
Generating Abstract Explanations of Spurious

Counterexamples in C Programs

Thomas Ball Sriram K. Rajamani

ftball,sriramg@microsoft.com

January 22, 2002

Technical Report

MSR-TR-2002-09

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Generating Abstract Explanations of Spurious

Counterexamples in C Programs

Thomas Ball Sriram K. Rajamani
ftball,sriramg@microsoft.com

Microsoft Research

Abstract. Counterexample driven re�nement is a promising technique to generate automatic
abstractions for model checking software. A central problem in automating this approach is the
re�nement of models from spurious error traces. We present a solution to this problem for C pro-
grams. Our solution introduces compile time names for run time values, and handles all constructs
in the C programming language. We present Newton, an implementation of our solution, and
empirical results from running Newton on several C programs.

1 Introduction

There is considerable interest in using model checking to verify software written in common programming
languages like C and Java [5, 7, 13]. Abstraction is the fundamental problem in making model checking
viable for software. A popular approach for automatic abstraction is to construct a so-called predicate

abstraction, where concrete states of a program are mapped to abstract states of a model according to
their evaluation under a �nite set of predicates.

Where do the predicates for predicate abstraction come from? A common way to generate predicates
is through a process called iterative re�nement: �rst construct a very abstract model (that, in the case
of source code includes only a control skeleton of the source program) and use infeasible paths (spurious
counterexamples) in the model to generate predicates iteratively. [14, 17, 6, 15]

This paper address the problem of generating predicates from infeasible paths in a C program.
There are several challenges in solving this problem. First, C programs have a rich semantic structure,
containing unbounded domains like integers and pointers. Second, C programs have a lexical scoping
structure due to procedural abstraction. These features interact | for instance, when pointers are passed
between procedures. Our experience is that predicates that explain infeasible paths are easier to generate
if we assign compile time names to run-time values that can be generated in the C program.

We formalize what it means for a set of predicates to explain infeasibility of a path, and show how to
generate explanations (the set of predicates) using symbolic simulation. The predicates generated using
our technique have new names introduced to denote run time values in the C program. Annotations are
used to bind these new names to the C program, and our predicate abstraction tool is able to handle
such predicates and annotations [1, 2].

Suppose there are multiple explanations for an infeasible path p. Which explanation is better? In-
tuitively, an explanation for p is good if it has a small number of predicates and if it also serves as an
explanation for other infeasible paths that overlap with p. We give a de�nition of a partial-order relation
between explanations that formalizes the above intuition. We use a technique for giving fresh names to
values as a way to e�ectively generate better explanations.

Given an infeasible path p, suppose our goal is to explain to a programmer (and not an automatic
tool) why p is infeasible. It is natural in this context to consider projections (subsequences) of p that are
relevant to explaining the infeasibility. In this case, the smaller the projection the better. Projections
can be thought of as program slices (along a particular path) that preserve infeasibility of the path. In

fact, predicates explaining the infeasibility of a path can be formally related to projections that explain
the infeasibility. We make that connection precise. Our results are useful in generating slices of paths
where the relationship between a slice and the path is one of abstraction rather than equivalence, as is
traditionally done in program slicing [18] (the link to program slicing is discussed in detail in related
work).

The results of this paper are as follows:

{ We de�ne what it means for a set of predicates to explain the infeasibility of a path in a C program,
using the concept of bit-vector abstraction, and show how to use strongest post-conditions to generate
explanations of infeasible paths (Theorem 1). The predicates generated can mention both program
variables, and new names generated called symbolic constants. The exibility to mention these new
names enables generation of such predicates using symbolic simulation.

{ We de�ne a criterion called consistent path projections for creating slices of infeasible paths that
yield more abstract explanations of path infeasibility. We state and prove a theorem (Theorem 2)
that links consistent path projections with abstract explanations.

{ We present the Newton tool for generating explanations of infeasible paths through C programs,
which is based on the above ideas. We give details on how Newton handles C programs with
procedures and pointers.

{ We present empirical results of running Newton on paths from Windows NT device drivers. These
results show that Newton is very good at generating explanations of path infeasibility, achieving
order-of-magnitude reductions over naive approaches to explaining path infeasibilities.

Outline. Section 2 introduces a simple example used to illustrate concepts throughout the paper.
Section 3 sets up background material and de�nes what it means for a set of predicates to explain
the infeasibility of a path. Section 4 presents a modi�ed theory of strongest postconditions that uses
\annotations" in order to introduce fresh names for run-time values. Section 5 de�nes the concept of
consistent path projection that forms the basis for generating abstract explanations of path infeasibility.
Section 6 describes the implementation of these ideas in the Newton tool. Section 7 presents our
experimental results on running Newton in the context of the Slam project. Section 8 discusses related
work and Section 9 concludes the paper.

