Software Model Checking

Linear Temporal Logic

Moonzoo Kim
CS Dept. KAIST

Copyright © 2006 CS750B KAIST Korea Advanced Institute of
Software Model Checking Science and Technology

Comments on #3 of HW#1

B Do not blindly repeat patterns you know!

+Squeeze out your specification to reduce # of
state and transition

B Comparison

+ 7/ smart people in the class modeled

Peterson’s mutual exclusion protocol
Including a process NumCrit

o # Of states: 70, # of transition: 130

+One smarter person darely removed
NumCrit

e # Of states: 35, # of transition:70

KAIST

CS750 Software I

Model Checking Wq

Copyright © 2006

HW#2 due Oct 10

E Wolf, ram, and cabbage problem

+ Goal: move wolf, ram and cabbage to B Restriction:
* Boat can deliver only 1 object with a person
 Ram eats cabbage and wolf eats ram if a person is not with them

+ To do:

e 1. Model this system in CCS

— When all of wolf, ram, and cabbage are delivered to B, the system should
generate “finish” action and halt

« 2. Show that there exists a solution to the problem using simulation feature of
CWB-NC

» 3. Show that there exists a solution using GCTL* model checking capability
* 4. Show that there exists a solution using proper equivalence semantics

KAIST

CS750 50”""5‘“‘ E——
Model Checklng 2
Copyright © 2006

HW#2 gcont.z

E RW problem of lecture 5

+ RW system shown in lecture 5 does not faithfully model
Java thread behavior. Point out difference between the
model used in RW system and real Java thread
behavior

* 1.Read “Threads” chapter of “The Java Programming
Language” by K.Arnold and J.Gosling

— Optionally RW explanation in “Concurrent Programming in Java”
by D.Lea

e 2. Analyze given RW specification in CCS

« 3. Explain difference between the model and real Java threads

» Hints: carefully looking at thread suspension, scheduling, wait,
and notify mechanism

+ Modify the model to reflect real Java thread behavior
KAIST

CS750 Software I
Model Checking
Copyright © 2006

semantics

given a state sequence (from a run o):
SorS1sS,sS; ..

and a set of propositional symbols: p,q,.. such that
Vi, (i =2 0) and Vp, s; |- p Is defined

we can define the semantics of the temporal logic formulae:
[1£, <>f, Xf, and e U £ i.e., the property

holds for the remainder
of run 0, starting at

£ Iﬁ: SO ‘= £ position s,

Vi, (J >= 1i): s,

jr(j >= 1)

Si+1 ‘= £

weak and strong until
(cf. book p. 135-136)

. |= f
d5, (3 >= 1): s; |- £ and
Vk,(1i <= k < j): s, |- e

equivalences:
(e U £f) == (e U £) A (<> £f)
(e U £f) == (e U £) v ([] e)

examples

&

P | & P P P P

[l1p is satified at all locations in O

<>p is satisfied at all locations in O

[]<>p is satisfied at all locations in ©

<>q is satisfied at all locations except s__, and s_
Xqg 1is satisfied at s, ,, and at s,

pUg (strong until) is satisfied at all locations except s_, and s_

|
<>(pUq) (strong until) is satisfied at all locations except s__, and s

- <> (pUqg) (weak until) is satisfied at all locations

[1<>(pUq) (weak until) 1s satisfied at all locations

in model checking we are typically only
interested in whether a temporal logic formula

is satisfied for all runs of the system, starting
in the initial system state (that is: at s;)

eguivalences

e [1p o (p ' false) until
<>p & (true p) until
[1p & <>lp

— If p 1s not invariantly true, then eventually p becomes false

I<>p & [1lp
— If p does not eventually become true, it is invariantly false

+ [1p&&[19 & []1(p&&Q) ‘@p,ﬁq
— note though: ([1pl||[19) — [1(P]l 9) |

— but: ([1p|l [19) <«- 1]l -

* <>p|<>q & <>(p]|9)
— note though: (<> p && <> Q) « <> (p && q)

— but: (_<'.> p && <> q) -_) & (p & & q) =

some standard LTL formulae

[1 P always p INnvariance
<>p eventually p guarantee
p -> (<> Q) p implies eventually g response
p->(qUr) p implies g until r precedence
[1<>D always, eventually p recurrence (progress)
<>[1p eventually, always p stability (non-progress)

(<> p) -> (<> q) eventually p Implies eventually q correlation

B

NonN-progress in every run where p

eventually becomes true

q also eventually becomes
true (though not necessarily
in that order)

dual types of

S— :
properties

acceptance __

the earlier informally stated
sample properties

p IS Invariantly true
[1P

p eventually becomes invariantly true
<>[] o
p always eventually becomes false at least once more
[1<>lp
p always implies g
[1(p->!q)
p always implies eventually q
[1(p-><>Qq)

