
Automatically Validating

Temporal Safety Properties of Interfaces

Thomas Ball and Sriram K. Rajamani

Software Productivity Tools
Microsoft Research

http://www.research.microsoft.com/slam/

Abstract. We present a process for validating temporal safety proper-
ties of software that uses a well-de�ned interface. The process requires
only that the user state the property of interest. It then automatically
creates abstractions of C code using iterative re�nement, based on the
given property. The process is realized in the SLAM toolkit, which con-
sists of a model checker, predicate abstraction tool and predicate discov-
ery tool. We have applied the SLAM toolkit to a number of Windows
NT device drivers to validate critical safety properties such as correct
locking behavior. We have found that the process converges on a set of
predicates powerful enough to validate properties in just a few iterations.

1 Introduction

Large-scale software has many components built by many programmers. Inte-
gration testing of these components is impossible or ine�ective at best. Property
checking of interface usage provides a way to partially validate such software. In
this approach, an interface is augmented with a set of properties that all clients
of the interface should respect. An automatic analysis of the client code then
validates that it meets the properties, or provides examples of execution paths
that violate the properties. The bene�t of such an analysis is that errors can be
caught early in the coding process.

We are interested in checking that a program respects a set of temporal safety

properties of the interfaces it uses. Safety properties are the class of properties
that state that \something bad does not happen". An example is requiring that
a lock is never released without �rst being acquired (see [24] for a formal de�-
nition). Given a program and a safety property, we wish to either validate that
the code respects the property, or �nd an execution path that shows how the
code violates the property.

In this paper, we show that safety properties of system software can be
validated/invalidated using model checking, without the need for user-supplied
annotations (invariants) or user-supplied abstractions. The user only needs to
state the safety properties of interest (in our speci�cation language Slic, de-
scribed later). As no annotations are required, we use model checking to com-
pute �xpoints automatically over an abstraction of the C code. We construct an

appropriate abstraction by (1) obtaining an initial abstraction from the property
that needs to be checked, and (2) re�ning this abstraction using an automatic
re�nement algorithm.

We model abstractions of C programs using boolean programs [3]. Boolean
programs are C programs in which all variables have boolean type. Each boolean
variable in a boolean program has an interpretation as a predicate over the
in�nite state space of the C program. Our experience shows that our re�nement
algorithm �nds boolean program abstractions that are precise enough to validate
properties. Furthermore, if the property is violated, the process of searching for
a suitable boolean program abstraction leads to a manifestation of the violation.

We present the SLAM toolkit for checking safety properties of system soft-
ware, and report on our experience in using the toolkit to check properties of
Windows NT device drivers. Given a safety property to check on a C program,
the SLAM process has the following phases: (1) abstraction, (2) model checking,
and (3) predicate discovery. We have developed tools to support each of these
phases:

{ C2bp, a tool that transforms a C program P into a boolean programBP(P;E)
with respect to a set of predicates E over the state space of P [1, 2];

{ Bebop, a tool for model checking boolean programs [3], and

{ Newton, a tool that discovers additional predicates to re�ne the boolean
program, by analyzing the feasibility of paths in the C program.

The SLAM toolkit provides a fully automatic way of checking temporal safety
properties of system software. Violations are reported by the SLAM toolkit as
paths over the program P . It never reports spurious error paths. Instead, it de-
tects spurious error paths and uses them to automatically re�ne the abstraction
(to eliminate these paths from consideration). Since property checking is un-
decidable, the SLAM re�nement algorithm may not converge. However, in our
experience, it usually converges in a few iterations. Furthermore, whenever it
converges, it gives a de�nite \yes" or \no" answer.

The worst-case run-time complexity of the SLAM tools Bebop and C2bp

is linear in the size of the program's control ow graph, and exponential in
the number of predicates used in the abstraction. We have implemented several
optimizations to make Bebop and C2bp scale gracefully in practice, even with
a large number of predicates. The Newton tool scales linearly with path length
and number of predicates.

