
Logic Model Checking

Lecture Notes 12:18
Caltech 101b.2

January-March 2005

Course Text:
The Spin Model Checker: Primer and Reference Manual

Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs.

Logic Model Checking [12 of 18] 2

Spin’s LTL syntax
• ltl formula ::=

true, false
any lower-case propositional symbol, e.g.: p, q, r, …
(f) round braces for grouping
unary f unary operators
f1 binary f2 binary operators

binary ::=
U --- strong until
&& --- logical and
|| --- logical or
-> --- logical implication
<-> --- logical equivalence

unary ::=
[] --- always, henceforth
<> --- eventually
X --- next
! --- logical negation

caution (p -> q) is shorthand for: (!p || q)
(p <-> q) is shorthand for: (p -> q) && (q -> p)

Logic Model Checking [12 of 18] 3

semantics
given a state sequence (from a run σσσσ):

s0,s1,s2,s3 …
and a set of propositional symbols: p,q,… such that

∀∀∀∀i,(i ≥≥≥≥ 0) and ∀∀∀∀p, si p is defined
we can define the semantics of the temporal logic formulae:

[]f, <>f, Xf, and e U f

σσσσ f iff s0 f

si []f iff ∀∀∀∀j,(j >= i): sj f

si <>f iff ∃∃∃∃j,(j >= i): sj f

si Xf iff si+1 f

=

==

==

==

= =

i.e., the property
holds for the remainder
of run σσσσ, starting at
position s0

s0 si si+1

Logic Model Checking [12 of 18] 4

weak and strong until
(cf. book p. 135-136)

weak
until

si e U f iff
si f ∨∨∨∨ (si e ∧∧∧∧ si+1 (e U f))
=

===

si e U f iff
∃∃∃∃j,(j >= i): sj f and
∀∀∀∀k,(i <= k < j): sk e

strong
until
(Spin) =

=

=

equivalences:
(e U f) == (e U f) ∧∧∧∧ (<> f)
(e U f) == (e U f) ∨∨∨∨ ([] e)

e e e e f

si sj

Logic Model Checking [12 of 18] 5

examples

s0 si si+1

p p p p p p p

q

p p

q

p p

[]p is satified at all locations in σσσσ

<>p is satisfied at all locations in σσσσ

[]<>p is satisfied at all locations in σσσσ

<>q is satisfied at all locations except sn-1 and sn

Xq is satisfied at si+1 and at si+3

pUq (strong until) is satisfied at all locations except sn-1 and sn

<>(pUq) (strong until) is satisfied at all locations except sn-1 and sn

<>(pUq) (weak until) is satisfied at all locations

[]<>(pUq) (weak until) is satisfied at all locations

σσσσ: sn-1 snsi+3

in model checking we are typically only
interested in whether a temporal logic formula
is satisfied for all runs of the system, starting
in the initial system state (that is: at s0)

Logic Model Checking [12 of 18] 6

equivalences
(cf. book p. 137)

• [] p ↔↔↔↔ (p U false) weak until

• <>p ↔↔↔↔ (true U p) strong until

• ![]p ↔↔↔↔ <>!p
– if p is not invariantly true, then eventually p becomes false

• !<>p ↔↔↔↔ []!p
– if p does not eventually become true, it is invariantly false

• []p && []q ↔↔↔↔ [] (p && q)
– note though: ([] p || [] q) →→→→ [] (p || q)
– but: ([]p || [] q) ← [] (p || q)

• <>p || <> q ↔↔↔↔ <> (p || q)
– note though: (<> p && <> q) ← <> (p && q)
– but: (<> p && <> q) →→→→ <> (p && q)

p ∧∧∧∧ ¬¬¬¬q

p ∧∧∧∧ ¬¬¬¬q

¬¬¬¬ p ∧∧∧∧ q

s0

s1

s2

Logic Model Checking [12 of 18] 7

some standard LTL formulae

[] p always p invariance
<> p eventually p guarantee
p -> (<> q) p implies eventually q response
p -> (q U r) p implies q until r precedence
[]<> p always, eventually p recurrence (progress)
<>[] p eventually, always p stability (non-progress)
(<> p) -> (<> q) eventually p implies eventually q correlation

non-progress

acceptance

dual types of
properties

in every run where p
eventually becomes true
q also eventually becomes
true (though not necessarily
in that order)

Logic Model Checking [12 of 18] 8

the earlier informally stated
sample properties

(vugraph 12 lecture 11)

• p is invariantly true
[] p

• p eventually becomes invariantly true
<>[] p

• p always eventually becomes false at least once more
[]<>!p

• p always implies ¬q
[] (p -> !q)

• p always implies eventually q
[] (p -> <> q)

Logic Model Checking [12 of 18] 9

visualizing LTL formulae
p

p p p p p p p p p p p

p

p p p p p qp

p q p p q

f: p

f: []p

f: <> p

f: <> (pUq)

f: (pUq)

f: [] (pUq)

f’: []<>p

p p p qp qp

Logic Model Checking [12 of 18] 10

the simplest operator: X

• the next operator X is part of LTL, but should be viewed with
some suspicion
– it makes a statement about what should be true in all

possible immediately following states of a run
– in distributed systems, this notion of ‘next’ is ambiguous
– since it is unknown how statements are interleaved in time, it

is unwise to build a proof that depends on specific
scheduling decisions

• the ‘next’ action could come from any one of a set of active
processes – and could depend on relative speeds of execution

