Software Model Checking
Background on FM

Moonzoo Kim
CS Dept. KAIST
Fall 2006

Copyright © 2006 CS750B KAIST Korea Advanced Institute of
Software Model Checking Science and Technology

SXHabus

B Goal of the class

+ T0 get a concrete knowledge required to research
software model checking

B Topics covered

+ Model-oriented approaches

* Process algebra
— Concise syntax and clear semantics

* Rich modeling language
— Spin as a simplified C language
+ Code-oriented approaches
« MS SLAM, Berkeley BLAST, NASA Java PathFinder, etc
* Run-time verification
* C code generation from a formal design

CS750B Softwarel
Model Checking 2

Copyright © 2006

SzHabusgconLZ

B Grade policy
+ Seminar presentation 50% (2 presentations)
+ Mid term exam 30%
+ Homework 20%

E Time table
+ 1-3 wk: process algebraic approach — CCS
+ 4-6 wk: programming language-like approach — SPIN
+ 7 wk: mid-term exam
+ 8-13 wk: program code-based verification frameworks
+ 14-15 wk: Esterel - WYPWYE framework

CS750B Softwarel
Model Checking 3
Copyright © 2006

Administrative Stuff

B |nstructor

+ Moonzoo Kim
e moonzoo@cs.kaist.ac.kr

+ Phone #:042-869-3543
+ Office loc: Rm# 2434

B Course home page
+ http://cs.kaist.ac.kr/~moonzoo/cs750b

B Class hour: Tues/Thrs 10:30-12:00
B Office hour: Tues/Thrs 1:30 — 3:00
E Note: The official language of this class is English

CS750B Softwarel
Model Checking 4
Copyright © 2006

Qutline

E Research Background

E Safety Critical Systems

B Motivation: Software Crisis
B Formal Methods

B [ssues on Formal Methods
E Conclusion

hly Reliable SW Systems

B SW reliability

4+ Quality attribute for minimizing malfunctions of systems to reduces
damage to human life or valuable properties

E Highly reliable SW technology is a key to the

success of industrial products
+ The portion of SW in embedded devices increases continuously

Intelligent Medical Devices Home Service Robc Robots

Come hear

- &

2l <z Intelligent Mobile Systems
= \4 N WY
‘arﬁ—m%

Highly Reliable
Software-intensive
Systems

0
Model Checking
Copyright © 2006

Unified Formal Verification Framework

E Unified formal framework of the following three
approaches can make synergy

+ Model Verification
e Targets a system model
* Req. spec is limited = Specification|
« Complete coverage)l P e
4+ Code verification
» Targets a real code

» Extracts an abstract system
model from a real code

* Req. spec is limited
4+ Runtime Verification
e Targets a real code

/Requiremem‘

* Verifies correctness of Runtime Monitor
current execution run . & Checker
* Req. spec can be very

expressive

KAIST

CS750B Software
Model Checking 7
Copyright © 2006

Notorious “Blue Screen”

Micrezaft Inteinet Explorer L *+ o Adc at cood - Nt f:

Micigsoft Internet Explores has encountened a probdem and needs to \
closs We ae 2oy o8 e inoorenisncs

1F woos wewre i the prichidle of scenething, the: infommation pou wens working on
mighi be kot
[w Biestart Miciosoft Intesnet Explores

Flaazs bal Miciozolt aboul Hhes problem,

We have created an sin iepoil thal wou can send b help us impiove
Microsolt Intemet Explorer. 'Whe wall topat this report as confidential and
ANOCETNLL,

To see vwhat data this enor iepoil conbang, chck e
Serd Ence Aeport onfl Gerd |

0

1l
1]

felloooo Ik Parport

f3Eb4000 3 Yalel Paridm.

Microsoft Word Il

Microsoft Word ha registrado de nueva otro errory se va
cerrar sin que puedas salvar nada

Has perdido toda tu trabajo, pero desde aqui sabemos gue te gusta
echar horas, ademas, en un afio le encontrards a esto la gracia

¥ Acordarse de la Madre de Bill Gates JIRK: 1 2 !] c77 Sagdf: Sacf fEE &L ntoskrnl.