We applied the SLAM toolkit to check the use of the Windows NT I/O
manager interface by device driver clients. There are on the order of a hundred
rules that the clients of the I/O manager interface should satisfy. We have auto-
matically checked properties on device drivers taken from the Microsoft Driver
Development Kit1. While checking for correct use of locks, we found that the
SLAM process converges in one or two iterations to a boolean program that is

1 The code of the device drivers we analyzed is freely available from
http://www.microsoft.com/ddk/W2kDDK.htm

suÆciently precise to validate/invalidate the property. We also checked a data-
dependent property, which requires keeping track of value-ow and aliasing,
using four iterations of the SLAM tools.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the SLAM approach by applying the tools to verify part of an NT
device driver. Sections 3, 4 and 5 give brief descriptions of the three tools that
compose the SLAM toolkit and explain how they work in the context of the run-
ning example. Section 6 describes our experience applying the tools to various
NT device drivers. Section 7 discusses related work and Section 8 concludes the
paper.

2 Overview

This section introduces the SLAM re�nement algorithm and then applies this
algorithm to a small code example, extracted from a PCI device driver. The
SLAM toolkit handles a signi�cant subset of the C language, including pointers,
structures, and procedures (with recursion and mutual recursion). A limitation
of our tools is that they assume a logical model of memory when analyzing C
programs. Under this model, the expression p + i, where p is a pointer and i

is an integer, yields a pointer value that points to the same object pointed to
by p. That is, we treat pointers as references rather than as memory addresses.
Note that this is the same basic assumption underlying most points-to analysis,
including the one that our tools use [11].

2.1 Property Speci�cation

We have created a low-level speci�cation language called Slic (Speci�cation
Language for Interface Checking) in which the user states safety properties. A
Slic speci�cation describes a state machine and has two components: (1) a static
set of state variables, described as a C structure, and (2) a set of events and state
transitions on the events. The state variables can be of any C type, including
integers and pointers.

Figure 1(a) shows a Slic speci�cation that speci�es proper usage of spin
locks. There is one state variable locked that is initialized to 0. There are two
events on which state transitions happen |returns of calls to the functions
KeAcquireSpinLock and KeReleaseSpinLock. Erroneous sequences of calls to
these functions results in the execution of the abort statement.

We wish to check if a temporal safety property ' speci�ed using Slic is
satis�ed by a program P . We have built a Slic instrumentation tool that au-
tomatically instruments the given program P with property ' to result in a
program P 0 such that P satis�es ' i� the label SLIC ERROR is not reachable
in P 0. In particular, the tool �rst creates C code from the Slic speci�cation,
as shown in Figure 1(b). The label SLIC ERROR in the procedure slic abort

reects the �nite state machine executing an abort statement and moving into
a reject state. The tool then inserts calls to the appropriate Slic C functions

state {

enum { Unlocked=0, Locked=1 }

state = Unlocked;

}

KeAcquireSpinLock.return {

if (state == Locked)

abort;

else

state = Locked;

}

KeReleaseSpinLock.return {

if (state == Unlocked)

abort;

else

state = Unlocked;

}

enum { Unlocked=0, Locked=1 }

state = Unlocked;

void slic_abort() {

SLIC_ERROR: ;

}

void KeAcquireSpinLock_return() {

if (state == Locked)

slic_abort();

else

state = Locked;

}

void KeReleaseSpinLock_return {

if (state == Unlocked)

slic_abort();

else

state = Unlocked;

}
(a) (b)

Fig. 1. (a) A Slic speci�cation for proper usage of spin locks, and (b) its compilation
into C code.

in the program P to result in the instrumented program P 0. This is known in
the model checking community as a \product automaton construction" and is a
fairly standard way to encode safety properties. Due to want of space, the formal
syntax and semantics of Slic, and details of the automatic instrumentation tool
will be the topic of a future paper.