– the only safe assumptions one can make in building
correctness arguments about executions in distributed
systems are those based on longer-term fairness

p

f: X(p)

Logic Model Checking [12 of 18] 11

stutter invariant properties
(cf. book p. 139)

• Let φ = V(σ,P) be a valuation of a run σ for a given set of
propositional formulae P
– a series of truth assignment to all propositional formulae in P, for

each subsequent state that appears in σ
– the truth of any temporal logic formula in P can be determined for a

run when the valuation is given
– we can write φ as a series of intervals: φ1

n1, φ2
n2, φ3

n3, ... where the
valuations are identical within each interval of length n1, n2, n3, ...

• Let E(φ) be the set of all valuations (for different runs) that differ
from φ only in the values of n1, n2, n3, ... (i.e., in the length of the
intervals)
– E(φ) is called the stutter extension of φ

Logic Model Checking [12 of 18] 12

valuations

bit x, y;

byte mutex;

active proctype A() {

x = 1;
(y == 0) ->
mutex++;

printf(“%d\n”, _pid);
mutex--;

x = 0

}

bit x, y;

byte mutex;

active proctype A() {

x = 1;
(y == 0) ->
mutex++;

printf(“%d\n”, _pid);
mutex--;

x = 0

}

p: (x == mutex)
q: (x != y)

x=1 (y==0) mutex++ print mutex-- x=0

x==0
y==0

mutex==0

x==1
y==0

mutex==0

x==1
y==0

mutex==0

x==1
y==0

mutex==1

x==1
y==0

mutex==1

x==1
y==0

mutex==0

x==0
y==0

mutex==0

n1=1 n2=2 n3=2 n4=1 n5=1

p !p!p !p p p p
!q qq q q q !q

a run σσσσ and
its valuation φφφφ:

p !p!p p p
!q qq q !q

another run in the
same set E(φφφφ)

n3=1n2=1

Logic Model Checking [12 of 18] 13

= =

stutter invariant properties
(cf. book p. 139)

• a stutter invariant property is either true for all members of
E(φ) or for none of them:

• σ f ∧ φ = V(σ,P) → ∀ν ∈E(φ), ν f

• the truth of a stutter invariant property does not depend on
‘how long’ (for how many steps) a valuation lasts, just on the
order in which propositional formulae change value

• we can take advantage of stutter-invariance in the model
checking algorithms to optimize them (using partial order
reduction theory)...

• theorem: X-free temporal logic formulae are stutter invariant
– temporal logic formula that do contain X can also be stutter-

invariant, but this isn’t guaranteed and can be hard to show
– the morale: avoid the next operator in correctness arguments

example: [](p -> X (<>q))
is a stutter-invariant LTL formula
that contains a X operator

Logic Model Checking [12 of 18] 14

interpreting formulae...
LTL: (<>(b1 && (!b2 U b2))) -> []!a3

2. b1 becomes true, but not b2
!b2

b1

4. b1 becomes true, then b2, then a3
!b2

b1

!a3

b2 a3

3. b1 becomes true, then b2
but not a3 !b2

b1

!a3

b2

1. suppose b1 never becomes true
time

!b1
(p->q) means (!p ∨∨∨∨ q)
the formula is satisfied!

the formula is satisfied!

the formula is satisfied

the formula is not satisfied
i.e., the property is violated

Logic Model Checking [12 of 18] 15

another example
LTL: (<>b1) -> (<>b2)

formula satisfied

formula satisfied

formula not satisfied
the property is violated

1. b1 never becomes true
time

!b1

2. b1 and b2 both become true
!b2

b1b2

!b1

3. b1 becomes true but not b2
!b2

b1

!b1

Logic Model Checking [12 of 18] 16

prefix the last formula with “[]”

3. b2 becomes true only once !b2

b1

!b1!b2

b1

b2
!b1

...

LTL: []((<>b1) -> (<>b2))

1. b1 never becomes true
formula satisfied

time
!b1

the formula is not satisfied
property is violated

!b1!b2!b1
2. b1 and b2 alternate, indefinitely

formula satisfied
!b2

!b2
b1

!b1!b2

b1

b2
!b1

...

b2
!b1

b2
!b1

!b2
b1

Logic Model Checking [12 of 18] 17

where intuition can fail...
e.g., expressing the property: “p implies q”

• p -> q
– not that there are no temporal operators ([], <>, U) in this

formula -- it is a propositional formula (a state property) that
will apply only to the initial state of each run...

– the formula is immediately satisfied if (!p || q) is true in the
initial system state – and the rest of the run is irrelevant

• []p -> q
– beware of precedence rules...
– as written this is parsed as ([]p) -> (q)
– if p is not invariantly true, the formula is vacuously satisfied

(by the definition of ->, “->” is not a temporal operator!)
– if p is invariant, then the formula is satisfied if q holds in the

initial system state...