Por favor, hable de Microsoft a todos sus amigos af a ooo u] g krnl.

Para que veamos su cara de alipollas, &

Mas Panica Perder Todo

or technical support

KAIST

CS7508 Softwarel q | |
Model Checking W

Copyright © 2006

Safety Critical Systems

INTERA2ACZTINE
CESCE

LU=ER

VVHAT IS
}? i A
. SAFETY-CRITICAL
SYSTEM

CS750B Software

Model Checking
Copyright © 2006

How we deliver SW

/311 Go WP AND FiND ovr
WHAT THRY Neepd ANDTHe

ResT oF Yoy START cobing |

KAIST
CS750B Softwarel W q

Model Checking
Copyright © 2006

10

Conseguences

KAIST

CS750B Softwarel

Model Checking
Copyright © 2006

11

Tragic Accidents |

B The Therac-25 Story e 5 n

+Between June 1985
and Jan 1987, a
computer-controlled
radiation therapy
machine, called the
Therac-25, massively ~ _
overdosed six people il Rl L L

 software coding error

 http://sunnyday.mit.edu/papers/therac.pdf
KAIST

CS750B Softwarel
Model Checking 12

Copyright © 2006

Tragic Accidents Il

B Ariane 5

+ “On 4 June 1996, the maiden flight of
the Ariane 5 launcher ended in a
failure...The failure of the Ariane 501
was caused by the complete loss of
guidance and attitude information
... This loss of information was due to
specification and design errors in the
software of the inertial reference
system.”

« Floating number conversion problem

o http://www.ima.umn.edu/~arnold/disaster
s/ariane5rep.html

CS750B Software.
Model Checking 13

Copyright © 2006

Tragic Accidents Il

E NASA Mars Pathfinder (1997)

“+ Priority inversion problem led to a system reset
and a one-day delay in retransmission of data
which wasted valuable mission time.

<+ http://www.cis.ksu.edu/~hatcliff/842/Docs/Course
-Overview/pathfinder-robotmag.pdf

KAIST

CS750B Software
Model Checking 14
Copyright © 2006

Software Crisis

Quoted from 1. Information Technology: Transforming our Society'
President's Information Technology Advisory Committee 1999

“...Furthermore, the Nation needs software that is far more usable,
reliable, and powerful than what is being produced today. We have
become dangerously dependent on large software systems whose
behavior is not well understood and which often fail in unpredicted
ways ... We need scientifically sound approaches to software
development ... ”

Quoted from “Science for Global Ubiquitous Computing (GUC)*
A 15 year Grand Challenges for Computing Research
Supported by UK Computing Research Committee 2004

“...unless we offer a mathematically sound methodology to supplant
the practice of opportunist software creation there will be
consequences of the kind we have illustrated, and a further mass of
Inscrutable legacy software. These consequences will be greatly more
damaging than previously, because the GUC is pervasive, self-

modifying and complex in the extreme..."
KAIST

CS750B Softwarel
Model Checking 15
Copyright © 2006

Hardware v.s. Software

B Flexibility leads to low development cost
4+ Minimal costs for HW board manufacturing > 10K$
4+ Minimal costs for sofware > 0%

B Growing popularity leads to complex software
systems

+ Pentium IV (Willamette): 42 million transistors
+ Windows XP: hundreds million instructions

B Much harder to validate/verify (V&V)

+« HW design exploits symmetry, structure, and
components

e Synchronous executions
+ SW design allows maximal degree of freedom/easy
construction of programs
e Asynchronous executions

KAIST
CS750B Software I Wq

Model Checking
Copyright © 2006

16

Formal Methods

B Definition: (from the Encyclopedia of Software Engineering)

+ Formal methods used in developing computer systems
are mathematics based techniques for describing
system properties. Such formal methods provide
frameworks within which people can specify, develop,

and verify systems in a systematic, rather than ad hoc
manner.