2.2 Re�nement Algorithm

We wish to check if the instrumented program P 0 can ever reach the label
SLIC ERROR. Let i be a metavariable that records the SLAM iteration count. In
the �rst iteration (i = 0), we start with a set of predicates E0 that are present
in the conditionals of the Slic speci�cation. Let Ei be some set of predicates
over the state of P 0. Then iteration i of SLAM is carried out using the following
steps:

1. Apply C2bp to construct the boolean program BP(P 0; Ei).

2. Apply Bebop to check if there is a path pi in BP(P 0; Ei) that reaches the
SLIC ERROR label. If Bebop determines that SLIC ERROR is not reachable,
then the property ' is valid in P , and the algorithm terminates.

3. If there is such a path p, then we use Newton to check if p is feasible in P .
There are two outcomes:

void example() {

do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

req = devExt->WLHV;

if(req && req->status){

devExt->WLHV = req->Next;

KeReleaseSpinLock();

irp = req->irp;

if(req->status > 0){

irp->IoS.Status = SUCCESS;

irp->IoS.Info = req->Status;

} else {

irp->IoS.Status = FAIL;

irp->IoS.Info = req->Status;

}

SmartDevFreeBlock(req);

IoCompleteRequest(irp);

nPackets++;

}

} while(nPackets!=nPacketsOld);

KeReleaseSpinLock();

}

void example() {

do {

KeAcquireSpinLock();

A: KeAcquireSpinLock_return();

nPacketsOld = nPackets;

req = devExt->WLHV;

if(req && req->status){

devExt->WLHV = req->Next;

KeReleaseSpinLock();

B: KeReleaseSpinLock_return();

irp = req->irp;

if(req->status > 0){

irp->IoS.Status = SUCCESS;

irp->IoS.Info = req->Status;

} else {

irp->IoS.Status = FAIL;

irp->IoS.Info = req->Status;

}

SmartDevFreeBlock(req);

IoCompleteRequest(irp);

nPackets++;

}

} while(nPackets!=nPacketsOld);

KeReleaseSpinLock();

C: KeReleaseSpinLock_return();

}
(a) Program P (b) Instrumented Program P 0

Fig. 2. (a) A snippet of device driver code P , and (b) instrumented code P 0 that checks
proper use of spin locks.

� \yes": the property ' has been invalidated in P , and the algorithm ter-
minates with an error path pi (a witness to the violation of ').

� \no": Newton �nds a set of predicates Fi that explain the infeasibility
of path pi in P .

4. Let Ei+1 := Ei [Fi, and i := i+ 1, and proceed to the next iteration.

As stated before, this algorithm is potentially non-terminating. However, when
it does terminate, it provides a de�nitive answer.

2.3 Example

Figure 2(a) presents a snippet of (simpli�ed) C code from a PCI device driver
that processes interrupt request packets (IRPs). Of interest here are the calls
the code makes to acquire and release spin locks (KeAcquireSpinLock and
KeReleaseSpinLock). Figure 2(b) shows the program automatically instrumented

decl {state==Locked}, {state==Unlocked};

void slic_abort() begin SLIC_ERROR: skip; end

void KeAcquireSpinLock_return()

begin

if ({state==Locked})

slic_abort();

else

{state==Locked},{state==Unlocked} := T,F;

end

void KeReleaseSpinLock_return()

begin

if ({state == Unlocked})

slic_abort();

else

{state==Locked},{state==Unlocked} := F,T;

end

Fig. 3. The C code of the Slic speci�cation from Figure 1(b) compiled by C2bp into
a boolean program.

by the Slic tool with respect to the property speci�cation in Figure 1(a). Note
that calls to the appropriate Slic C functions (Figure 1(b)) are introduced (at
labels A, B, and C).

The question we wish to answer is: is the label SLIC ERROR reachable in
the program P 0 comprised of the code from Figure 1(b) and Figure 2(b)? The
following sections apply the algorithm given above to show that SLIC ERROR is
unreachable in this program.

