the state space to be explored to something that your tool can handle. Since
designs often contain less detail than implementations, model checking is
often thought of as a technique that is best applied to designs, rather than
implementations. We believe that applying model checking by itself to pro-
grams will not scale to programs of much more than 10000 lines. The avenue
we are pursuing is to augment model checking with information gathered
from other techniques in order to handle large programs. Specifically, we are
investigating the use of symmetry reductions, abstract interpretation, static
analysis and runtime analysis to allow more efficient model checking of Java
programs. Figure 2 illustrates the architecture of JPF and its companion tools
(abstraction tool, static analyzer and runtime analyzer) that will be described
in detail below.

3.3.1. Symmetry Reductions
The main idea behind symmetry reductions (Clarke et al., 1993; Emerson and
Sistla, 1993; Ip and Dill, 1993; Clarke et al., 1998) is that symmetries induce
an equivalence relation on states of the system, and while performing analysis
of the state space (for example during model checking) one can discard a state
if an equivalent state has already been explored. Typically a canonicalization
function is used to map each state into a unique representative of the equiva-
lence class. Various schemes have been proposed for efficiently implementing
such functions (Ip and Dill, 1993) and the complexity of this problem is
discussed in (Clarke et al., 1998). Software programs can in general induce
a great many symmetries, but here we will focus on a number of symmetry
related problems found when analyzing Java programs: class loading and two

ase00.tex; 19/04/2002; 9:53; p.10

Model Checking Programs 11

JAVA
Predicate
Abstractor

Abstract
JAVA

Bytecode

Static
Analysis

Sliced
JAVA

Partial
Order
Info

Runtime
Analysis

Scheduling
Window

BANDERA
Error−display

+predicates

property
holds

LTL
Deadlock

assert

JPF

Search + JVM

and
lock order violations

race violations

Figure 2. The JPF Tool Architecture. Dotted lines indicate iterative analysis.

forms of symmetry in the heap (dynamic area). The problem we are trying to
avoid is the analysis of states that are equivalent to previously analyzed states.

Java programs have dynamic behavior and one cannot predict which classes
will be loaded, objects will be instantiated, or even in which order these will
occur. This lack of order would seem to suggest an appropriate represen-
tation for the static area (where static variables for each class are stored)
and the dynamic area (where objects are allocated) should be as sets. Com-
paring sets is however too time consuming, but an obvious ordering can
be used, namely, the order in which classes are loaded or objects created.
This however means that states will be considered to be different, if their
only difference is the order of class loading (similarly if the same objects
are placed in different locations in the dynamic area). Of course, since we
analyze Java programs depth-first, different interleavings of transitions will
cause the above-mentioned problem. What is required is to ensure that the
static area and dynamic area have a canonical representation regardless of
which interleaving of transitions is being executed.

A canonicalization function for the static area is simple to define, since
we can order the locations where the static variables of a class will be in the
static area by ordering the class names. For each class loader in Java the class
names must be unique, and since we do not consider the case of more than
one class loader being used a simple mapping of class names to positions in
the static area is enough. For example, if class A is loaded before class B in
one interleaving then the static variables for class A will be stored at position
0 in the static area, and this mappingA! 0 will be remembered, when class
B is loaded the mappingB ! 1 will be remembered. After backtracking
let us assume class B is now loaded before A, then the mapping for B will

ase00.tex; 19/04/2002; 9:53; p.11

12 Visser, Havelund, Brat, Park and Lerda

be recalled and B’s static variables will be loaded at position1 even though
position0 is available (class A’s static variables will be loaded there).

Unfortunately, a similar approach with object allocation in the dynamic
area is not sufficient since there can be many objects instantiated from the
same class. One can however identify each object allocation in a Java program
by uniquely identifying each “NEW” bytecode4. This is not yet sufficient to
define a mapping, since the same “NEW” can be executed more than once,
for example when an allocation is in a loop. An occurrence number, that is
incremented each time the new is executed and decremented whenever the
instruction is backtracked over, can then be used to identify each allocation.
Although the combination of the new-identifier and an occurrence number
will distinguish many cases where there is symmetry, it does not resolve all
cases. For example if the same allocation code can be executed from two
different threads the symmetry reduction will be missed and equivalent states
will be considered different. A thread reference can be added to distinguish
this case. Clearly there is a trade-off between the precision of the canonical-
ization function and the time taken to calculate it — we chose to rely only on
the new-identifier and the occurrence number in our current system.

Readers familiar with partial order reduction rules (Holzmann and Peled,
1994; Godefroid, 1996) might notice that the symmetry reductions described
above are closely related. As will be seen from the following example par-
tial order reductions, where unnecessary interleavings of independent tran-
sitions in different threads are not executed, subsume some, but not all, of
the reductions achieved by the canonical view of the heap (similarly for class
loading).

class S1 { int x; } class S2 { int y; }
class FirstTask class SecondTask

extends Thread { extends Thread {
public void run(){ public void run(){

S1 s1; int x = 1; S2 s2; int x = 1;
s1 = new S1(); s2 = new S2();
x = 3; x = 3;

} } } }

class Main{
public static void main(String[] args){

FirstTask task1 = new FirstTask();
SecondTask task2 = new SecondTask();
task1.start(); task2.start();

} }

4 “NEW” refers to any bytecode instruction that allocates a new object, hence including
allocation of arrays and string constants

ase00.tex; 19/04/2002; 9:53; p.12

Model Checking Programs 13

The program above has two independent threads that both allocate object
entries in the heap, and since “s1” and “s2” can be swapped around in the
heap depending on the interleaving chosen, symmetry reductions are appli-
cable. When performing a deadlock analysis on this example without any
symmetry reductions or partial-order reductions, JPF reports evaluating 258
states, with just symmetry reduction it reports 105 states, with just partial-
order reduction (see Section 3.3.3 for more details) it generates 68 states and
with both symmetry and partial-order reductions it generates only 38 states.

Lastly, there is one more form of symmetry reduction in the dynamic area
that is required for Java programs, namely garbage collection. Garbage refers
to objects that have been allocated, but can now no longer be reached from
any data-structure in the program. The problem with garbage is that, unless
it is removed (collected), the size of the state will grow indefinitely, and
hence all states will be considered different. For example, without garbage
collection the following program is essentially infinite-state, since each time
round the loop, the string to be printed is allocated a new buffer to allow the
printing method to print it.

class Main {
public static void main (String args[]) {

while(true) {
System.out.println("0");

} } }

We use a form of mark-and-sweep to do garbage collection. Although
not often thought of as such, garbage collection is clearly a canonicaliza-
tion function that would allow symmetry reduction - states with and with-
out garbage can be equivalent. Analyzing the above program with JPF with
garbage collection results in the “0” being printed only twice before all states
are generated. A good overview of garbage collection for model checking can
be found in (Iosif and Sisto, 2000).

3.3.2. Abstraction
Recently, the use of abstraction algorithms based on the theory of abstract
interpretation (Cousot and Cousot, 1992), has received much attention in the
model checking community (Graf and Saidi, 1997; Das et al., 1999; Saidi,
1999; Sa¨ıdi and Shankar, 1999; Col´on and Uribe, 1998). The basic idea un-
derlying all of these is that the user specifies anabstraction functionfor
certain parts of the data-domain of a system. The model checking system
then, by using decision procedures, either automatically generates, on-the-
fly during model checking, a state-graph over the abstract data (Graf and
Saidi, 1997; Saidi, 1999; Das et al., 1999) or automatically generates an
abstract system, that manipulates the abstract data, which can then be model

ase00.tex; 19/04/2002; 9:53; p.13

14 Visser, Havelund, Brat, Park and Lerda

checked (Sa¨ıdi and Shankar, 1999; Col´on and Uribe, 1998). The trade-off
between the two techniques is that the generation of the state-graph can be
more precise, but at the price of calling the decision procedures throughout
the model checking process, whereas the generation of the abstract system
requires the decision procedures to be called proportionally to the size of the
program. It has been our experience that abstractions are often defined over
small parts of the program, within one class or over a small group of classes,
hence we favor the generation of abstract programs, rather than the on-the-fly
generation of abstract state-graphs. Also, it is unclear whether the abstract
state-graph approach will scale to systems with more than a few thousand
states, due to the time overhead incurred by calling the decision procedures.