+ A method is formal if it has a sound mathematical basis,
typically given by a formal specification language.
This basis provides a means of precisely defining
notions like consistency and completeness, and more
relevant, specification, implementation and correctness.

KAIST

CS750B Softwarel
Model Checking 17
Copyright © 2006

Example. Mutual Exclusion Algorithm

char cnt=0,x=0,y=0,z=0;

void process() {

char me = _pid +1; /*meis 1 or 2*/

again:
X = me;
If (y ==0 [| y==me) ;
else goto again;

Z =me;
If (x ==me) ;
else goto again;

y=me,
If(z==me);
else goto again;

[* enter critical section */

cnt++

[* assert(cnt ==1); */

cnt --;

goto again;
}

Mutual
Exclusion

KAIST Algorithm

CS750B Software
Model Checking
Copyright © 2006

Process 0 Process 1
X=2
y::O ” y ==
z2=2
X==2
x=1
y::O ” y ==
(z==2)
cnt++
z=1
x==1
y=1
Z ==
cnt++
Counter
Example

18

Specification: Informal, textual, visual

B Informal specification

+ The value of x will be between 1 and 5, until
some point where it will become 7. In any
case It will never be negative.

B Temporal logic specification
+((1<=x && x<=5) U x=7) \ [] x>=0

B Visual Specification
X=7

KAIST 1<=x<=5
CS750B Software IW
Model Checki
Co%y?ightgzlgg(i 19

Verification: State Exploration Method

B Model checking
+ Specify requirement properties and build system model

4+ Generate possible states from the model and then check
whether given requirement properties are satisfied within
the state space
e On-the-fly v.s. generates all
« Symbolic states v.s. explicit state
 Model based v.s. code based

System > oK
model
odel Checkinﬁv
state exploratig
Requwe_ment__> 0@ - Q) Counter
properties example
KAIST P

CS750B Softwarel
Model Checking 20

Copyright © 2006

Too Exgensive?

B Formal methods do involve time consuming training,
initially causing longer development time which
customers would be unhappy to pay for

B Butin the long run they generate less costly systems

4+ System costs are high in the early life cycle stages, but far
lower in the later testing and maintenance stages

4+ Problems are discovered early when least damage has been
done and least expense has been incurred

o : Cost

o

& o 6\‘& 9"\\‘\% NS & & Qe&
. eﬂ(\ OQ' O X< x& & . &) QQ (\0 O
& d\é\\ e of” Source: Software Inspection, <2 & Expected Improvement
' Qe\oQ &Q" Tom Gilb & Dorothy Graham, oe\‘e’ o when formal methods
KAIST o v¢ Addison-Wesley, 1993 are deployed

CS750B Software
Model Checking 21
Copyright © 2006

Still a Research Area in Ivory Tower?

B It is not true that formal methods use complex
mathematics, only simple maths is involved, mainly
set theory and elementary logic

B Also, tools are becoming more common, e.g. to help
develop and understand formal specifications, and to
translate them directly into a first attempt at source

code

B Opponents claim that formal methods still belong to
the world of research

4+ They claim that it is not a mature, widely used software
engineering technique, that it is confined to ivory towers and
not tested in the real world

4+ This is untrue. It is (becoming) pragmatic in some areas such
as safety critical systems and several hundred relatively large
systems have been formally verified.

CS750B Softwarel
Model Checking 22

Copyright © 2006

Adoption

The “Gap”
S .
2 <
©
G
Q. _/
D
O
O < >
<
Tolerate “Warts” Require Convenience, Ease of Use and Low Cost
Early Adopters Mass Market Late Adopters
Researchers “Everyone” Skeptics
Time ———
KAIST

CS750B Software.
Model Checking
Copyright © 2006

mrce: Ken Arnold, HiTech Equipment Corp.
23

Conclusions

B Software has flexibility as its strong point at the cost of
validation/verification difficulty

E Use of formal methods should be encouraged as they
produce higher quality software systems

B Formal methods are particularly appropriate for safety
critical systems, providing the most effective way of
achieving a sufficient level of confidence in the developed
software

CS750B Softwarel
Model Checking 24

Copyright © 2006

