
Korea Advanced Institute of
Science and Technology

Copyright © 2006 CS750
Software Model Checking

Software Model CheckingSoftware Model Checking

Moonzoo Kim
CS Dept. KAIST

Fall 2006

Introduction to Process Algebra

CS750 Software
Model Checking

Copyright © 2006
2

Review of the Previous ClassReview of the Previous Class
We have seen tragic accidents due to software and
specification bugs
These bugs are hard to find because those bugs occurs
only in “exceptional” cases
Informal system specification and requirement
specification makes automatic analysis infeasible, which
results in incomplete coverage
To provide better coverage, we need

Formal requirement specification
Formal system model

OK

Counter
example

or

System
model

Requirement
properties

Model Checking
(state exploration)

(Φ Ω)

CS750 Software
Model Checking

Copyright © 2006
3

OutlineOutline

Requirement specification problems
Viewpoint on “meaning”(semantics) of
system
Complexity of a system
Formal modeling v.s. programming
Introduction to process algebra

CS750 Software
Model Checking

Copyright © 2006
4

Requirement Specification ProblemsRequirement Specification Problems

Ambiguity
Expression does not have unique meaning, but can
be interpreted as several different meaning.

• Ex. int type in C programming language

Incompleteness
Relevant issues are not addressed , e.g. what to do
when user errors occur or software faults show.

• Ex. See next slides

Inconsistency
Contradictory requirements in different parts of the
specification.

CS750 Software
Model Checking

Copyright © 2006
5

Example (retail chain management software)Example (retail chain management software)

If the sales for the current month are
below the target sales, then a report is to
be printed,

unless the difference between target sales
and actual sales is less than half of the
difference between target sales and actual
sales in the previous month
or if the difference between target sales and
actual sales for the current month is under 5
percent.

CS750 Software
Model Checking

Copyright © 2006
6

Viewpoint on Semantics of a System Viewpoint on Semantics of a System

A system execution σ is
a sequence of states
s0s1…

A state has an environment
ρs:Var-> Val

A system has its
semantics as a set of
system executions

x:0,y:0

x:0,y:1

x:1,y:2

x:1,y:3

x:2,y:4

s0

s1

s2

s3

s4

x:5,y:1

x:5,y:2

x:5,y:3

x:5,y:4

s11

s12

s13

s14

x:7,y:3

x:7,y:4

s21

s22

CS750 Software
Model Checking

Copyright © 2006
7

Complexity of SystemsComplexity of Systems

The complexity of a system is sometimes more
accurately expressed using semantic
viewpoint (# of reachable states) rather than
syntactic viewpoint (line # of source code)

the number of different states a system can reach
• Ex> An integer has 232 (~4000000000) possible values

CS750 Software
Model Checking

Copyright © 2006
8

ExampleExample

active type A() {
byte x;
again:

x++;
goto again;

}

x:0

x:1

x:2

x:255

active type A() {
byte x;
again:

x++;
goto again;

}

active type B() {
byte y;
again:

y++;
goto again;

}

x:0,y:0

x:1,y:0

x:2,y:0

x:255,y:0

x:0,y:1

x:1,y:1

x:0,y:255

x:1,y:255

x:255,y:255

x:2,y:1 x:2,y:255

CS750 Software
Model Checking

Copyright © 2006
9

Formal Modeling V.S. ProgrammingFormal Modeling V.S. Programming

Unmanageable (i.e.
beyond computing power)

Manageable (i.e.
tractable state space)

Program
State Space

Dynamic
Aspects

Static
Aspects

Usually given by
examples

Mathematically definedSystem
Semantics

Usually given by
examples

Mathematically definedEnvironment
Semantics (i.e.
testbeds)

LongShortDevelopment
Time

By testing (incomplete
coverage)

By exhaustive exploration
or deductive proof

Validation

AlwaysYes (model checking)
No (theorem proving)

Executable

LowHighAbstraction
Level

ProgrammingFormal Modeling

CS750 Software
Model Checking

Copyright © 2006
10

Process AlgebraProcess Algebra

A process algebra consists of
a set of operators and syntactic rules for constructing processes
a semantic mapping which assigns meaning or interpretation to
every process
a notion of equivalence or partial order between processes

Advantages: A large system can be broken into simpler
subsystems and then proved correct in a modular
fashion.

A hiding or restriction operator allows one to abstract away
unnecessary details.
Equality for the process algebra is also a congruence relation;
and thus, allows the substitution of one component with another
equal component in large systems.

CS750 Software
Model Checking

Copyright © 2006
11

Calculus of Communicating Systems (CCS)

Developed by R.Milner (Univ. of Cambridge)
ACM Turing Award 1991

Provides many interesting paradigms
Emphasis on communication and concurrency

• Provides compact representation on both communication and
concurrency

– Ex> a (receive) and a’ (send)
– Ex> | (parallel operator)

Provides observation based abstraction
• Hiding internal behaviors using \ (restriction) operator, i.e.,

considering all internal behaviors as an invisible special
action τ

Provides correctness claim based on equivalence
• Branching time based equivalence

– Strong equivalence v.s. weak equivalence

CS750 Software
Model Checking

Copyright © 2006
12

Overview on Overview on CCS CCS Syntax and Semantics Syntax and Semantics
CCS describes a system as a set of communicating
Processes
Behavior of a process is expressed using actions

Act =input_actions U output_actions U {τ}
Each process is built based on the following 7 operators

Nil (null-ary opeartor): 0
Prefix: a.P
Definition: P = a.b.Q
Choice: a.P + b.P
Parallel: P | Q
Restriction: P \ {a,b}
Relabelling: P[a/b]

Each operator has a clear formal semantics via inference
rules (premises-conclusion rules)

Based on these inference rules, a meaning/semantincs of a process
is given as a labelled transition system

CS750 Software
Model Checking

Copyright © 2006
13

Example of a CCS SystemExample of a CCS System

Sys =(a.E + b.0) | a’.F
a a’ b

E | a’.F 0 | a’.F(a.E + b.0)|F

τ

E | F

a’ 0 | F

ab a’

A set of actions Act = {a,a’,b,τ}
We define a CCS system Sys as

Sys = (a.E + b.0) | a’.F
Sys can executes one of the following 4 actions

Sys –a-> E | a’F
Sys –a’-> (a.E + b.0)|F
Sys –b-> 0 | a’.F
Sys - τ-> E|F

(a.E + b.0)) | a’.F –a-> E | a’.FParL

(a.E + b.0)) –a-> E
ChoiceL

a.E –a-> E
Prefix