Specifically we have developed an abstraction tool for Java that takes as
input a Java program annotated with user-defined predicates and, by using the
Stanford Validity Checker (SVC) (Barrett et al., 1996), generates another Java
program that operates on the abstract predicates. For example, if a program
contains the statementx++ and we are interested in abstracting over the pred-
icate x==0 , written asAbstract.addBoolean("B",x == 0) , then
the increment statement will be abstracted to the code: “if (B) then B
= false else B = Verify.randomBool() ” where nondetermin-
istic choice is indicated by therandomBool() method that gets trapped by
the model checker. The BANDERA tool uses similar techniques to abstract
the data-domains of, for example, an integer variable to work over the abstract
domainspositive, negativeandzero(the so-called sign abstraction), by using
the PVS model checker. The novelty of our approach lies in the fact that we
can abstract predicates over more than one class: for example, we can specify
a predicateAbstract.addBoolean("xGTy", A.x > B.y) if class
A has a field x and class B has a field y. The abstracted code allows for
many instantiations of objects of class A and B to be handled correctly —
the interested reader is referred to (Visser et al., 2000) for more details on the
techniques used. Although our Java abstraction tool is still under development
we have had very encouraging results. For example we can, in a matter of
seconds, abstract the omnipresent infinite-state Bakery algorithm written in
Java to one that is finite-state and can be checked exhaustively. In section 6.1
we also show how the abstraction tool is used on a real example.

Abstractions for model checking often over-approximate the behavior of
the system, in other words, the abstracted system has as a subset the behaviors
of the original system. Since the properties that are typically checked are uni-
versally quantified over all paths, over-approximations preserve correctness
— if a property holds in the abstracted system it is also true of the original
system. Unfortunately, when it comes to model checking programs, or any
other type of system for that matter, it is often the case that we are inter-
ested in finding errors, not showing correctness. And here lies a problem:
over-approximations do not preserve errors, i.e. errors in the abstract system

ase00.tex; 19/04/2002; 9:53; p.14

Model Checking Programs 15

might be due to new behaviors that were added and are not present in the
original system. Eliminating these spurious errors is an active research area
(Saidi, 1999; Saidi, 2000; Ball and Rajamani, 2000b; Clarke et al., 2000). We
adopted a pragmatic approach to this problem that seems to work very well in
practice (Dwyer et al., 2001; Pasareanu et al., 2001). This work was inspired
and implemented in JPF by Corina Pasareanu from the BANDERA group at
Kansas State University and a full account of the approach can be found in
(Pasareanu et al., 2001).

The basic idea is as follows: from a theorem in (Saidi, 2000) it follows that
any path in the abstracted program that is free of nondeterministic choices
is also a path of the original program, hence if an error occurs on such a
“choose-free” path then it is not spurious. JPF has a special mode in which it
searches for errors only on paths that are choose-free — since nondetermin-
ism in JPF is trapped by recognizing special method calls, it is easy to truncate
a search whenever such a call occurs. Of course, if no error is found in this
special mode, then the result is inconclusive since an error might exist, but the
abstraction is not adequate to find the error in the choose-free mode. The next
step is now to look for errors that may contain nondeterministic choices, if
such an error exists, we can run this path in a simulation mode on the original
program (there is a 1-to-1 mapping of code from the abstract to the original
code) and if it diverges, i.e. the abstract path says statements1 should be
executed but the concrete program sayss2 should be executed, then we can
use the last decision point taken before divergence to refine the abstraction.
If the path does not diverge we can also be sure that the error is not spurious.
Note that we do not need to symbolically execute the abstract path on the
concrete program, since the Java programs we check are by definition closed
systems, i.e. they take no unknown input, and also each program has a single
initial state.

3.3.3. Static Analysis
Static analysis of programs consists of analyzing programs without execut-
ing them. In general, the analysis is performed without making assumptions
about the inputs of the program. The analysis results are therefore valid for
any set of inputs. A wide variety of techniques fall under the static analysis
umbrella; e.g., data flow analysis, set and constraint resolution, abstract inter-
pretation, and theorem proving can all be applied to static analysis problems
(with various degrees of success). They all derive some properties about a
program. These properties are then used in slicing, code optimization, code
parallelization, abstract debugging, code verification, code understanding, or
code re-engineering for examples.

Our interest in static analysis lies in its potential for reducing the size of the
state space generated by a program. Therefore, we have focused our efforts
on three static analysis problems that can result in state space reduction: static

ase00.tex; 19/04/2002; 9:53; p.15

16 Visser, Havelund, Brat, Park and Lerda

slicing, partial evaluation, and partial order computation. Static slicing takes a
program and a slicing criterion and generates a smaller program that is func-
tionally equivalent to the original program with regard to the criterion. Partial
evaluation (at least our version) propagates constant values and simplifies
expressions in the process. Partial order computation focuses on identifying
statements that can be safely interleaved with any statement on a different
thread. The combined use of these analyses results in smaller state spaces,
and therefore, helps reduce the state explosion problem. However, they do it
in different manners. On the one hand, static slicing and partial evaluation
generate a (functionally equivalent) smaller program that results in a smaller
state space as shown in Figure 3. Black states indicate states that directly
affect the slicing criterion (e.g., because they modify a variable involved in a
property we want to check). After slicing, only the states affecting the slicing
criterion remain in the state space. On the other hand, partial order compu-
tation does not change the size of the program, but its results can be used
to further reduce the state space by eliminating unnecessary interleavings. In
the rest of this section we discuss static slicing and its application in model
checking. We then briefly describe our partial order computation approach.

State Space State Space

Static Slicing

Partial EvaluationOriginal Pg Sliced Pg

Figure 3. Reduction of programs using static slicing.

One approach to reducing the size of programs, and therefore the size of
the state space to be model checked, is to eliminate statements that are not
relevant to the property one wants to verify. In static analysis, this process
is known as program slicing (Weiser, 1984). It has been studied quite exten-
sively and the interested reader can find a detailed survey on slicing in (Tip,
1995). In general, a program slice is defined by the parts of a program that
may affect (or be affected by) a slicing criterion. Typically a slicing criterion
consists of a set of program points of interest. The sliced program is smaller

ase00.tex; 19/04/2002; 9:53; p.16

Model Checking Programs 17

than the original program and is functionally equivalent with respect to the
slicing criterion. In this paper, we focus on works that use slicing as a program
reduction tool for model checking as shown in (Clarke et al., 1999; Hatcliff
et al., 1999; Millett and Teitelbaum, 1998).

When slicing for model checking, criteria are often related to the proper-
ties that one wants to check, e.g., for a given propertyP, the slicing criterion
is the set of program points affecting the values of the variables present inP.
Therefore, every statement affecting the slicing criterion should be present in
the slice (or sliced program); otherwise, the resulting program is not func-
tionally equivalent to the original program. If such a statement was missing
from the slice, it could result in a situation where the model checker states
that a property holds on the sliced program even though it does not hold on
the original program. This type of slicing is called closure slicing: a closure
slice of a programP with respect to program pointp and variablex consists
of all statements that may affect the value ofx atp.

Closure slicing is not quite sufficient in our case. In order to generate a
state space, JPF executes the program. Therefore, we need the sliced program
to be executable: an executable slice ofP with respect top andx is a reduced
program whose behavior with respect tox cannot be distinguished from the
behavior ofP with respect tox at pointp. Closure slices are usually obtained
by computing the closure of a dependence graph obtained by some type of
interprocedural data and control dependence analysis. Fortunately, it has been
shown that a closure slice can be extended to an executable slice (Binkley,
1993). Therefore, the main problem is reduced to the computation of closure
slices.

