Software Model Checking

Introduction to Process Algebra

Moonzoo Kim
CS Dept. KAIST
Fall 2006

Copyright © 2006 CS750 KAIST Korea Advanced Institute of
Software Model Checking Science and Technology

Review of the Previous Class
i € Nnave seen tragic accliaents aue to sortware an

specification bugs
B These bugs are hard to find because those bugs occurs
only in “exceptional”’ cases

B Informal system specification and requirement
specification makes automatic analysis infeasible, which
results in incomplete coverage

B To provide better coverage, we need
+« Formal requirement specification
+ Formal system model

System > OK
model
odel Checking 4
state exploratia
Requirement 0@~ Q) Counter

KAIST properties
CS750 Software qu
Model Checking 2
Copyright © 2006

QOutline

B Requirement specification problems

E Viewpoint on “meaning”’(semantics) of
system

B Complexity of a system
B Formal modeling v.s. programming
B Introduction to process algebra

CS750 Software I
Model Checking 3
Copyright © 2006

Reguirement Sgecification Problems

E Ambiguity
+ EXxpression does not have unique meaning, but can
be interpreted as several different meaning.
 EX. INt type in C programming language
B Incompleteness

+ Relevant issues are not addressed , e.g. what to do
when user errors occur or software faults show.
e Ex. See next slides

E Inconsistency

+ Contradictory requirements in different parts of the
specification.

CS750 Software I
Model Checking 4
Copyright © 2006

Example (retail chain management software)

B If the sales for the current month are
below the target sales, then a report is to
be printed,

+ Unless the difference between target sales
and actual sales is less than half of the
difference between target sales and actual
sales in the previous month

+or If the difference between target sales and
actual sales for the current month is under 5
percent.

KAIST

CS750 Software I

Model Checking Wq 5

Copyright © 2006

Viewpoint on Semantics of a System

E A system execution o is

a sequence of states @ ;
S
SpS;--- '

+ A state has an environment @ _—
psVar-> Val S, ’
E A system has its . @E @ :
3 812

semantics as a set of
system executions X2.y:4 @y_s
Si3 '

Sy

A 4

CS750 Software I
Model Checking 6
Copyright © 2006

ComEIexitz of sttems

B The complexity of a system Is sometimes more
accurately expressed using semantic
viewpoint (# of reachable states) rather than
syntactic viewpoint (line # of source code)

+the number of different states a system can reach
e Ex> An integer has 232 (~4000000000) possible values

CS750 Software I
Model Checking 7
Copyright © 2006

Example

active type A() {
byte X;
again:

X++;

goto again;

}

active type A() {
byte X;
again:
X++;
goto again;

}

active type B() {
byte y;
again:
y++;
goto again;

KAIST

CS750 Software
Model Checking 8
Copyright © 2006

Formal Modeling V.S. Programming

Formal Modeling Programming
Static Abstraction High Low
Aspects | Level
Development | Short Long
Time
Dynamic | Executable Yes (model checking) Always
Aspects No (theorem proving)
System Mathematically defined Usually given by
Semantics examples
Environment | Mathematically defined Usually given by
Semantics (i.e. examples
testbeds)
Program Manageable (i.e. Unmanageable (i.e.
State Space tractable state space) beyond computing power)
ST Validation By exhaustive exploration | By testing (incomplete

cstso software I q or deductive Eroof CO"eraQEZ
Modgl Checking M 9

Copyrig 2006

Process Algebra

B A process algebra consists of
4+ a set of operators and syntactic rules for constructing processes

4 a semantic mapping which assigns meaning or interpretation to
every process

<+ a notion of equivalence or partial order between processes

B Advantages: A large system can be broken into simpler
subsystems and then proved correct in a modular
fashion.

+ A hiding or restriction operator allows one to abstract away
unnecessary details.

+ Equality for the process algebra is also a congruence relation;
and thus, allows the substitution of one component with another
equal component in large systems.

CS750 Software I
Model Checking 10

Copyright © 2006

Calculus of Communicating sttems SCCSZ

B Developed by R.Milner (Univ. of Cambridge)
+ ACM Turing Award 1991

E Provides many interesting paradigms

+ Emphasis on communication and concurrency

* Provides compact representation on both communication and
concurrency

— Ex> a (receive) and a’ (send)
— Ex> | (parallel operator)
+ Provides observation based abstraction

* Hiding internal behaviors using \ (restriction) operator, i.e.,
considering all internal behaviors as an invisible special
action t

+ Provides correctness claim based on equivalence

* Branching time based equivalence
— Strong equivalence v.s. weak equivalence

CS750 Software I
Model Checking 11
Copyright © 2006

Overview on CCS Syntax and Semantics

E CCS describes a system as a set of communicating
Processes

B Behavior of a process is expressed using actions
4+ Act =input_actions U output_actions U {z}

B Each process is built based on the following 7 operators
4+ Nil (null-ary opeartor): 0
+ Prefix: a.P
<+ Definition: P = a.b.Q
+ Choice: a.P+Dh.P
+« Parallel: P|Q
4+ Restriction: P\ {a,b}
+ Relabelling: P[a/b]

B Each operator has a clear formal semantics via inference
rules (premises-conclusion rules)

4+ Based on these inference rules, a meaning/semantincs of a process
IS given as a labelled transition system

CS750 Software I
Model Checking 12

Copyright © 2006

Example of a CCS System

E A set of actions Act = {a,a’,b,t}
E We define a CCS system Sys as
+ Sys=(a.E+Db.0)|a.F
B Sys can executes one of the following 4 actions

+ Sys—a->E|aF Prefix
+ Sys—a’-> (a.E + b.0)|F | a.E —a->E
+ Sys-b->0]a'.F Choice,

(a.E + b.0)) —-a-> E

+ Sys - 1-> E|F Par
t(@a.E+Db.0)|a.F-a>E|a.F

<__Sys =(a.E+b.0)|a.F

%’
KAIST 2 ColF >

CS750 Software I
Model Checking 13

Copyright © 2006