2 Example

Consider the \path program" p1 in Figure 1(a). We call p1 a \path program" because it represents
a �nite path through a program with if-then-else statements and loops. The assume statements in
the path program represent the evaluation of a predicate in a conditional to true or false. An assume

statement silently terminates execution if its expression evaluates to false. The path represented by the
program p1 is infeasible as it is impossible for any execution of this program to reach the end of the
program (the program point after the last assume statement). Any successful execution of the �rst
�ve statements establishes the condition e1 = (b > 0) ^ (c = 2b) ^ (a = b � 1). Since e1 implies a 6= c
the last assume statement must fail. If we construct a predicate abstraction of this program using the
set of predicates E1 = f(b > 0); (c = 2b); (a = b); (a = b � 1)g, it turns out that the abstraction is
precise enough to represent the infeasibility of this path. Thus E1 is an explanation of this infeasibility.
The formal de�nition of when a set of predicates is a suÆcient explanation for infeasibility is given in
Section 3.

Is there a better explanation of why this path is infeasible? Consider the program p2 in Figure 1(b),
which is a projection of program p1. This path program also is infeasible since any successful execution
of the �rst 3 statements of this path establishes the condition e2 = (b > 0) ^ (c = 2b) ^ (a < b). Since
e2 implies a 6= c we have that p2 is infeasible. Notice that the condition e1 implies the condition e2

Program p1 Program p2

assume(b>0);

c := 2*b;

a := b;

a := a - 1;

assume(a<b);

assume(a=c);

assume(b>0);

c := 2*b;

assume(a<b);

assume(a=c);
(a) (b)

Fig. 1. Two infeasible \path" programs (p1 and p2).

since (a = b � 1) implies a < b. That is, e2 is a consistent and weaker explanation of why program
p1 is infeasible, as any execution state satisfying e1 also will satisfy e2, and e2 implies a 6= c. The
program p2 shows that the exact value of the variable a is irrelevant to explaining the infeasibility of the
path p1. To reiterate, this is captured by the fact that condition e2 is more abstract (weaker) than the
condition e1. If we construct a predicate abstraction of the original program p1 using the set of predicates
E2 = f(b > 0); (c = 2b); (a < b)g, it turns out that the abstraction is also precise enough to represent
the infeasibility of this path. Since p2 is a projection of p1, we say that E2 is a better explanation than
E1.

3 Explaining Infeasible Paths

Let X be a set of integer variables. Let IntExpr be the (in�nite) set of side-e�ect-free arithmetic ex-
pressions over X and integer constants. Let RelExpr be the set of side-e�ect-free relational expressions
over IntExpr using the relational operators (=; 6=; <;>;�;�). A path p is a sequence s1; s2; : : : ; sn of
assume statements (of the form assume(e), where e 2 RelExpression) and assignment statements (of
the form x := e, where x 2 X and e 2 ArithExpression). This de�nition of a path can capture any
�nite path through a single procedure C program with integer variables, where assignment statements
in the path in the C program are directly modeled in the path, and the evaluation of conditionals (in
while loops and if-then-else statements) are modeled using the assume statement.

We give a semantics to a path using the standard formulation of strongest postconditions [12] for
assignment and assume statements:

SP(x := e) = �f:9x0:f [x0=x] ^ (x = e[x0=x])
SP(assume(e)) = �f:f ^ e

where f [x0=x] is the formula f with x0 substituted for every free occurrence of x. For a sequence of
statements, p = s1; s2; : : : ; sn, SP(p) = SP(sn)ÆSP(sn�1)Æ� � �ÆSP(s1), where the functional composition
g Æ h of two functions g and h is de�ned from right to left (i.e., g Æ h = �x:g(h(x))). We assume the
existence of a quanti�er elimination procedure for the computation of SP (we will return to this point
in the next section).

A path p is infeasible if SP(p)(true) = false. For program p1 of Figure 1(a),

SP (p1)(true) = (b > 0) ^ (c = 2b) ^ (a = b� 1)) ^ (a < b) ^ (a = c)
= false

Explaining Infeasible Paths. Suppose path p is infeasible. An explanation for the infeasibility of p is
a set of expressions (predicates) from RelExpr . Informally, a set of predicates P explains the infeasibility
of a path p if we can prove that p is infeasible when restricting the domain of our discourse to the

predicates in P (this is the essence of predicate abstraction). We formalize this intuition using the
concept of bit-vector abstraction.

A set P = fe1; � � � ; eng of predicates de�nes an abstract domain hA(P);�i, where A(P) = false [
f0; 1gn, and the partial order � is the least reexive, transitive relation that satis�es the following
axioms:

{ false �v, for all v 2 A(P).

{ u � v, if for every 0 � i � n, we have either v[i] = 0 or u[i] = v[i] for all u; v 2 f0; 1gn.