A similar approach has been applied to slicing and model checking VHDL
programs (Clarke et al., 1999). Since VHDL programs consist of concurrent
processes the authors had to adapt traditional slicing techniques to handle
concurrency. Roughly speaking, their approach consists of mapping VHDL
constructs to traditional sequential program constructs in such a way that
valid VHDL traces are also valid traces of the sequential program. Once this
transformation is performed, they apply traditional, yet quite precise, inter-
procedural slicing techniques defined for sequential languages such as C or
Ada. Other works have taken a more direct route without any transformation.
Thus, in (Millett and Teitelbaum, 1998), a slicing technique is described for
Promela programs which can be used with the Spin model checker. Their
technique is directly inspired by the work of Cheng on slicing concurrent
programs (Cheng, 1997) with extensions to handle dynamic process creation.
In essence, their approach consists of performing dependence analysis on
system dependence graphs (SDG) which represents not only sequential de-
pendencies but also concurrent dependencies. Therefore, an SDG is similar to
the program dependence graph for a sequential program except that it has ad-
ditional edges to represent dependencies due to concurrency. For example, it

ase00.tex; 19/04/2002; 9:53; p.17

18 Visser, Havelund, Brat, Park and Lerda

has “non-deterministic” edges between the guard of a guarded command and
its guarded statements and data dependence edges between statements using
shared variables. This extended SDG is a conservative approximation of data
and control dependencies in the presence of interleaving. When all possible
interleavings are considered the size of the SDG may be quite large. However
it can be pruned when atomic statements are used in the Promela programs.
This is an example were partial order computation is used before static slic-
ing. Still, the analysis is quite imprecise because of many approximations.
Yet the authors claim that it yields significant reductions in practice.

JPF uses the slicing tool of the BANDERA toolset which implements
the work of Hatcliff et al. (Hatcliff et al., 1999) on static slicing of concur-
rent Java programs. Their technique consists of computing a set of program
dependencies affecting the slicing criteria. These dependencies include the
traditional dependencies (data, control and divergence) for sequential pro-
grams as well as their counterparts (interference, synchronization and ready
dependencies) for concurrent programs. Informally, interference dependen-
cies represent cases where the definition of shared variables can reach across
threads. Synchronization dependence focuses on the use of synchronize state-
ments; it basically states that if a variable is defined at a node inside some
critical region, then the locking associated with that region must be preserved
(i.e., the inner-most enclosing synchronize statement must be present in the
slice). Ready dependence states that a statementn is dependent on a statement
m if m’s failure to complete (e.g., because a wait or notify never occurs) can
block the thread containingn. In BANDERA, slicing is not performed on the
Java source code, but on its (3-address code) representation called Jimple
(Jimple is an intermediate representation for Java used in the Soot com-
piler developed at McGill University (Valle-Rai et al., 1999)). In BANDERA,
Jimple code is then translated into Promela or SMV code and then model
checked. In order to use slicing and abstraction iteratively, and, since abstrac-
tion works on the source code level, we have to convert the sliced Jimple
program back to Java source code using annotations that describe the original
Java program. This approach has benefited JPF in several ways. First, using
BANDERA, we can extract slicing criteria (i.e., program points) automati-
cally from the properties verified by JPF. Second, BANDERA also provides
support for partial symbolic evaluation, which yields smaller state spaces.
Third, we can re-use the dependence analysis performed by BANDERA to
compute partial order information.

Within JPF, static analysis is also used to determine which Java state-
ments in a thread are independent of statements in other threads that can
execute concurrently. This information is then used to guide the partial-order
reductions (Holzmann and Peled, 1994) built into JPF. Partial-order reduction
techniques ensure that only one interleaving of independent statements is ex-
ecuted within the model checker. It is well established from experience with

ase00.tex; 19/04/2002; 9:53; p.18

Model Checking Programs 19

the Spin model checker that partial-order reductions achieve an enormous
state-space reduction in almost all cases. We have had similar experience
with JPF, where switching on partial-order reductions caused model checking
runs that ran for hours to finish within minutes. We believe model checking
of (Java) programs will not be tractable in general if partial-order reductions
are not supported by the model checker and in order to calculate the inde-
pendence relations required to implement the reductions, static analysis is
required.

Even though static analysis has already given us great benefits in terms
of state space reduction, we plan on investigating how we can improve the
precision of its results (and therefore, achieve greater reductions). We are
especially interested in researching how model checking and static analy-
sis can feed off each other’s results to achieve greater precision. Some, like
Cousot (Cousot and Cousot, 1997), have already stated their beliefs that both
techniques can be used in parallel; intermediate results can be used by pro-
cesses to increase their precision. Cousot’s study focused on a particular static
analysis technique called abstract interpretation and symbolic model check-
ing; it may be possible to extend it to explicit-state model checking. Yet, we
are not convinced that a parallel approach is practical given the difference
of speed between the two techniques. Our initial premise is that an iterative
approach (where static analysis and model checking are used successively)
may be more practical.

3.3.4. Runtime Analysis
Runtime analysis is conceptually based on the idea of executing a program
once, and observing the generated execution trace to extract various kinds
of information. This information can then be used to predict whether other
different execution traces may violate some properties of interest (in addition
of course to demonstrating whether the generated trace violates such prop-
erties). The important observation here is that the generated execution trace
itself does not have to violate these properties in order for their potential
violation in other traces to be detected. Runtime analysis algorithms typically
will not guarantee that errors are found since they after all work on a single
arbitrary trace. They also may yield false positives in the sense that analysis
results indicate warnings rather than hard error messages. What is attractive
about such algorithms is, however, that they scale very well, and that they
often catch the problems they are designed to catch. That is, the randomness
in the choice of run does not seem to imply a similar randomness in the
analysis results. In practice runtime analysis algorithms will not store the
entire execution trace, but will maintain some selected information about the
past, and either do analysis of this information on-the-fly, or after program
termination.

ase00.tex; 19/04/2002; 9:53; p.19

20 Visser, Havelund, Brat, Park and Lerda

An example is the data race detection algorithm Eraser (Savage et al.,
1997) developed at Compaq, and implemented for C++ in the Visual Threads
tool (Harrow, 2000). Another example is a locking order analysis called Lock-
Tree which we have developed. Both these algorithms have been implemented
in JPF to work on Java programs. Below we describe these two algorithms,
and how they can be run stand-alone in JPF to identify data race and deadlock
potentials in Java programs. Then we describe how these algorithms are used
to focus the model checker on part of the state space that contains these poten-
tial data race and deadlock problems. Note that runtime analysis is different
from runtime monitoring, as supported in systems such as Temporal Rover
(Drusinsky, 2000) and MaC (Lee et al., 1999), where certain user-specified
properties are monitored during execution. We are, however, currently also
exploring the integration of this kind of technology with runtime analysis.

Data Race Detection
The Eraser algorithm detects data race potentials. A concrete data race oc-
curs when two concurrent threads simultaneously access a shared variable
and when at least one access is a write; hence the threads use no explicit
mechanism to prevent the accesses from being simultaneous. The program
is guaranteed data race free if for every variable there is a nonempty set of
locks that all threads own when they access the variable. The Eraser algorithm
can detect that a data race on a variable is possible (potential) even though
no concrete data races have occurred, by observing and remembering which
locks are active whenever it is accessed. The algorithm works by maintaining
for each variablex a setset(x) of those locks active when threads access
the variable. Furthermore, for each threadt a setset(t) is maintained of
those locks taken by the thread at any time. Whenever a threadt accesses
the variablex, the setset(x) is refined to the intersection betweenset(x)
andset(t) (set(x) := set(x) \ set(t)), although the first access just assigns
set(t) to set(x). Our algorithm differs from (Savage et al., 1997) since there
the initial value ofset(x) is the set of all locks in the program. In a Java
program objects (and thereby locks) are generated dynamically, hence the set
of all locks cannot be pre-calculated. A race condition may be possible if
set(x) ever becomes empty.

The simple algorithm described above yields too many warnings as ex-
plained in (Savage et al., 1997). First of all, shared variables are ofteninitial-
izedwithout the initializing thread holding any locks. The above algorithm
will yield a warning in this case, although this situation is safe. Another
situation where the above algorithm yields unnecessary warnings is if a thread
creates an object, where after several other threads read the object’s variables
(but no-one is writing after the initialization). To avoid warnings in these two
cases, (Savage et al., 1997) suggests an extension to the algorithm by asso-
ciating a state machine to each variable in addition to the lock set. Figure 4

ase00.tex; 19/04/2002; 9:53; p.20

Model Checking Programs 21

illustrates this state machine. The variable starts in theVIRGIN state. Upon the
first write access to the variable, theEXCLUSIVE state is entered. The lock set
of the variable is not refined at this point. This allows for initialization without
locks. Upon a read access by another thread, theSHARED state is entered,
now with the lock refinement switched on, but without yielding warnings in
case the lock set goes empty. This allows for multiple readers (and not writers)
after the initialization phase. Finally, if a new thread writes to the variable, the
SHARED-MODIFIEDstate is entered, and now lock refinements are followed
by warnings if the lock set becomes empty.

