
Korea Advanced Institute of
Science and Technology

Copyright © 2006 CS750B
Software Model Checking

Software Model CheckingSoftware Model Checking

Moonzoo Kim
CS Dept. KAIST

Fall 2006

Background on FM Background on FM

CS750B Software
Model Checking

Copyright © 2006
2

SyllabusSyllabus

Goal of the class
To get a concrete knowledge required to research
software model checking

Topics covered
Model-oriented approaches

• Process algebra
– Concise syntax and clear semantics

• Rich modeling language
– Spin as a simplified C language

Code-oriented approaches
• MS SLAM, Berkeley BLAST, NASA Java PathFinder, etc
• Run-time verification
• C code generation from a formal design

CS750B Software
Model Checking

Copyright © 2006
3

Syllabus (cont.)Syllabus (cont.)

Grade policy
Seminar presentation 50% (2 presentations)
Mid term exam 30%
Homework 20%

Time table
1-3 wk: process algebraic approach – CCS
4-6 wk: programming language-like approach – SPIN
7 wk: mid-term exam
8-13 wk: program code-based verification frameworks
14-15 wk: Esterel – WYPWYE framework

CS750B Software
Model Checking

Copyright © 2006
4

Administrative StuffAdministrative Stuff

Instructor
Moonzoo Kim

• moonzoo@cs.kaist.ac.kr

Phone #:042-869-3543
Office loc: Rm# 2434

Course home page
http://cs.kaist.ac.kr/~moonzoo/cs750b

Class hour: Tues/Thrs 10:30-12:00
Office hour: Tues/Thrs 1:30 – 3:00
Note: The official language of this class is English

CS750B Software
Model Checking

Copyright © 2006
5

OutlineOutline

Research Background
Safety Critical Systems
Motivation: Software Crisis
Formal Methods
Issues on Formal Methods
Conclusion

CS750B Software
Model Checking

Copyright © 2006
6

SW reliability
Quality attribute for minimizing malfunctions of systems to reduces
damage to human life or valuable properties

Highly reliable SW technology is a key to the
success of industrial products

The portion of SW in embedded devices increases continuously

Industrial Robot ControlIndustrial Robot Control Intelligent Mobile SystemsIntelligent Mobile Systems

Highly Reliable Highly Reliable
SoftwareSoftware--intensive intensive

SystemsSystems

Intelligent Medical Devices Intelligent Medical Devices

Highly Reliable SW SystemsHighly Reliable SW Systems

Home Service RobotsHome Service Robots

CS750B Software
Model Checking

Copyright © 2006
7

Unified Formal Verification FrameworkUnified Formal Verification Framework

Model Verification
• Targets a system model
• Req. spec is limited
• Complete coverage

Code verification
• Targets a real code
• Extracts an abstract system

model from a real code
• Req. spec is limited

Runtime Verification
• Targets a real code
• Verifies correctness of

current execution run
• Req. spec can be very

expressive

System
Specification

Requirement
Specification

Program Runtime Monitor
& Checker

Model Verification

Runtime Verification

Code Verifi
catio

n

Unified formal framework of the following three
approaches can make synergy

CS750B Software
Model Checking

Copyright © 2006
8

Notorious Notorious ““Blue ScreenBlue Screen””

CS750B Software
Model Checking

Copyright © 2006
9

Safety Critical SystemsSafety Critical Systems

CS750B Software
Model Checking

Copyright © 2006
10

How we deliver SWHow we deliver SW

CS750B Software
Model Checking

Copyright © 2006
11

ConsequencesConsequences

CS750B Software
Model Checking

Copyright © 2006
12

Tragic Accidents ITragic Accidents I

The Therac-25 Story
Between June 1985
and Jan 1987, a
computer-controlled
radiation therapy
machine, called the
Therac-25, massively
overdosed six people

• software coding error

• http://sunnyday.mit.edu/papers/therac.pdf

CS750B Software
Model Checking

Copyright © 2006
13

Tragic Accidents IITragic Accidents II

Ariane 5
“On 4 June 1996, the maiden flight of
the Ariane 5 launcher ended in a
failure…The failure of the Ariane 501
was caused by the complete loss of
guidance and attitude information
…This loss of information was due to
specification and design errors in the
software of the inertial reference
system.”

• Floating number conversion problem
• http://www.ima.umn.edu/~arnold/disaster

s/ariane5rep.html

CS750B Software
Model Checking

Copyright © 2006
14

Tragic Accidents IIITragic Accidents III

NASA Mars Pathfinder (1997)
Priority inversion problem led to a system reset
and a one-day delay in retransmission of data
which wasted valuable mission time.
http://www.cis.ksu.edu/~hatcliff/842/Docs/Course
-Overview/pathfinder-robotmag.pdf

CS750B Software
Model Checking

Copyright © 2006
15

Quoted from ``1. Information Technology: Transforming our SocietQuoted from ``1. Information Technology: Transforming our Society'y'‘‘
President's Information Technology Advisory CommitPresident's Information Technology Advisory Committteeee 19991999

“…Furthermore, the Nation needs software that is far more usable,
reliable, and powerful than what is being produced today. We have
become dangerously dependent on large software systems whose
behavior is not well understood and which often fail in unpredicted
ways ... We need scientifically sound approaches to software
development … ”

Software CrisisSoftware Crisis

Quoted from Quoted from ““Science for Global Ubiquitous Computing (GUC)Science for Global Ubiquitous Computing (GUC)““
A 15 year Grand Challenges for Computing Research A 15 year Grand Challenges for Computing Research