Informally, for any bitvector v, and 0 � i � n, we use v[i] = 0 to represent that we have no knowledge
about the truth value of the predicate ei, and we use we use v[i] = 1 to represent the knowledge that ei
is true. Given a set P = fe1; � � � ; eng of predicates, we de�ne a pair of abstraction and concretization
functions �P

bv
and P

bv
that connect the concrete domain BoolExpr (with implication as the partial

ordering) and hA(P);�i. Let 0 � ei = 1 and 1 � ei = ei, in

�P
bv
: BoolExpr ! A(P)

f 7! false if f is unsatis�able
hv1; : : : ; vni if f is satis�able;

where vi = 1 if f =) ei
and vi = 0 otherwise

P
bv
: A(P)! BoolExpr

hv1; : : : ; vni 7! (v1 � e1 ^ : : : ^ vn � en)

The abstraction of the operator SP(s) over an atomic statement s (where s is an assume or assignment
statement) is the operator SPP

bv
(s) on sets of bitvectors de�ned by

SPP
bv(s) = �Pbv Æ SP(s) Æ

P
bv

The abstraction of SP(p), where p is a path, is de�ned to be

SPP
bv(p) = SPP

bv(sn) Æ SP
P
bv(sn�1) Æ � � � Æ SP

P
bv(s1)

If path p is infeasible, we say that a set of predicates P = fe1; � � � ; eng is suÆcient to explain the
infeasibility of p if SPP

bv
(p)(0n) = false.

Returning to the example of path p1 from Figure 1(a), the set of predicates f(b > 0); (c = 2b); (a =
b� 1); g is not an explanation of p1's infeasibility because there is not enough information in this set for
the abstraction to show that the sequence of statements a:=b; a:=a-1; makes the predicate (a = b�1)
true. On the other hand, f(b > 0); (c = 2b); (a = b); (a = b � 1)g is an explanation. Additionally,
f(b > 0); (c = 2b); (a < b)g also is an explanation.

4 Path Simulation via Strongest Postconditions

This section reformulates the de�nition of strongest postcondition (SP 0) so that it closely resembles the
operation of a virtual machine that one would implement to symbolically execute a path. We want to be
able to use such a symbolic simulator to automatically generate good explanations for infeasibility. Our
reformulation of strongest postconditions introduces a fresh \symbolic constant" �x (a Skolem constant)
when variable x is used without �rst being de�ned or used on a path. This allows us to operate in a
logic without existential quanti�cation. The de�nition of SP 0 uses an explicit store and substitutes x's
value in the store for each occurrence of x in an expression.

Path p1
1 �1 �1

b := �b; hb; �bi

assume(b>0); hb; �bi �b > 0

c := 2*b; hb; �bi, hc; 2�bi �b > 0

a := b; ha; �bi, hb; �bi, hc; 2�bi �b > 0

a := a-1; ha; �b � 1i, hb; �bi, hc; 2�bi �b > 0 ha; �bi

assume(a<b); ha; �b � 1i, hb; �bi, hc; 2�bi �b > 0, �b � 1 < �b ha; �bi

assume(c=a); ha; �b � 1i, hb; �bi, hc; 2�bi �b > 0, �b � 1 < �b, 2�b = �b � 1 ha; �bi

Fig. 2. Path simulation of program p1 from Figure 1(a) using SP 0.

4.1 Annotations

Let V (p) be the set of variables referenced (used or de�ned) by the statements of path p. Let �(p) be a set
of symbolic constants in a one-to-one correspondence with the variables of V (p): �(p) = f�xjx 2 V (p)g.
Let Exp denote the union of RelExpr and IntExpr , lifted to refer to V (p), integer constants, and �(p).

Annotations are the mechanism by which we introduce a fresh name �x for the value of variable x at
a point in a path. An annotation to a path p = s1; : : : ; sn is a pair hi; (x = �x)i where i is an integer,
1 � i � n, x 2 V (p), and �x 2 �(p). Given a path p of n statements and an annotation a = hi; (x = �x)i,
applying a to p inserts the assignment statement \x := �x" immediately before statement si in p. Given
a path p and a set A of annotations, let A(p) denote the path obtained by applying every annotation
a 2 A to p.

We pre-process path p so that no variable is used without �rst being de�ned. Given a statement
sj (1 � j � n) in a path p = s1; s2; : : : ; sn, let exposed(p; j) represent the variables that are used in
sj without previously being assigned to or used in p. Given a path p, let Ep be the set of annotations
representing the exposed variables in p

Ep = f(j; (x = �x))j1 � j � n ^ x 2 exposed(p; j)g

Given a path p with annotations Ep, we say that the path p0 = Ep(p) is the �-closure of p.

4.2 A New Version of Strongest Postconditions

We will de�ne the strongest postcondition for path p in terms of its �-closure p0. Additionally, we make
explicit three separate components of the strongest postcondition representation via the notion of a
context. A context is a triple h
;�;�i, where

{
 is a partial function V (p)! Exp called the store

{ � is a set of boolean expressions from Exp called the conditions, and
{ � � V (p)� Exp is a set called the history.

 represents the current valuation to V (p), � represents the constraints introduced by expressions in
assume statements, and � represents the past valuations to V (p).
 is extended to expressions over
V (p) in the usual way. Let
[x! e] be de�ned as usual:

[x! e](y) =

(y) if y 6= x
e if y = x

The strongest postcondition SP 0 for the two types of statements in a path maps a context to a new
context:

SP 0(x := e) = �h
;�;�i: h
[x!
(e)]; � ; � [fhx;
(x)ijx 2 dom(
)g i
SP 0(assume(e)) = �h
;�;�i: h
; � [
(e); � i

Note that an assignment to variable x overwrites the old value of x in the store and appends the old
value of x to the history. Unlike the store, which is a function, the history is a relation and is thus able
to record all the old values of x.