VIRGIN

EXCLUSIVE

SHARED

SHARED-MODIFIED

Write
by new thread

Write

Read

Read
by new thread

Write

Read/Write
Read/Write

by first thread

✒

✓

✓
✓

✑

✑

✒

✒

✑ =

✓ =

✒ =

set(x) := set(t)

set(x) := intersect(set(x),set(t))

if isEmpty(set(x)) then warning

Figure 4. The Eraser algorithm associates a state machine with each variablex. The state
machine describes the Eraser analysis performed upon access by any threadt. The pen heads
signify that lock set refinement is turned on. The

p
sign signifies that warnings are issued if

the lock set becomes empty.

The generic Eraser algorithm has been implemented to work on Java by
modifying the JVMJPF to perform this analysis when theeraser option
is switched on. Each thread is associated with a lock set (a Java object rep-
resenting a set), and each variable (field) in each object is associated with
an automata of the type shown in Figure 4 (a Java object representing the
automata and lock set).

The JVMJPF accesses the bytecodes via the JavaClass package (Java-
Class, 2000), which for each bytecode delivers a Java object of a class spe-
cific for that bytecode. The JVMJPF extends this class with anexecute
method, which is called by the verification engine, and which represents the
semantics of the bytecode. The runtime analysis is obtained by instrumenting
the execute methods of selected bytecodes, such as theGETFIELD and
PUTFIELD bytecodes that read and write object fields, the static field access
bytecodesGETSTATIC and PUTSTATIC, and all array accessing bytecodes
such as for exampleIALOAD andIASTORE. The bytecodesMONITORENTER

ase00.tex; 19/04/2002; 9:53; p.21

22 Visser, Havelund, Brat, Park and Lerda

and MONITOREXIT, generated from explicitsynchronized statements,
are instrumented with updates of the lock sets of the accessing threads to
record which locks are owned by the threads at any time; just as are the
bytecodesINVOKEVIRTUAL and INVOKESTATIC for calling synchronized
methods. TheINVOKEVIRTUAL bytecode is also instrumented to deal with
the built-in wait method, which causes the calling thread to release the
lock on the object the method is called on. Instrumentations are furthermore
made of bytecodes likeRETURN for returning from synchronized methods,
andATRHOW that may cause exceptions to be thrown within synchronized
contexts.

Deadlock Detection
A classical deadlock situation can occur where two threads share two locks
and attempt to take the locks in different order. An algorithm that detects such
lock cycles must in addition take into account that a third lock may protect
against a deadlock like the one above, if this lock is taken as the first thing by
both threads, before any of the other two locks are taken. In this situation no
warnings should be emitted. Such a protecting third lock is called agate lock.

The algorithm for detecting this situation is based on the idea of recording
the locking pattern for each thread during runtime as alock tree, and then,
when the program is terminated, comparing the trees for each pair of threads.
The lock tree that is recorded for a thread represents the nested pattern in
which locks are taken by the thread. As an artificial example, consider the
code fragments of two threads in Figure 5. Each thread takes four locks L1,
L2, L3 and L4 in a certain pattern. For example, the first thread takes L1; then
L3; then L2; then it releases L2; then takes L4; then releases L4; then releases
L3; then releases L1; then takes L4; etc.

Thread 1: Thread 2:
synchronized(L1){ synchronized(Ll){

synchronized(L3){ synchronizd(L2){
synchronized(L2){}; synchronized(L3){}
synchronized(L4){} }

} };
};
synchronized(L4){ synchronized(L4){

synchronized(L2){ synchronized(L3){
synchronized(L3){} synchronized(L2){}

} }
} }

Figure 5. Synchronization behavior of two threads.

ase00.tex; 19/04/2002; 9:53; p.22

Model Checking Programs 23

This pattern can be observed, and recorded in a finite tree of locks for
each thread, as shown in Figure 6, by just running the program. As can be
seen from the trees, a deadlock is potential because thread 1 in its left branch
locks L3 (node identified with 2) and then L4 (4), while thread 2 in its right
branch takes these locks in the opposite order (11, 12). There are furthermore
two additional ordering problems between L2 and L3, one in the two left
branches (2, 3 and 9, 10), and one in the two right branches (6, 7 and 12, 13).
However, neither of these pose a deadlock problem since they are protected
by thegate locksL1 (1, 8) respectively L4 (5, 11). Hence, one warning should
be issued.

L3

L1

L3

L2 L4

L4

L2

L1

L2

L3

L4

L3

L2

Thread 1 Thread 2

1

2

3 4

5

6

7

8

9

10

11

12

13

Figure 6. Lock trees corresponding to threads in Figure 5.

When being built, each tree has at any time acurrent node, where the
path from the root (identifying the thread) to that node represents thelock
nestingat this point in the execution. The lock operation creates a new child
of the current node if the new lock has not previously been taken (is not in the
path above). The unlock operation just backs up the tree if the lock really is
released, and not owned by the thread in some other way. When the program
terminates, the analysis of the lock trees is initiated. Each pair of trees(t1; t2)

are compared, and for every noden in t1 it is checked that no node below
n is above any occurrence ofn in t2. In order to avoid issuing warnings
when agate lockprevents a deadlock, occurrences ofn in t2 are marked
after being examined, and nodes below marked nodes are not considered until
the marks are removed when the analysis backtracks from the corresponding
node int1. The following bytecodes will activate calls of the lock and unlock
operations in these tree objects for the relevant threads:MONITORENTERand
MONITOREXIT for entering and exiting monitors,INVOKEVIRTUAL andIN-
VOKESTATIC for calling synchronized methods or the built-inwait method
of the Java threading library, bytecodes likeRETURNfor returning from syn-
chronized methods, andATRHOW that may cause exceptions to be thrown
within synchronized contexts.

Using Runtime Analysis to Guide Model Checking
The runtime analysis algorithms described in the previous two sections can
provide useful information to a programmer as stand alone tools. In this sec-
tion we will describe how runtime analysis furthermore can be used to guide a

ase00.tex; 19/04/2002; 9:53; p.23

24 Visser, Havelund, Brat, Park and Lerda

model checker. The basic idea is to run the program in simulation mode first,
using the JVMJPF simulator, with all the runtime analysis options turned on,
thereby obtaining a set of warnings about data races and lock order conflicts.
The threads causing the warnings are stored in arace window. When the sim-
ulation is terminated, forced or according to the program logic, the resulting
race window (in fact an extension of it, see below) will then be fed into the
model checker, which will now search the state space, but now only focusing
its attention on the threads in the window. That is, the model checker only
schedules threads that are in the window.

However, before the model checker is applied, the race window is ex-
tended to include threads that create or otherwise influence the threads in the
original window. The purpose is to obtain a small self-contained sub-system
containing the race window, which can be meaningfully model checked. The
extended window can be thought of as a dynamic slice of the program. The
extension is calculated on the basis of adependency graph, created by a
dependency analysis also performed during the pre-simulation. More specif-
ically, the dependency graph is a mapping from threadst to triples(�; �; !),
where� is the ancestor thread that spawnedt, � is the set of objects that
t reads from, and! is the set of objects thatt writes to. The window ex-
tension operation performs a fix-point calculation by creating the set of all
threadsreachablefrom the original window by repeatedly including threads
that have spawned threads in the window, and by including threads that write
to objects that are read by threads in the window. The following bytecodes are
instrumented to operate on the dependency graph:INVOKEVIRTUAL for in-
voking the start method on a thread; andPUTFIELD, GETFIELD, PUTSTATIC,
GETSTATICfor accessing variables.

4. Integration with BANDERA

In this paper we argue the virtues of analyzing source code, but in order for
such analysis to be useful to the software development community, one also
requires the tools to be user-friendly. Unlike in the formal methods commu-
nity where a textual interface will suffice due to the expert knowledge of the
users, here we are interested in our tools to be used by real programmers and
therefore ease of use is paramount. In this sense JPF was initially lacking,
since when an error was discovered it would result in a textual output of each
source line that was to be executed to get to the error.