Supported by UK Computing Research CommitteeSupported by UK Computing Research Committee 20042004

“…unless we offer a mathematically sound methodology to supplant
the practice of opportunist software creation there will be
consequences of the kind we have illustrated, and a further mass of
inscrutable legacy software. These consequences will be greatly more
damaging than previously, because the GUC is pervasive, self-
modifying and complex in the extreme…“

CS750B Software
Model Checking

Copyright © 2006
16

Hardware Hardware v.sv.s. Software. Software

Flexibility leads to low development cost
Minimal costs for HW board manufacturing > 10K$
Minimal costs for sofware > 0$

Growing popularity leads to complex software
systems

Pentium IV (Willamette): 42 million transistors
Windows XP: hundreds million instructions

Much harder to validate/verify (V&V)
HW design exploits symmetry, structure, and
components

• Synchronous executions
SW design allows maximal degree of freedom/easy
construction of programs

• Asynchronous executions

CS750B Software
Model Checking

Copyright © 2006
17

Formal MethodsFormal Methods

Definition: (from the Encyclopedia of Software Engineering)

Formal methods used in developing computer systems
are mathematics based techniques for describing
system properties. Such formal methods provide
frameworks within which people can specify, develop,
and verify systems in a systematic, rather than ad hoc
manner.
A method is formal if it has a sound mathematical basis,
typically given by a formal specification language.
This basis provides a means of precisely defining
notions like consistency and completeness, and more
relevant, specification, implementation and correctness.

CS750B Software
Model Checking

Copyright © 2006
18

Example. Mutual Exclusion AlgorithmExample. Mutual Exclusion Algorithm

char cnt=0,x=0,y=0,z=0;

void process() {
char me = _pid +1; /* me is 1 or 2*/

again:
x = me;
If (y ==0 || y== me) ;
else goto again;

z =me;
If (x == me) ;
else goto again;

y=me;
If(z==me);
else goto again;

/* enter critical section */
cnt++
/* assert(cnt ==1); */
cnt --;
goto again;

}

Mutual
Exclusion
Algorithm

Process 0

x = 1
y==0 || y == 1

z = 1
x==1
y = 1
z == 1
cnt++

Process 1

x = 2
y==0 || y ==2
z = 2
x==2

y=2
(z==2)
cnt++

Counter
Example

CS750B Software
Model Checking

Copyright © 2006
19

Specification:Specification: Informal, textual, visualInformal, textual, visual

Informal specification
The value of x will be between 1 and 5, until
some point where it will become 7. In any
case it will never be negative.

Temporal logic specification
((1<=x && x<=5) U x=7) /\ [] x>=0

Visual Specification

1<=x<=5

x=7

x>=0

CS750B Software
Model Checking

Copyright © 2006
20

Verification: State Exploration MethodVerification: State Exploration Method

Model checking
Specify requirement properties and build system model
Generate possible states from the model and then check
whether given requirement properties are satisfied within
the state space

• On-the-fly v.s. generates all
• Symbolic states v.s. explicit state
• Model based v.s. code based

OK

Counter
example

or

System
model

Requirement
properties

Model Checking
(state exploration)

(Φ Ω)

CS750B Software
Model Checking

Copyright © 2006
21

Too Expensive?Too Expensive?
Formal methods do involve time consuming training,
initially causing longer development time which
customers would be unhappy to pay for

But in the long run they generate less costly systems
System costs are high in the early life cycle stages, but far
lower in the later testing and maintenance stages

Problems are discovered early when least damage has been
done and least expense has been incurred

0
10

20
30

40
50

60
70

80
90

Require
ments

Desig
n

Coding

Development te
stin

g

Acce
ptance te

stin
g

Operation

Cost

0
5

10
15

20
25

Requir
ements

Desig
n

Cod
ing

Development te
stin

g

Acce
ptance t

esting

Operation

Cost

Source: Software Inspection,
Tom Gilb & Dorothy Graham,
Addison-Wesley, 1993

Expected Improvement
when formal methods
are deployed

CS750B Software
Model Checking

Copyright © 2006
22

Still a Research Area in Ivory Tower?Still a Research Area in Ivory Tower?

It is not true that formal methods use complex
mathematics, only simple maths is involved, mainly
set theory and elementary logic

Also, tools are becoming more common, e.g. to help
develop and understand formal specifications, and to
translate them directly into a first attempt at source
code
Opponents claim that formal methods still belong to
the world of research

They claim that it is not a mature, widely used software
engineering technique, that it is confined to ivory towers and
not tested in the real world

This is untrue. It is (becoming) pragmatic in some areas such
as safety critical systems and several hundred relatively large
systems have been formally verified.

CS750B Software
Model Checking

Copyright © 2006
23

AdoptionAdoption

Early Adopters

Researchers

Late Adopters

Skeptics

Mass Market

“Everyone”

Time

Ac
ce

pt
an

ce

The “Gap”

Tolerate “Warts” Require Convenience, Ease of Use and Low Cost

Source: Ken Arnold, HiTech Equipment Corp.

CS750B Software
Model Checking

Copyright © 2006
24

ConclusionsConclusions
Software has flexibility as its strong point at the cost of
validation/verification difficulty

Use of formal methods should be encouraged as they
produce higher quality software systems

Formal methods are particularly appropriate for safety
critical systems, providing the most effective way of
achieving a sufficient level of confidence in the developed
software