For a path p with �-closed version p0 = Ep(p) = s1; s2; : : : ; sn, we have:

SP 0(p) = SP 0(p0) = SP 0(sn) Æ SP
0(sn�1) Æ � � � Æ SP

0(s1)

Let ;3 abbreviate the empty context h;; ;; ;i. Figure 2 shows SP 0(p)(;3) for each pre�x of (�-closed)
path p1.

We now relate SP 0 to SP . For a pair hx; ei in V (p)�Exp, let C(hx; ei) denote the boolean expression
(x =s e). We use the \tagged" logical equality =s to distinguish equalities that arise from the store and
equalities that arise from assume statements. We generalize C to sets of pairs in the usual way.

Let the meaning function con map a boolean expression e that is the conjunction of RelExpr from
the sets es and eo (where es is a set of relational expressions in e that are tagged equalities and eo is a
set of other relational expressions in e) to a context: con = �e:hes; eo; ;i. Let the abstraction of context
to a boolean expression be denoted by:

�con = �h
;�;�i:
^

e2(C(
)[�)

e

Note that con(�con(h
;�;�i)) = h
;�; ;i. There are two interpretations of a context h
;�;�i =
SP 0(;3)(p) that are related to SP :

{ First, the formula F = 9�(p):
V

c2� c represents the conditions imposed by the assume statements
in the path p. Path p is infeasible if-and-only-if F is not satis�able (i.e., logically equivalent to false).
For our example path p1, F = 9�b:(�b > 0) ^ (�b � 1 < �b) ^ (2�b = �b � 1), which simpli�es to
9�b:(�b > 0) ^ (�b = �1), which is unsatis�able.

{ Second, the boolean expression 9�(p):�con(SP
0(p)(;3)) is equivalent to SP(p)(true).

4.3 Explanations

We now show how to generate explanations from SP 0. In order to do this, we �rst must reformulate the
bit-vector abstraction to work with SP 0. The abstraction of the operator SP 0(s) over an atomic statement

s (where s is an assume or assignment statement) is the operator SP 0P

bv(s) on sets of bitvectors de�ned
by

SP 0P

bv(s) = �Pbv Æ �con Æ SP
0(s) Æ con Æ

P
bv

The abstraction of SP 0(p), where p is a path, is de�ned to be

SP 0P

bv
(p) = SP 0P

bv
(sn) Æ SP

0P

bv
(sn�1) Æ � � � Æ SP

0P

bv
(s1)

We now rede�ne explanations of infeasible paths in terms of SP 0P

bv
. If path p is infeasible, we say that a

set of predicates P = fe1; � � � ; eng is suÆcient to explain the infeasibility of p if SP 0P

bv(p)(0
n) = false.

Theorem 1. Let p be a path and let h
;�;�i = SP 0(p)(;3). Then, if p is infeasible, then the set of
predicates E = C(
) [C(�) [�, is suÆcient to explain the infeasibility of p.

p01A p02
2 �2

b := �b; b := �b; hb; �bi
[1] assume(b>0); assume(b>0); �b > 0
[2] c := 2*b; c := 2*b; hc; 2�bi
[3] a := b;

[4] a := a - 1;

a := �a; a := �a; ha; �ai
[5] assume(a<b); assume(a<b); �a < �b

Fig. 3. Symbolic execution of path p02 from Figure 1(b). Path p02 is a CPP of path p01 by the annotations
A = f h1; (b = �b)i; h5; (a = �a)ig.

5 Abstract Explanations

We now de�ne a partial-order that relates explanations to one another. Intuitively, the less information
about the path the explanation uses, the more abstract it is. The advantage of abstract explanations of an
infeasible path p is that the abstract explanation is likely to be also an explanation for other infeasible
paths that overlap with p, and are infeasible for the same reason as p. We generate more abstract
explanations by allowing the introduction of fresh symbolic value �x for variable x, even if x has been

de�ned previously. Annotations are used to specify where such new symbolic values are introduced.

Theorem 1 says (unsurprisingly) that the full set of predicates generated by SP 0(p) is an explanation
of p's infeasibility. There clearly are better (more \abstract") explanations of infeasibility. Such abstract
explanations are generated by allowing annotations at arbitrary points in a path. Annotations are a
way to ignore the particular symbolic value a variable x has at a point in a path, simply by renaming
this value to be �x. If path p is infeasible, then we say that a pair hP ; Ai, where P = fe1; � � � ; eng is
a set of predicates and A is a set of annotations, is an abstract explanation of the infeasibility of P if
SP 0P

bv(pA)(0
n) = false.

Abstract explanations can be related to projections of paths. We �rst de�ne projections and then
relate abstract explanations to projections. Let path p = s1; s2; : : : ; sn, as before. Path q is a projection

of path p if q is a subsequence of p. If q is a projection of p and j is the index of a statement in q, let jp
be the index of the corresponding statement in p. Given a projection q of path p, we wish to make q's
annotation relevant in the context of p. We do so by de�ning Ap;q = f(jp; (x = �x))jx 2 exposed (q; j)g.