We therefore decided to integrate JPF with the BANDERA tool (Corbett
et al., 2000a), since we could use their error-displaying capabilities, which
allow the user to step through the code line by line, forwards and backwards,
while also having the capability to observe any object in memory. The inte-
gration was straight-forward due to the modular design principles adhered

ase00.tex; 19/04/2002; 9:53; p.24

Model Checking Programs 25

to by both projects and the fact that both systems were written in Java -
the entire integration required two weeks by two developers, one from each
project, working together. The integration also had the added bonus for us
that it allowed the use of the BANDERA front-end tools, namely a slicer (see
section 3.3.3) and an abstractor and allowed us to express user-defined asser-
tions, as well as pre- and postconditions to methods as Javadoc comments.
BANDERA on the other hand gained a powerful Java model checker to aug-
ment Spin and SMV, since both have restrictions as to which Java programs
can be checked.

5. Related Work

Although we have mentioned some works that are related to ours in the Java
context there are also two significant projects where the target language for
model checking is C: the SLAM project at Microsoft and the FeaVer model
checker at Lucent. These model checkers have in common that they both rely
heavily on abstraction techniques to create a finite-state model from C code
that can then be analyzed.

5.1. SLAM

The aim of this work is to do reachability analysis for large sequential C
programs, with specific application to device drivers (Ball and Rajamani,
2000b; Ball et al., 2001b). The project, in a similar fashion to ours, focuses on
the combination of many different techniques to accomplish this goal: static
analysis, abstraction, symbolic execution and model checking. Specifically a
model checker for boolean programs is used (Ball and Rajamani, 2000a), i.e.
all the variables in the program are of the boolean type. The basic idea is to
abstract the original C program by extracting the control-flow graph, then to
check reachability of a program statement. Assuming the control-flow graph
is not disconnected, the statement is reachable. Next the path of instructions
to the statement is symbolically executed on the original program, and when
a divergence is encountered (the path that is being executed differs from what
can be executed next - by definition this must happen at a choice point in the
program) a boolean variable is created to capture this choice point, in other
words a new boolean program is created that makes this path infeasible. Of
course, if no divergence is encountered then reachability has been shown.
Next, the process is repeated with the new boolean program where the in-
feasible path is removed. The problem is of course that showing that a path
is (in)feasible can be undecidable, and if this happens the checker returns a
“don’t know” result to the reachability question.

The most striking difference with our approach is that this work is only
for sequential programs, but recently they have started to also consider multi-

ase00.tex; 19/04/2002; 9:53; p.25

26 Visser, Havelund, Brat, Park and Lerda

threaded C programs (Ball et al., 2001a). Furthermore, they use a similar
predicate abstraction to ours, but they start by abstracting the program to its
most over-approximated state, and then re-introducing predicates to build the
program up to one where reachability can either be shown or not. Whereas
we start with the complete program and only use abstraction selectively to
remove information in parts of the program.

5.2. FEAVER

FeaVer is a software model checking system based on the Spin model checker
and was used to verify properties of Lucent’s PathStar access server. The
system mechanically extracts (Holzmann, 2000) a verification model from
unedited C code, and verifies it against a library of logic properties (Holz-
mann and Smith, 1999; Holzmann and Smith, 2000). The abstraction process
here is semi-automated in the sense that a user-defined lookup table is used
to automatically translate C code to Promela code, i.e. each C source line is
mapped via the table to a line of Promela code. Abstraction occurs since very
complex lines of C code can be replaced by simple abstract code in Promela,
for example, a function call can be replaced by a “skip” command if the
call bears no significance to the verification problem. This idea might seem
straight-forward, but it worked very well for the PathStar model checking
since the code was relatively stable, and hence although the manual creation
of the table took some effort, it was then very stable and could be reused with
small modifications whenever the code changed.

The significance of this work is two-fold: firstly, it is, to the best of our
knowledge, the first case where model checking was used to analyze a large
software application in a commercial setting and secondly, the model check-
ing found an order of magnitude more errors in the code than the traditional
testing team (75 versus 5) (Holzmann and Smith, 2000). The Spin model
checker is currently being extended to analyze C code in a more direct fashion
rather than using the lookup table.

6. Applications of JPF Tools

In this section we describe the application of JPF and its related tools to
two real-world examples. The first is a model of a spacecraft controller (sec-
tion 6.1) which we use to illustrate how JPF can find errors that were intro-
duced in the coding phase (i.e. after design). This example also illustrates
how the different techniques used in JPF can be combined. The second ex-
ample is a real-time operating system (section 6.2) with a subtle error in the
time-partitioning of threads, that is in fact an example of an error that was
introduced during design, but was not discovered during the design due to a
lack of detail.

ase00.tex; 19/04/2002; 9:53; p.26

Model Checking Programs 27

6.1. THE REMOTE AGENT SPACECRAFTCONTROLLER

The Remote Agent (RA) is an AI-based spacecraft controller that has been
developed at NASA Ames Research Center. It consists of three components:
a Planner that generates plans from mission goals; an Executive that executes
the plans; and finally a Recovery system that monitors the RA’s status, and
suggests recovery actions in case of failures. The Executive contains fea-
tures of a multi-threaded operating system, and the Planner and Executive
exchange messages in an interactive manner. Hence, this system is highly
vulnerable to multi-threading errors. In fact, during real flight in May 1999,
the RA deadlocked in space, causing the ground crew to put the spacecraft
on standby. The ground crew located the error using data from the spacecraft,
but asked as a challenge to our group if we could locate the error using model
checking. This resulted in an effort described in (Havelund et al., 2000),
which we shall shortly describe in the following. Basically we identified the
error using a combination of code review, abstraction, and model checking
using JPF1, the first generation of Java PathFinder. During code review we got
a suspicion about the error since it resembled one discovered using the Spin
model checker before flight (Havelund et al., 1998). The modeling therefore
focused on the code under suspicion for containing the error. What we will
describe in the following is the abstraction process using the abstraction tool,
which also works for the new generation of JPF.

The major two components to be modeled were events and tasks, as il-
lustrated in Figure 7. The figure shows a Java classEvent from which event
objects can be instantiated. The class has a local counter variable and two
synchronized methods, one for waiting on the event and one for signaling
the event, releasing all threads having calledwait for event . In order to
catch events that occur while tasks are executing, each event has an associated
event counter that is increased whenever the event is signaled. A task then
only calls wait for event in case this counter has not changed, hence,
there have been no new events since it was last restarted from a call of
wait for event . The figure shows the definition of one of the tasks. The
task’s activity is defined in therun method of the classPlanner , which itself
extends theThread class, a built-in Java class that supports thread primitives.
The body of therun method contains an infinite loop, where in each iteration
a conditional call ofwait for event is executed. The condition is that no
new events have arrived, hence the event counter is unchanged.

The program shown has theoretically infinitely many reachable states due
to the repeated increment of the count variable in the events. We use abstrac-
tion to remove these variables by specifyingAbstract.remove(count) in
the classes ofEvent andPlanner . In place of these variables, we declare
abstraction predicates corresponding to those predicates in the program that
involve count variables. For instance, in the definition of thePlanner class

ase00.tex; 19/04/2002; 9:53; p.27

28 Visser, Havelund, Brat, Park and Lerda

class Event {
int count = 0;
public synchronized void wait_for_event() {

try{wait();}catch(InterruptedException e){};
}
public synchronized void signal_event(){

count = count + 1;
notifyAll();

} }

class Planner extends Thread{
Event event1,event2;
int count = 0;
public void run(){

count = event1.count;
while(true){

if (count == event1.count)
event1.wait_for_event();

count = event1.count;
/* Generate plan */
event2.signal_event();

} } }
Figure 7. The RAX Error in Java.

we put Abstract.addBoolean("EQ",count==event1.count) . After
having annotated the program with these abstraction declarations, the abstrac-
tion tool is applied and a new abstracted program is generated. JPF thereafter
reveals the deadlock in this abstracted program. The error trace shows that the
Planner first evaluates the test “(count == event1.count) ”, which eval-
uates to true; then, before the call ofevent1.wait for event() the Exec-
utive signals the event, thereby increasing the event counter and notifying all
waiting threads, of which there are none. The Planner now unconditionally
waits and misses the signal. The solution to this problem is to enclose the
conditional wait in a critical section such that no events can occur in between
the test and the wait. In fact, the same pattern occurred in several places and
in all other places there was such a critical section around. This was simply
an omission.