0
O
=
-
-
O
_
T
—
o
=
N
©
T
D
>

| &

P

P

| &

| &

| &

| &

P P P P

P

b

7. l

d

P

&

q

P

P

P

e |

P

P

9]

P
- 0 0 000000000

P

S

the simplest operator: X

P

* the next operator X is part of LTL, but should be viewed with
some suspicion

It makes a statement about what should be true In all
possible immediately following states of a run

In distributed systems, this notion of ‘next’ is ambiguous

since It Is unknown how statements are interleaved Iin time, it
IS unwise to build a proof that depends on specific
scheduling decisions

« the ‘next’ action could come from any one of a set of active
processes — and could depend on relative speeds of execution

the only safe assumptions one can make in building
correctness arguments about executions in distributed
systems are those based on longer-term fairness

Interpreting formulae...

LTL: (<>(bl && (!b2 U b2))) -> []!a3

time

1. suppose b1 never becomes true

(p->q) means (!p v q)
the formula is satisfied!

2. b1 becomes frue, but not b2

the formula 1is satisfied!

3. b1 becomes true, then b2
but not a3

the formula is satisfied

4. b1 becomes frue, then b2, then a3

the formula is not satisfied

another example

(<>bl) -> (<>b2)

1. b1 never becomes true

formula satisfied

2. b1 and b2 both become true

formula satisfied

3. b1 becomes true but not b2

formula not satisfied
the property is violated

prefix the last formula with “11”

LTL: []((<>bl) -> (<>b2))

1. b1 never becomes true
formula satisfied

2. b1 and b2 alternate, indefinitely

formula satisfied

3. b2 becomes true only once

the formula is not satisfied
property is violated

where mtumon can fall...
‘p implies q°

* P->Q
— not that there are no temporal operators ([1, <>, U) In this

formula -- 1t is a propositional formula (a state property) that
will apply only to the initial state of each run...

— the formula is immediately satisfied if (!p || q) Is frue In the
Initial system state — and the rest of the run is irrelevant

@ [] p - q
— beware of precedence rules...
— as written this is parsed as ([1p) -> (9)

— If p is not invariantly true, the formula is vacuously satisfied
(by the definition of ->, *->" Is a temporal operator!)
If p is invariant, then the formula is satisfied if g holds in the
initial system state...

expressing properties in LTL
‘D implies q°

* [l(p->0q)

— note: there is still no temporal relation between p and g

— this formula is satisfied if in every reachable state the
propositional formula (!p || q) holds

* (p-><>0q)

— this would still be satisfied if p and g become true
simultaneously, in one step (repeatedly)

— doesn’t capture the notion that somehow the truth of p
causes, sometime later, the truth of q

expressing properties in LTL
‘D implies q°

* [l(p ->X(<>q))

— puts one or more steps Iin between the truth of p and g, but

this uses the maligned X operator... (but stutter invariance is
maintained In this case)

— formula is still satisfied if p never becomes true, probably not
what is meant

[1(p -> X(<>Q)) && (<>p)

— this may actually capture what we intended
— compare to our first guess of just: (p -> q)

peware Of L1 check your 1of

always dOUb:{e;n quard when

sciall |
i matching rui---

fails 10 find a

Relationship among Various Temporal Logics

Computational Tree Linear Temporal
Logic (CTL) Logic (LTL)

KAIST

CS750 Software
Model Checking
Copyright © 2006

Combined Buffer ExamEIe In Lecture 3

B'Ufab = ﬂ-+.E.Bufab + b_|_ .E.B'H.fﬂb
Bufi. = Bufu[f] where [f] = [eq /by, c_/b_,b_Jay,by/a_]
Sys = (Bufa|Bufi.) \ L where L £ {by,b_}

(Buf,, | c_’.Buf)\L (a_".Buf,, | Buf.)\L

(b_’.Buf, | Buf,)\L (Buf, | b,”.Buf)\L

Copyright© Jinseong Jeon

KAIST deadlock
CS750 Software I
Model Checking W
Copyright © 2006

	lec7-1.pdf
	ltl_lecture_페이지_03.jpg
	ltl_lecture_페이지_04.jpg
	ltl_lecture_페이지_05.jpg
	ltl_lecture_페이지_06.jpg
	ltl_lecture_페이지_07.jpg
	ltl_lecture_페이지_08.jpg
	ltl_lecture_페이지_09.jpg
	ltl_lecture_페이지_10.jpg
	ltl_lecture_페이지_14.jpg
	ltl_lecture_페이지_15.jpg
	ltl_lecture_페이지_16.jpg
	ltl_lecture_페이지_17.jpg
	ltl_lecture_페이지_18.jpg
	ltl_lecture_페이지_19.jpg
	lec7-2.pdf