Path q is a consistent path projection (or CPP) of path p if (1) q is a projection of p, and (2)
�con(SP

0(;3)(pAp;q
)) implies �con(SP

0(;3)(q)). Consistent path projections form a partial order.

Now, given an infeasible path p = p0 :: assume(e), where p0 is feasible, we desire to �nd a least CPP
q0 of p0 such that q = q0 :: assume(e) is infeasible. Let us call such a path q an infeasible consistent

path projection (ICPP) of p. The following theorem shows a strong correspondence between ICPPs and
abstract explanations of infeasibility.

Theorem 2. Let p be an infeasible path, let q be an ICPP of p and let h
q ; �q ; �qi = SP 0(q)(;3). The
set of predicates E = C(
q) [C(�q) [�q along with the annotations Ap;q is suÆcient to explain the
infeasibility of p.

Example. Path p1 in Figure 1 is infeasible, as is path p2. Path p2 is a ICPP of p1. As mentioned in the
Introduction, the path p2 shows that the exact value of variable a is not important in explaining the
infeasibility.

We now show why p2 is an ICPP of p1. Let p
0
1 and p02 be paths p1 and p2 without their last assume

statements. The �-closed version of p02 is shown in Figure 3. The annotations induced by the projection p
0
2

of p01 are A = f h1; (b = �b)i; h5; (a = �a)ig. Applying these annotations to path p01 yields the path p01A

(also shown in Figure 3). It is straightforward to see that �con(SP
0(;3)(p01A)) implies �con(SP

0(;3)(p02)),
so p02 is a CPP of p01.

This example shows that reinterpreting the symbolic value of a in the statement \assume(a<b);" of
p02 as �a (rather than �b � 1) allows the infeasibility of the path p1 to be explained by a weaker (larger)
set of states. Such a reinterpretation is made possible by the fact that the statement assume(a < b)
is redundant in path p1 because the state just before this statement implies that the condition a < b
always is true. We will exploit this observation in the next section.

6 NEWTON: A tool for generating abstract explanations of infeasibility

The previous section described how abstract explanations for path infeasibility can be generated from
infeasible consistent path projections (ICPPs). There are many possible ways to construct ICPPs. In
this section, we describe the Newton tool, which implements the strongest-postcondition SP 0 (from
Section 4) to check if a given path p is infeasible, and if it is infeasible �nd an abstract explanation for
the infeasibility of p based on (implicitly) constructing ICPPs. We then briey describe the issues in
making Newton work for programs with procedures and pointers.

6.1 Basic Path Simulation

The internal state of Newton has three components that represent the path simulator's context (as
described in Section 4): (1)
, which is a mapping from variables to symbolic expressions; (2) �, a set
of predicates representing the evaluated expressions from the assume statements in the path; (3) � ,
which is a set of past associations between variables and symbolic expressions.

Given a path p, Newton functions in three phases:

{ Phase 1 computes SP 0(p)(;3) until � becomes inconsistent. While adding a new condition
(e) to
�, if
(e) is redundant (i.e, the current state implies
(e)), then Newton introduces fresh symbolic
constants for all variables in e. (This is illustrated later on.) As Newton computes SP 0 it keeps
a dependency map, which maps each member m of
 and � to the set of members from
 and
� that were used to generate m. These dependencies are analogous to ow dependencies used in
program slicing. They capture the ow of values from variable assignments to variable uses. For each
assume(e) statement encountered in the path, Newton uses the Simplify theorem prover [16, 9] to
check if 9�(p):

V
c2� c =) :
(e) holds. If this formula is satis�able then � [
(e) is inconsistent

and the path is declared to be infeasible. If this check does not succeed anywhere in the path, then
the path may be feasible.

{ Phase 2 starts if � [
(e) becomes inconsistent while processing assume(e). The goal of this phase
is to reduce the size of � while still maintaining the relationship that

V
c2� c =) :
(e). Currently,

this is done using a greedy heuristic that eliminates one condition at a time from � and checks to
see if �[
(e) is inconsistent. If so, Newton continues to eliminate conditions from �. Otherwise it
returns the last inconsistent set � [
(e). As the empirical results from Section 7 show, the greedy
heuristic works well in practice.

{ In Phase 3, Newton performs a backwards transitive closure from the set of minimized conditions
(using the dependency map constructed in Phase 1) to �nd all the members of the environment
(
) and history (�) that ow into these conditions. For such member m in the closure, Newton
generates a predicate.