The abstract Java model of what happened on board the spacecraft was
created based on a suspicion about the source of the error obtained during
code review. This suspicion was created by the fact that this same pattern
had been found to cause errors in a different part of the RA during the pre-
flight effort using the Spin model checker two years before (Havelund et al.,

ase00.tex; 19/04/2002; 9:53; p.28

Model Checking Programs 29

1998). The source of the error, a missing critical section, could, however,
have been found automatically using the Eraser data detection algorithm. The
variablecount in classEvent is accessed unsynchronized by the Planner’s
run method in the line: “if (count == event1.count) ”, specifically the
expression:event1.count . Hence even though thesignal event called
by the Executive will increase the variable synchronized, the above condition
in the Planner can be executed even during such a signal. This may cause a
data race where thecount variable is accessed simultaneously by the Planner
and the Executive. When running JPF in Eraser mode, it detects this race
condition immediately. This could be enough to locate the error, but only if
one can see the consequences. The JPF model checker, on the other hand, can
be used to analyze the consequences.

To illustrate JPF’s integration of runtime analysis and model checking,
the example was made slightly more realistic by adding extra threads that
made the Java program resemble the real system. The new program had more
than1060 states. Then we applied JPF in its special runtime analysis/model
checking mode. It immediately identified the race condition using the Eraser
algorithm, and then launched the model checker on a thread window con-
sisting of those threads involved in the race condition: the Planner and the
Executive, locating the deadlock - all within 25 seconds. As an additional
experiment in collaboration with the designers of the BANDERA tool, we fed
part of the result of the race detection, namely the variable that is accessed
unprotected, into BANDERA’s slicing tool, which in turn created a program
slice where all code irrelevant to the value of the counter had been removed.
JPF then found the deadlock on this sliced program. This illustrates our phi-
losophy of integrating techniques from different disciplines: abstraction was
used to turn an infinite program into a finite one, runtime analysis was used
to pinpoint problematic code, slicing was used to reduce the program, and
finally the model checker was launched to analyze the result (see Figure 2).

6.2. THE DEOS AVIONICS OPERATING SYSTEM

The DEOS real-time operating system, developed by Honeywell for use within
business aircraft, is written in C++. During a manual analysis of the code the
developers noticed a subtle error in the system, that testing had not picked up.
Without relating what the error was, a slice of the original code, that contained
the error, was handed over to NASA Ames with the goal being to see whether
a model checker could find the error. The error was subsequently found after a
translation of the code to Promela. A full account of this verification exercise
can be found in (Penix et al., 2000). Since the slice of DEOS is fairly large,
approximately 1000 lines of C++, and the error very subtle, it seemed like a
good candidate on which to validate our philosophy of model checking code
directly. As a first step the C++ code was translated to Java; this was straight-

ase00.tex; 19/04/2002; 9:53; p.29

30 Visser, Havelund, Brat, Park and Lerda

forward, since the original C++ code contained very little pointer arithmetic
etc. This resulted in 14 Java classes containing approximately 1000 lines
of code. The DEOS system must be put in parallel with a nondeterministic
environment in order to do model checking. Luckily the environment created
for the Promela model could be re-used (by translation into Java) to a large
extent. This added another 6 classes to the system, for a combined total of
1443 lines of Java code, making it by far the largest example (in terms of
lines of code) attempted by JPF at the time (since then we have handled
programs at least 3 times larger). We also decided to use a local assertion
check to indicate when the error occurred, instead of the LTL property used
during the SPIN analysis (prompted by the fact that at the time the tool did
not support LTL checking). The major benefit of the assertion check was that
it flagged the error when it happened, rather than sometime later as was the
case with the LTL check. The assertion check was very complex to calculate,
75 lines of Java code, since it involved many of the internal variables used
within DEOS (it was developed by one of the DEOS developers). Note this
assertion check was written in Java and was specific to the DEOS program, it
had no relationship with the original LTL property used.

As with the Spin version we started off by limiting the search-depth of
the model checker, since the original system had infinitely many states. Ini-
tial runs were discouraging, since the error was not found after running the
system for hours. However when partial-order reductions were switched on
the error was found almost instantly. As in the Promela version, large parts of
the system are executed in atomic steps. In the Promela version we applied a
predicate abstraction by hand to reduce the system to finitely many states, the
next step will be to do the same with our Java abstraction tool automatically
— the current version of the tool cannot handle the abstraction of predicates
over arrays, which is a requirement in this case.

Recently the BANDERA group have also looked at the analysis of the
Java version of DEOS with a combination of BANDERA and JPF and had
some very encouraging results (Pasareanu et al., 2001; Dwyer et al., 2001).
They used dependency analysis driven by the location of the time-partitioning
assertion and the data values that it referenced to identify a single field (out
of the 92 fields in the program) as influencing the property. Arange ab-
straction (where only values0 and1 are concrete and all negative numbers
and all numbers greater than1 map to abstract domains) was then used to
abstract this field followed by a type inference to determine that two other
fields also required abstracting to therange. JPF, with the special choose-free
mode (see Section 3.3.2), was then invoked to find the error in just 312 steps
(down from 471 in the normal mode). Note that running JPF in the choose-
free mode was essential since the range abstraction generates many spurious
errors. This again shows the power of static analysis and abstraction when
model checking programs.

ase00.tex; 19/04/2002; 9:53; p.30

Model Checking Programs 31

7. Conclusions and Future Work

In the first part of this paper we argued why the formal methods subgroup of
the software engineering community should devote some of their efforts to the
analysis of systems described in real programming languages, rather than just
to their own special purpose notations. The second part of the paper described
how we applied this philosophy to the analysis of Java programs. Specifi-
cally, we have shown that model checking can be applied to Java programs,
without being hampered by the perceived problems often cited as reasons
for why model checking source code will not work. In the process we have
shown that augmenting model checking with symmetry reductions, abstract
interpretation, static analysis and runtime analysis can lead to the efficient
analysis of complex (Java) software. Although the combination of some of
these techniques is not new, to the best of our knowledge, our use of sym-
metry reductions for class loading and heap allocation, the semi-automatic5

predicate abstraction across different classes, the use of static analysis to
support partial-order reductions and the use of runtime analysis to support
model checking are all novel contributions.

Although it is hard to quantify the exact size of program that JPF can
currently handle – “small” programs might have “large” state-spaces – we
are routinely analyzing programs in the 1000 to 5000 line range.

Since we are drawing on different techniques and the synergy between
these techniques it should be clear that many areas for future research exist.
Besides the obvious extensions and improvements of the different algorithms,
there are two areas which we feel are crucial to the success of applying model
checking to (Java) source code. Firstly, one needs to develop methods to assist
in the construction of “environments” suitable for model checking. Currently
the users of a model checker will construct an environment for their models
by hand, but we believe some automation will be required if non-experts are
to use the (Java) model checker. Secondly, it is naive to believe that model
checking will be capable of analyzing programs of 100000 lines or more,
hence in these cases one would like to have a “measure” of how much of the
system was checked. In software testing this measure is given as a coverage
measure and hence we are currently investigating means to calculate typical
coverage measures (for example, branch coverage, method coverage, condi-
tion/decision coverage, etc.) during model checking with JPF. Lastly, we are
also working on the analysis of C/C++ programs, by doing a translation from
C/C++ to (extended) Java bytecode, and using a modified version of the JPF
model checker.

5 Although the user must select the predicates, once selected, the generation of the abstract
program is automatic.

ase00.tex; 19/04/2002; 9:53; p.31

32 Visser, Havelund, Brat, Park and Lerda

Acknowledgements

We would like to thank the BANDERA group at Kansas State University,
specifically, Matt Dwyer, John Hatcliff, Corina Pasareanu and Robby, for
letting us use their tools and for the great support they have given us.

References

Ball, T., S. Chaki, and S. Rajamani: 2001a, ‘Parameterized Verification of Multithreaded Soft-
ware Libraries ’. In:Proceedings of TACAS01: Tools and Algorithms for the Construction
and Analysis of Systems. Genova, Italy.

Ball, T., A. Podelski, and S. Rajamani: 2001b, ‘Boolean and Cartesian Abstractions for Model
Checking C Programs’. In:Proceedings of TACAS01: Tools and Algorithms for the
Construction and Analysis of Systems. Genova, Italy.