Logic Model Checking [12 of 18] 18

expressing properties in LTL
“p implies q”

• [](p -> q)
– note: there is still no temporal relation between p and q
– this formula is satisfied if in every reachable state the

propositional formula (!p || q) holds

• [](p -> <> q)
– this would still be satisfied if p and q become true

simultaneously, in one step (repeatedly)
– doesn’t capture the notion that somehow the truth of p

causes, sometime later, the truth of q

Logic Model Checking [12 of 18] 19

expressing properties in LTL
“p implies q”

• [](p -> X(<>q))
– puts one or more steps in between the truth of p and q, but

this uses the maligned X operator... (but stutter invariance is
maintained in this case)

– formula is still satisfied if p never becomes true, probably not
what is meant

• [](p -> X(<>q)) && (<>p)
– this may actually capture what we intended
– compare to our first guess of just: (p -> q)

beware of LTL

always double-check your formulae

be especially on guard when a model checker

fails to find a matching run...

always use Spin to generate the never claim for

each LTL formula, and study it to see if it matches

your intuition of what you thought it should be...

Logic Model Checking [12 of 18] 20

from logic to automata
(cf. book p. 141)

• for any LTL formula f there exists a Büchi automaton that
accepts precisely those runs for which the formula f is satisfied

• example: the formula <>[]p corresponds to the non-
deterministic Büchi automaton:

p s1 ptrue s0

Logic Model Checking [12 of 18] 21

from logic to automata

• to turn an LTL correctness requirement into a Promela never
claim, just negate the LTL formula, and generate the claim from
the negated form:

!<>[]p ≡≡≡≡ []![]p ≡≡≡≡ []<>!p

!p
s1true s0

true

!p !p !p

the automaton only accepts a run if p keeps

returning to false infinitely often

i.e., securing that in the run considered p

does not remain true invariantly, ever

Logic Model Checking [12 of 18] 22

!<>[]p

<>[]P

using Spin to do
the negations and the conversions
$ spin -f ‘<>[]p’
never { /* <>[]p */
T0_init:

if
:: ((p)) -> goto accept_S4
:: (1) -> goto T0_init
fi;

accept_S4:
if
:: ((p)) -> goto accept_S4
fi;

}

pp
S4true T0_init

$ spin -f ‘!<>[]p’
never { /* !<>[]p */
T0_init:

if
:: (! ((p))) -> goto accept_S9
:: (1) -> goto T0_init
fi;

accept_S9:
if
:: (1) -> goto T0_init
fi;

}

!p
s9true T0_init

true

Logic Model Checking [12 of 18] 23

syntax rules
$ spin -f ‘([] p -> <> (a+b <= c))’
tl_spin: expected ‘)’, saw ‘+’
tl_spin: ([] p -> <> (a+b <= c))
------------------------^
$

$ spin -f ‘[] (p -> <> q)’
never { /* [](p -> <> q) */
T0_init:

if
:: (((! ((p))) || ((q)))) -> goto accept_S20
:: (1) -> goto T0_S27
fi;

accept_S20:
if
:: (((! ((p))) || ((q)))) -> goto T0_init
:: (1) -> goto T0_S27
fi;

accept_S27:
if
:: ((q)) -> goto T0_init
:: (1) -> goto T0_S27
fi;

T0_S27:
if
:: ((q)) -> goto accept_S20
:: (1) -> goto T0_S27
:: ((q)) -> goto accept_S27
fi;

}

$

#define q (a+b <= c)

define lower-case
propositional symbols
for all arithmetic and
boolean subformulae

beware of operator
precedence rules..

$ ltl2ba -f '[] (p -> <> q)'
never { /* [] (p -> <> q) */
accept_init:

if
:: (!p) || (q) -> goto accept_init
:: (1) -> goto T0_S2
fi;

T0_S2:
if
:: (1) -> goto T0_S2
:: (q) -> goto accept_init
fi;

}

there is no minimization algorithm
for non-deterministic Büchi automata.
sometimes alternative converters can
produce smaller automata:

Logic Model Checking [12 of 18] 24

gaining intuition for ltl formula

• p -> q

• [] p -> q

• [] (p -> q)

true!p || q

true!p || q

true

true

!p

!p || q

Logic Model Checking [12 of 18] 25

gaining intuition for ltl formula

• [] (p -> <> q)

• [] (p -> X <> q)

true
true

q

!p || q

truetrue

!p&&q

q

true

!p

!p&&q

q

!p

Logic Model Checking [12 of 18] 26

the last few steps...

• [] (p -> X <> q) && (<> p)

but, what we really want for
verification is the violation of this
property: the negated formula...

• !([] (p -> X <> q) && (<> p))

be warn
ed:

larger
propert

y autom
ata are

general
ly hard

er to u
ndersta

nd

and the
y incur

 more c
omplexi

ty

during
the ver

ificati
on proc

ess

p
!p&&q

true

true

true true

true

true

p&&q
q !p

!p
!p&&q

p

spin -f

true

!p

!p

p

true

p

!q

spin -f