We now illustrate the operation of Newton. Figure 4 shows three states of Newton, during di�erent
stages of processing the path p1 from Figure 1. The statement assume(b>0) is processed by �rst assigning
a symbolic constant �b for the variable b, and then introducing the condition (�b > 0). The number (1)

: var value deps. �: conds. deps. �: var hist. deps

1. b: �b () (�b > 0) (1) 3. a: �b (1)

2. c: 2�b (1)

4. a: �b � 1 (3)

(after the assignment a:=a-1)

: var value deps. �: conds. deps. �: var hist. deps

1. b: �b () (�b > 0) (1) 3. a: �b (1)

2. c: 2�b (1)

5. a: �a ()

(after choosing an abstract value �a for a)

: var value deps. �: conds. deps. �: var hist. deps

1. b: �b () (�b > 0) (1) 3. a: �b (1)

2. c: 2�b (1) (�a < �b) (1,5)

5. a: �a () (2�b = �a) (2,5)

(after the entire path)

Fig. 4. Newton's data structures while simulating the path from Figure 1.

is given to the store entry that assigns �b to b. The dependency list for the condition (�b > 0) is recorded
as (1) since the evaluation of the condition depended on that store entry. The �rst table in Figure 4
gives the state of Newton after simulating through the assignment a:=a-1. Note that the store entry
mapping a to �b has been moved to the history since a has been assigned twice.

The second table illustrates the step, where Newton has decided to abstract the value �b�1 of a by
a fresh symbolic constant �a. It does this because the condition (a < b) is implied by the current state
(that is, substituting the values of a and b in the expression yields �b � 1 < �b, which is true).

The third table shows the state of Newton after processing the last assume statement. At this stage
Newton determines that the set of three conditions: (�b > 0), (�a < �b) and (2�b = �a) are inconsistent.
Phase 2 of Newton determines that this set of conditions cannot be minimized any further, while still
maintaining inconsistency. In phase 3, Newton collects all the dependencies of these conditions, namely
1 and 5. Finally, Newton generates 3 predicates (�b > 0), (�a < �b), (2�b = �a) and two annotations
h5; (a = �a)i and h1; (b = �b)i as an abstract explanation of the infeasibility.

6.2 Procedures and Pointers

In the previous section, Newton was presented in the context of a simpli�ed language of assignments
and assume statements for simplicity. The Newton tool works for programs in C and handles inter-
procedural paths in the presence of structures and pointers. A preprocessing step converts any path to
an equivalent one that contains only assignments, assume statements, procedure calls and procedure
returns.

Interprocedural paths are handled by adding a stack to Newton. Predicates generated by newton
with multiprocedure programs are classi�ed as global predicates or as local to a particular procedure.
For predicates to be well-formed with respect to scoping we impose the following conditions:

{ A global predicate can only reference global variables or symbolic constants associated with global
variables.

{ A local predicate associated with a procedure P can only reference global variables, local variables
of P , and symbolic constants associated with these variables.

In order to ensure that all generated predicates are well-formed, Newton introduces fresh symbolic
constants when necessary. We give an example to illustrate this. Consider the path that leads to ERROR in
the program shown in Figure 5(a). While simulating the �rst call to procedure foo, Newton computes
the actual parameter to be �a, the value of a on entry to main. If
(x) = �a then there is a potential for
a predicate x = �a to be generated. This predicate is not well-formed by the above de�nition. To prevent

int inc(int x) {

x = x+1;

return x;

}

void main(int a) {

b, c;

b = inc(a);

c = inc(b);

if(c != a + 2){

ERROR: assert(0);

}

}

inc f
x = �x,
x = �x + 1
g

main f
b = a+ 1,
c = a+ 2
g

(a) C Program Predicates

int *p, *q;

void main(){

if(*p == 3){

*q = 2;

if(*p == 2){

*p = 3;

if(*q == 2){

ERROR: 0;

}

}

}

}

global f
��p = 2,
��p = 3,
��q = 2,
q = p,
� p = ��p,
� q = ��p,
� q = ��q

g

(b) C Program Predicates

Fig. 5. (a) A multiprocedure C program and predicates generated by Newton for the path that leads to ERROR;
(b) A C program with pointers and predicates generated by Newton for the path that leads to ERROR

this, Newton generates a fresh symbolic constant �x for x and associates �x with �a in a separate
mapping maintained at each procedure call.

As a result, Newton is able to generate the predicates �b = �a + 1, �c = �a + 2 as local predicates
for procedure main and predicates x = �x, x = �x + 1 as local predicates for procedure foo. Using
post-processing on the predicates, Newton �nds that �b can be replaced with b and �a with a. For a
description of how our predicate abstraction tool C2bp uses these predicates see [2].

Pointers are handled by generalizing the store (
) to be a map from locations to values. Expressions
can also evaluate to locations. Care must be taken to generate proper explanations of infeasibility in the
presence of pointer aliasing. Whenever Newton needs to generate annotations for two pointers p and
q, it consults the results of a pointer-analysis. If p and q can never be aliased then it generates distinct
annotations for p and q. If p and q may alias, then Newton considers both the aliased and not aliased
cases. The resulting conditions generated to Simplify can contain disjunctions and Simplify is able to
handle them using case analysis.

Figure 5(b) shows a C program with pointers p and q, where p and q can possibly be aliased.
Regardless of whether p and q are aliased, the path to ERROR is infeasible. Figure 5(b) also shows the
predicates generated by Newton by considering both alias possibilities.