Ball, T. and S. Rajamani: 2000a, ‘Bebop: A symbolic Model Checker for Boolean Programs’.
In: Proceedings of the 7th International SPIN Workshop, Vol. 1885 ofLNCS. Stanford
University, California, USA, Springer-Verlag.

Ball, T. and S. Rajamani: 2000b, ‘Checking Temporal Properties of Software with Boolean
Programs’. In:Proceedings of Workshop on Advances in Verification.

Barrett, C., D. Dill, and J. Levitt: 1996, ‘Validity Checking for Combinations of Theories
with Equality’. In: Formal Methods In Computer-Aided Design, Vol. 1166 ofLNCS. pp.
187–201.

Binkley, D.: 1993, ‘Precise executable interprocedural slices’.ACM Letters on Programming
Languages and Systems2, 31–45.

Bjørner, D. and C. B. Jones (eds.): 1982,Formal Specification and Software Development.
Prentice-Hall International.

Booch, G., J. Rumbaugh, and I. Jacobson: 1999,The Unified Modeling Language User Guide.
Addison-Wesley.

Cheng, J.: 1997, ‘Dependence Analysis of Parallel and Distributed Programs and its Applica-
tions’. In: Proceedings of the 1997 Conference on advances in Parallel and Distributed
Computing.

Clarke, E., E. Emerson, S. Jha, and A. Sistla: 1998, ‘Symmetry Reductions in Model
Checking’. In:Proceedings of the 10th International Conference for Computer-Aided
Verification. Lecture Notes in Computer Science, 1427.

Clarke, E., T. Filkorn, and S. Jha: 1993, ‘Exploiting Symmetry in Temporal Logic Model
Checking’. In:Proceedings of the Fifth International Conference for Computer-Aided
Verification. Lecture Notes in Computer Science, 697.

Clarke, E., M. Fujita, S. Rajan, T. Reps, S. Shankar, and T. Teitelbaum: 1999, ‘Program Slic-
ing of Hardware Description Languages’. Technical Report CMU-CS-99-103, Carnegie
Mellon University, School of Computer Science.

Clarke, E., O. Grumberg, S. Jha, Y. Lu, and H. Veith: 2000, ‘Counterexample-guided
Abstraction Refinement’. In:Proceedings of the 12th International Conference for
Computer-Aided Verification. Lecture Notes in Computer Science, 1855.

Colón, M. and T. Uribe: 1998, ‘Generating Finite-state Abstractions of Reactive Systems
using Decision Procedures’. In:Proceedings of the 10th Conference on Computer-Aided
Verification, Vol. 1427 ofLNCS.

ase00.tex; 19/04/2002; 9:53; p.32

Model Checking Programs 33

Corbett, J., M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng: 2000a,
‘Bandera : Extracting Finite-state Models from Java Source Code’. In:Proceedings of the
22nd International Conference on Software Engineering. Limeric, Ireland., ACM Press.

Corbett, J. C., M. B. Dwyer, J. Hatcliff, and Robby: 2000b, ‘A Language Framework
For Expressing Checkable Properties of Dynamic Software’. In:Proceedings of the
7th International SPIN Workshop, Vol. 1885 of Lecture Notes in Computer Science.
Springer-Verlag.

Cornes, C., J. Courant, J. Filliatre, G. Huet, P. Manoury, C. Paulin-Mohring, C. Munoz, C.
Murthy, C. Parent, A. Saibi, and B. Werner: 1995, ‘The Coq Proof Assistant Reference
Manual, Version 5.10’. Technical report, INRIA, Rocquencourt, France. This version is
newer than the version used to verify the BRP-protocol in (Helmink et al., 1994).

Cousot, P. and R. Cousot: 1992, ‘Abstract Interpretation Frameworks’.Journal of Logic and
Computation4(2), 511–547.

Cousot, P. and R. Cousot: 1997, ‘Parallel Combination of Abstract Interpretation and Model-
Based Automatic Analysis of Software’. In:Proceedings of the First ACM SIGPLAN
Workshop on Automatic Analysis of Software, AAS’97. pp. 91–98.

Das, S., D. Dill, and S. Park: 1999, ‘Experience with Predicate Abstraction’. In:CAV ’99:
11th International Conference on Computer Aided Verification, Vol. 1633 ofLNCS.

Demartini, C., R. Iosif, and R. Sisto: 1999a, ‘A Deadlock Detection Tool for Concurrent Java
Programs’.Software Practice and Experience29(7), 577–603.

Demartini, C., R. Iosif, and R. Sisto: 1999b, ‘dSPIN: A Dynamic Extension of SPIN’. In:
Proceedings of the 6th SPIN Workshop, Vol. 1680 ofLNCS.

Drusinsky, D.: 2000, ‘The Temporal Rover and the ATG Rover’. In: K. Havelund, J. Penix, and
W. Visser (eds.):SPIN Model Checking and Software Verification, Vol. 1885 ofLecture
Notes in Computer Science. pp. 323–330, Springer.

Dwyer, M., J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser, and H.
Zheng: 2001, ‘Tool-supported Program Abstraction for Finite-state Verification’. In:Pro-
ceedings of the 23rd International Conference on Software Engineering. Toronto, Canada.,
ACM Press.

Emerson, E. and A. Sistla: 1993, ‘Symmetry and Model Checking’. In:CAV ’93: 5th Interna-
tional Conference on Computer Aided Verification, Vol. 697 ofLecture Notes in Computer
Science.

Godefroid, P.: 1996,Partial-Order Methods for the Verification of Concurrent Systems, Vol.
1032 ofLNCS. Springer-Verlag.

Godefroid, P.: 1997, ‘Model Checking for Programming Languages using VeriSoft’. In:Pro-
ceedings of the 24th ACM Symposium on Principles of Programming Languages. Paris,
pp. 174–186.

Gordon, M. J. C.: 1988, ‘HOL: A Proof Generating System for Higher-Order Logic’. In: G.
Birtwistle and P. A. Subrahmanyam (eds.):VLSI Specification, Verification and Synthesis.
Dordrecht, The Netherlands: Kluwer, pp. 73–128.

Graf, S. and H. Saidi: 1997, ‘Construction of Abstract State Graphs with PVS’. In:CAV ’97:
6th International Conference on Computer Aided Verification, Vol. 1254 ofLNCS.

Harel, D.: 1987, ‘Statecharts: A Visual Formalism for Complex Systems’.Science of
Computer Programming8, 231–274.

Harrow, J.: 2000, ‘Runtime Checking of Multithreaded Applications with Visual Threads’.
In: K. Havelund, J. Penix, and W. Visser (eds.):SPIN Model Checking and Software
Verification, Vol. 1885 ofLecture Notes in Computer Science. pp. 331–342, Springer.

Hatcliff, J., J. Corbett, M. Dwyer, S. Sokolowski, and H. Zheng: 1999, ‘A Formal Study of
Slicing for Multi-threaded Programs with JVM Concurrency Primitives’. In:Proceedings
on the 1999 International Symposium on Static Analysis. pp. 1–18.

ase00.tex; 19/04/2002; 9:53; p.33

34 Visser, Havelund, Brat, Park and Lerda

Havelund, K.: 1999a, ‘Java PathFinder, A Translator from Java to Promela’. In:Theoretical
and Practical Aspects of SPIN Model Checking – 5th and 6th International SPIN Work-
shops, Vol. 1680 ofLNCS. Springer-Verlag. Trento, Italy – Toulouse, France (presented
at the 6th Workshop).

Havelund, K.: 1999b, ‘Mechanical Verification of a Garbage Collector’. In: D. M´ery and
B. Sanders (eds.):FMPPTA’99: Fourth International Workshop on Formal Methods for
Parallel Programming : Theory and Applications. Springer-Verlag. San Juan, Puerto Rico,
USA.

Havelund, K.: 2000, ‘Using Runtime Analysis to Guide Model Checking of Java Programs’.
In: K. Havelund, J. Penix, and W. Visser (eds.):SPIN Model Checking and Software
Verification, Vol. 1885 ofLecture Notes in Computer Science. pp. 245–264, Springer.