7 Implementation and Experiments

In this section, we describe the context of the Slam process and toolkit in which we run the Newton
tool and present experimental results of applying Newton to paths from device drivers and the Slam
regression test suite. The Slam toolkit checks safety properties of software without the need for user-
supplied annotations or user-supplied abstractions. Given a safety property � to check on a C program
P , the Slam process [5] iteratively re�nes a boolean program abstraction of P using three tools:

{ C2bp, a predicate abstraction tool that abstracts P into a boolean program BP(P;Ei) with respect
to a set of predicates Ei over P [1]. The boolean programs constructed by C2bp are guaranteed to
be abstractions of the input C program P in that every feasible path of P is a feasible path of the
boolean program. However, because of the imprecision of the abstraction, the boolean program may
contain feasible paths that are not feasible in the C program.

driver Loc Insts Avg. j
 j Avg. j � j Avg. Preds Iter

apmbatt 2273 238 173 16 1 1
pnpmem 3930 256 175 18 1 3

iscsiprt-server 4855 252 143 25 3 23
oppy 7631 179 133 19 3 10
serial 26981 408 268 46 1 22

Table 1. Results on running Newton on paths from a Windows NT device drivers. See text of paper for
explanation.

{ Bebop, a tool for model checking boolean programs [4]. If Bebop reports that BP(P;Ei) satis�es a
property � then so does the C program P . Otherwise, Bebop reports a counterexample path through
P , which may or may not be feasible.

{ Newton, the tool that is the topic of this paper. The Slam toolkit uses theNewton tool to generate
a set of predicates Fi (and annotations) that explains why a counterexample is infeasible (if it is
infeasible). These predicates (and annotations) are suÆcient to guarantee that the next iteration of
the Slam process (run on the set of predicates Ei+1 = Ei[Fi) will not encounter the same infeasible
path. The weaker (more abstract) an explanation is, the more infeasible paths it will rule out in a
single iteration of the process.

The C2bp and Newton tools were implemented in the OCAML programming language, on top of the
AST Toolkit, one-level-ow points-to algorithm [8], and the Simplify theorem prover [9]. The Bebop
tool was implemented in C++, on top of the CMU and Colorado BDD packages.

We report the results of running Newton on �ve device drivers from Windows NT. The property
that was checked in these runs had to with conformance to a state machine for I/O request packet (IRP)
completion in the device driver. Details of the property are not relevant for understanding the numbers.
The interpretation of the numbers in each column is given below.

{ Loc: Number of lines of code. The drivers range from 2273 to 26981 lines of C code (without counting
number of lines in header �les).

{ Insts: Number of assignments and assume instructions in the path (i.e., the length of the path).
{ Avg. j
 j: Average number of entries in
 after path simulation.
{ Avg. j � j: Average number of entries in � after path simulation.
{ Avg. Preds: Average number of predicates in the explanation generated by Newton.
{ Iter: Number of iterations of Newton run by Slam. Averages in the previous columns are computed
over these runs.

We �nd that in each case Newton generates a very small explanation containing an average of at
most 3 predicates per iteration. The total number of predicates from which these predicates were chosen
is the sum j
 j + j � j which ranges from 152 (oppy) to 314 (serial). Every iteration of Newton took
under a minute to run and consumed less than 10MB of memory in a 996Mhz Pentium PC with 256MB
RAM.

We have also run Newton on 73 test programs that are part of a regression test suite for Slam.
The test suite contains small programs that test several speci�c features such as structure �elds, pointer
dereferences, taking an address of a local and passing it to a procedure where the local is updated
indirectly, dynamic memory allocation, and complex interactions between such features. Newton �nds
a small set of predicates to explain the infeasibility in all these cases. A complete listing of our regression
suite and the results or running all the Slam tools (including Newton) on this suite can be downloaded
from http://research.microsoft.com/slam/.

8 Related Work

Counter-example driven re�nement. Counterexample driven re�nement with automatic predicate
generation has been studied before in [14, 17, 6, 15]. In comparison with these e�orts, the main novelty of
our work is the use of new names (symbolic constants) to denote run time values and generate predicates
in terms of these symbolic constants. We needed to do this in order to handle the rich features of a
programming language with pointers and procedure calls. The paths given to Newton (by the Bebop
tool) are control paths| a sequence of control locations through a program. A control path is equivalent
to a set of abstract counterexamples when compared to [6] and [15]. Since Newton maintains data
dependencies, it requires just one iteration to exclude all such abstract counterexamples unlike [6]
and [15]. In addition, the notions of abstract explanations, the partial order between explanations and
connections with program slicing are novel.

Discovering invariants. The predicates E that Newton discovers are input to the C2bp predicate
abstraction tool that creates a boolean program abstraction BP(P;E) of a C program P . The Bebop
tool then computes the reachable states of BP(P;E), which are inductive invariants. In this way, the
three tools combine to discover invariants about the C program P . These invariants often are powerful
enough to prove interesting properties of programs.

Houdini is a tool for discovering invariants about Java programs to assist the ESC-Java tool, which
detects defects in Java programs [11]. Houdini generates invariants based on the input source program
and various syntactically-based heuristics (i.e., a reference variable should be tested for being null).
Incorrectly-guessed invariants are refuted by the ESC-Java tool. Invariants that are not refuted are
guaranteed to be true invariants. Daikon is a tool for discovering program invariants by analyzing the
run-time behavior of a program. [10] Daikon uses a library of heuristics to guess likely invariants based
on the values that variables take on during an execution of a program. Both the above approaches can
be thought of as \eager" approaches to invariant discovery. Invariants are guessed based on the hope
that they will be helpful to some client analysis. In contrast, our work is demand-driven, discovering the
predicates (and invariants) based on the goal of explaining the infeasibility of a program path.