Havelund, K., M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J. White: 2000, ‘Formal
Analysis of the Remote Agent Before and After Flight’. In:Proceedings of the 5th NASA
Langley Formal Methods Workshop (to appear).

Havelund, K., M. Lowry, and J. Penix: 1998, ‘Formal Analysis of a Space Craft Controller
using SPIN’. In:Proceedings of the 4th SPIN workshop, Paris, France. To appear in
IEEE Transactions of Software Engineering.

Havelund, K. and T. Pressburger: 1999, ‘Model Checking Java Programs using Java
PathFinder’. To appear in a special issue ofInternational Journal on Software Tools for
Technology Transfer(STTT) containing selected submissions to the 4th SPIN workshop,
Paris, France, 1998.

Havelund, K. and N. Shankar: 1996, ‘Experiments in Theorem Proving and Model Checking
for Protocol Verification’. In: M.-C. Gaudel and J. Woodcock (eds.):FME’96: Industrial
Benefit and Advances in Formal Methods, Vol. 1051 of LNCS. pp. 662–681, Springer-
Verlag.

Havelund, K. and J. Skakkebaek: 1999, ‘Practical Application of Model Checking in Software
Verification’. In: Proceedings of the 6th Workshop on the SPIN Verification System, Vol.
1680 ofLNCS. Toulouse, France.

Helmink, L., M. Sellink, and F. Vaandrager: 1994, ‘Proof-Checking a Data Link Protocol’.
Technical Report CS-R9420, Centrum voor Wiskunde en Informatica (CWI), Computer
Science/Department of Software Technology.

Hoare, C. A. R.: 1969, ‘An Axiomatic Basis for Computer Programming’.Comm. ACM
12(10), 576–580.

Holzmann, G.: 1997a, ‘State Compression in Spin’. In:Proceedings of the Third Spin
Workshop. Twente University, The Netherlands.

Holzmann, G.: 1997b, ‘The Model Checker Spin’.IEEE Trans. on Software Engineering
23(5), 279–295. Special issue on Formal Methods in Software Practice.

Holzmann, G.: 2000, ‘Logic Verification of ANSI-C Code with Spin’. In:Proceedings of the
7th International SPIN Workshop, Vol. 1885 ofLNCS. pp. 131–147, Springer Verlag.

Holzmann, G. and D. Peled: 1994, ‘An Improvement in Formal Verification’. In:Proc.
FORTE94. Berne, Switzerland.

Holzmann, G. and M. H. Smith: 1999, ‘Software model checking - Extracting verification
models from source code’. In:Formal Methods for Protocol Engineering and Distributed
Systems. Kluwer Academic Publ., pp. 481–497.

Holzmann, G. and M. H. Smith: 2000, ‘Automating software feature verification’.Bell Labs
Technical Journal5(2), 72–87. Issue on Software Complexity.

Iosif, R. and R. Sisto: 2000, ‘Using Garbage Collection in Model Checking’. In:Proceed-
ings of the 7th International SPIN Workshop, Vol. 1885 ofLNCS. Stanford University,
California, USA, Springer-Verlag.

ase00.tex; 19/04/2002; 9:53; p.34

Model Checking Programs 35

Ip, C. and D. Dill: 1993, ‘Better Verification Through Symmetry’. In:Proceedings of the
Eleventh International Symposium on Computer Hardware Description Languages and
their Application. North Holland.

JavaClass: 2000, ‘JavaClass’. http://www.inf.fu-berlin.de/˜dahm/
JavaClass/ .

Larsen, K. G., P. Pettersson, and W. Yi: 1998, ‘UPPAAL in a Nutshell’.Int. Journal on
Software Tools for Technology Transfer1(1-2), 134–152.

Lee, I., S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan: 1999, ‘Runtime Assurance
Based on Formal Specifications’. In:Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications.

Lerda, F. and W. Visser: 2001, ‘Addressing Dynamic Issues of Program Model Checking’. In:
Proc. of the 8th International SPIN Workshop, Vol. 2057 ofLNCS 2057. Springer-Verlag.

McMillan, K.: 1993,Symbolic Model Checking. Kluwer Academic Publishers, Boston.
Melton, R., D. Dill, C. N. Ip, and U. Stern: 1996, ‘Murphi Annotated Reference Manual,

Release 3.0’. Technical report, Stanford University, Palo Alto, California, USA.
Millett, L. I. and T. Teitelbaum: 1998, ‘Slicing Promela and its Application to Model Check-

ing, Simulation, and Protocol Understanding’. In:Proceedings of the 4th International
SPIN Workshop.

Muscettola, N., P. Nayak, B. Pell, and B. Williams: 1998, ‘Remote Agent: To Boldly Go
Where No AI System Has Gone Before’.Artificial Intelligence103(1-2), 5–48.

Owre, S., S. Rajan, J. Rushby, N. Shankar, and M. Srivas: 1996, ‘PVS: Combining Specifi-
cation, Proof Checking, and Model Checking’. In: R. Alur and T. A. Henzinger (eds.):
Computer-Aided Verification, CAV ’96. New Brunswick, NJ, pp. 411–414, Springer-
Verlag.

Park, D., U. Stern, J. Skakkebaek, and D. Dill: 2000, ‘Java Model Checking’. In:Proceedings
of the 15th IEEE International Conference on Automated Software Engineering. pp. 253–
256.

Pasareanu, C., M. Dwyer, and W. Visser: 2001, ‘Finding Feasible Counter-examples when
Model Checking Abstracted Java Programs’. In:Proceedings of TACAS01: Tools and
Algorithms for the Construction and Analysis of Systems. Genova, Italy.

Penix, J., W. Visser, E. Engstrom, A. Larson, and N. Weininger: 2000, ‘Verification of Time
Partitioning in the DEOS Scheduler Kernel’. In:Proceedings of the 22nd International
Conference on Software Engineering (to appear). Limeric, Ireland., ACM Press.

Russinoff, D. M.: 1994, ‘A Mechanically Verified Incremental Garbage Collector’.Formal
Aspects of Computing6, 359–390.

Saidi, H.: 1999, ‘Modular and Incremental Analysis of Concurrent Software Systems’.
In: Proceedings of the 14th IEEE International Conference on Automated Software
Engineering. pp. 92–101.

Saidi, H.: 2000, ‘Model Checking Guided Abstraction and Analysis’. In:Proceedings of the
7th Static Analysis Symposium.

Saı̈di, H. and N. Shankar: 1999, ‘Abstract and Model Check while you Prove’. In:Proceedings
of the 11th Conference on Computer-Aided Verification, Vol. 1633 ofLNCS. pp. 443–454.

Savage, S., M. Burrows, G. Nelson, and P. Sobalvarro: 1997, ‘Eraser: A Dynamic Data Race
Detector for Multithreaded Programs’.ACM Transactions on Computer Systems15(4),
391–411.

Spivey, M.: 1992,The Z Notation: A Reference Manual, 2nd edition. Prentice Hall
International Series in Computer Science.

Stoller, S.: 2000, ‘Model-Checking Multi-threaded Distributed Java Programs ’. In:Procceed-
ings of the 7th International SPIN Workshop, Vol. 1885 ofLNCS. Stanford University,
California, USA, Springer-Verlag.

ase00.tex; 19/04/2002; 9:53; p.35

36 Visser, Havelund, Brat, Park and Lerda

The RAISE Language Group: 1992,The RAISE Specification Language. The BCS Practition-
ers Series, Prentice-Hall.

Tip, F.: 1995, ‘A Survey of Program Slicing techniques’.Journal of Programming Languages
3, 121–189.

Valle-Rai, R., L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co: 1999, ‘Soot - a Java
Optimization Framework’. In:Proceedings of CASCON 1999.

Visser, W., K. Havelund, and J. Penix: 1999, ‘Adding Active Objects to SPIN’. In:Proceedings
of the 5th Workshop on the SPIN Verification System. Trento, Italy.

Visser, W., S. Park, and J. Penix: 2000, ‘Using Predicate Abstraction to Reduce Object-
Oriented Programs for Model Checking’. In:Proceedings of the 3rd ACM SIGSOFT
Workshop on Formal Methods in Software Practice.

Weiser, M.: 1984, ‘Program Slicing’.IEEE Transaction on Software Engineering.

ase00.tex; 19/04/2002; 9:53; p.36