Program slicing. Consistent path projections (CPPs) are a form of program slice, but di�er in a
crucial aspect. Program slicing typically computes program projections that are semantically equivalent

to the programs they come from. [18] Consider programs p1 and p2 from Figure 1. Program p2 is
not semantically equivalent to program p1. Consider the possible values of variable a at the statement
assume(a<b) in the two programs, given the initial state [a = 2; b = 1; c = 0]. In program p1, the state
before the assume statement is [a = 0; b = 1; c = 2]. In program p2, the state before the assume

statement is [a = 2; b = 1; c = 2]. These states di�er on the value of variable a.

The relationship between program p1 and p2 (and CPPs in general) is one of abstraction rather
than equivalence. That is, the set of reachable states at each program point in p1 is a subset of the
set of reachable states at each corresponding program point (as de�ned by the projection relationship)
in p2. For example, the set of reachable states in p1 just before the statement assume(a<b); is b >
0 ^ c = 2b ^ a = b � 1, while the set of reachable states in p2 just before the statement assume(a<b);
is b > 0 ^ c = 2b, a strictly weaker condition than the former condition. This abstraction relationship
forms a partial order over programs related by syntactic projection.

Termination of iterative re�nement. Given a control path p that is infeasible, Newton produces
a set of predicates that explain the infeasibility of p. When Newton is used in the context of property
checking using iterative re�nement, this property alone does not say anything about the termination of
iterative re�nement. This paper takes a very local view of iterative view of iterative re�nement| how
to rule out a single control path. The more global issue| termination of iterative re�nement, which
involves multiple invocations of Newton| is addressed in [3].

9 Conclusions

The question \Where do predicates come from?" is a critical one in counter-example driven re�nement.
Ours is the �rst work to address this question for C programs. Our key idea is to name the values of
variables at certain points in a path so as to generate explanations of a path's infeasibility. This enables
us to use symbolic simulation for generating predicates and handle all the features of the C language.
We have introduced consistent path projections as a way to form a partial-order of explanations, and
related these with sets of predicates given as explanations. We have implemented our ideas in a tool,
Newton, and demonstrated its eÆcacy on Windows NT device drivers.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C programs.
In PLDI 01: Programming Language Design and Implementation, pages 203{213. ACM, 2001.

2. T. Ball, T. Millstein, and S. K. Rajamani. Polymorphic predicate abstraction. Technical Report MSR-TR-
2001-10, Microsoft Research, 2001.

3. T. Ball, A. Podelski, and S. K. Rajamani. On the relative completeness of abstraction re�nement. In TACAS
02: Tools and Algorithms for Construction and Analysis of Systems, LNCS (to appear). Springer-Verlag, 2002.

4. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean programs. In SPIN 00: SPIN
Workshop, LNCS 1885, pages 113{130. Springer-Verlag, 2000.

5. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces. In SPIN 01:
SPIN Workshop, LNCS 2057, pages 103{122. Springer-Verlag, 2001.

6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction re�nement.
In CAV 00: Computer-Aided Veri�cation, LNCS 1855, pages 154{169. Springer-Verlag, 2000.

7. J. Corbett, M. Dwyer, J. Hatcli�, C. Pasareanu, Robby, S. Laubach, and H. Zheng. Bandera : Extracting
�nite-state models from Java source code. In ICSE 00: Software Engineering, 2000.

8. M. Das. Uni�cation-based pointer analysis with directional assignments. In PLDI 00: Programming Language
Design and Implementation, pages 35{46. ACM, 2000.

9. D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover {
http://research.compaq.com/src/esc/simplify.html.

10. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program invariants
to support program evolution. IEEE Transactions in Software Engineering, 27(2):1{25, February 2001.

11. C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation inference for modular checkers. Information
Processing Letters (to appear), 2001.

12. D. Gries. The Science of Programming. Springer-Verlag, 1981.
13. G. Holzmann. Logic veri�cation of ANSI-C code with Spin. In SPIN 00: SPIN Workshop, LNCS 1885, pages

131{147. Springer-Verlag, 2000.
14. R. Kurshan. Computer-aided Veri�cation of Coordinating Processes. Princeton University Press, 1994.
15. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental veri�cation by abstraction. In TACAS 01:

Tools and Algorithms for Construction and Analysis of Systems, LNCS 2031, pages 98{112. Springer-Verlag,
2001.

16. G. Nelson. Techniques for program veri�cation. Technical Report CSL81-10, Xerox Palo Alto Research
Center, 1981.

17. V. Rusu and E. Singerman. On proving safety properties by integrating static analysis, theorem proving and
abstraction. In TACAS 99: Tools and Algorithms for Construction and Analysis of Systems, LNCS 1579,
pages 178{192. Springer-Verlag, 1999.

18. M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352{357, July 1984.