2.4 Initial Boolean Program

The �rst step of the algorithm is to generate a boolean program from the C
program and the set of predicates E0 that de�ne the states of the �nite state
machine. We represent our abstractions as boolean programs. The syntax and
semantics of boolean programs was de�ned in [3]. Boolean programs are essen-
tially C programs in which the only allowed types are bool, with values T (true)
and F (false), and void. Boolean programs also allow control non-determinism,
through the conditional expression \�", as shown later on.

For our example, the set E0 consists of two global predicates (state = Locked)
and (state = Unlocked) that appear in the conditionals of the Slic speci�cation.
These two predicates and the program P 0 are input to the C2bp (C to Boolean
Program) tool. The translation of the Slic C code from Figure 1(b) to the
boolean program is shown in Figure 3. The translation of the example procedure

void example()

begin

do

skip;

A: KeAcquireSpinLock_return();

skip;

skip;

if (*) then

skip;

skip;

B: KeReleaseSpinLock_return();

skip;

if (*) then

skip;

skip;

else

skip;

skip;

fi

skip;

skip;

skip;

fi

while (*);

skip;

C: KeReleaseSpinLock_return();

end

void example()

begin

do

skip;

A: KeAcquireSpinLock_return();

b := T;

skip;

if (*) then

skip;

skip;

B: KeReleaseSpinLock_return();

skip;

if (*) then

skip;

skip;

else

skip;

skip;

fi

skip;

skip;

b := choose(F,b);

fi

while (!b);

skip;

C: KeReleaseSpinLock_return();

end

(a) Boolean program BP(P 0; E0) (b) Boolean program BP(P 0; E1)

Fig. 4. The two boolean programs created while checking the code from Figure 2(b).
See text for the de�nition of the choose function.

is shown in Figure 4(a). Together, these two pieces of code comprise the boolean
program BP(P 0; E0) output by C2bp.

As shown in Figure 3, the translation of the Slic C code results in the global
variables, fstate==Lockedg and fstate==Unlockedg.2 For every statement s in
the C program and predicate e 2 E0, theC2bp tool determines the e�ect of state-
ment s on predicate e. For example, consider the assignment statement \state =

Locked; " in Figure 1(b). This statement makes the predicate (state = Locked)
true and the predicate (state = Unlocked) false. This is reected in the boolean
program by the parallel assignment statement

2 Boolean programs permit a variable identi�er to be an arbitrary string enclosed
between \f" and \g". This is helpful for giving boolean variables names to directly
represent the predicates in the C program that they represent.

fstate==Lockedg, fstate==Unlockedg := T,F;

in Figure 3. The translation of the boolean expressions in the conditional state-
ments of the C program results in the obvious corresponding boolean expressions
in the boolean program. Control non-determinism is used to conservatively model
the conditions in the C program that cannot be abstracted precisely using the
predicates in E0, as shown in Figure 4(a).

Many of the assignment statements in the example procedure are abstracted
to the skip statement (no-op) in the boolean program. The C2bp tool uses Das's
points-to analysis [11] to determine whether or not an assignment statement
through a pointer dereference can a�ect a predicate e. In our example, the points-
to analysis shows that no variable in the C program can alias the address of the
global state variable.3

We say that the boolean program BP(P 0; E0) abstracts the program P 0, since
every feasible execution path p of the program P 0 also is a feasible execution path
of BP(P 0; E0).

2.5 Model Checking The Boolean Program

The second step of our process is to determine whether or not the label SLIC ERROR

is reachable in the boolean program BP(P 0; E0). We use the Bebop model
checker to determine the answer to this query. In this case, the answer is \yes".
Like most model checkers, the Bebop tool produces a (shortest) path leading to
the error state. In this case, the shortest path to the error state is the path that
goes around the loop twice, acquiring the lock twice without an intermediate
release, as given by the error path p0 of labels [A, A, SLIC ERROR].

2.6 Predicate Discovery over Error Path

Because the C program and the boolean program abstractions have identical
control-ow graphs, the error path p0 in BP(P

0; E0) produced by Bebop is also
a path of program P . The question then is: does p0 represent a feasible execution
path of P ? That is, is there some execution of program P that follows the path
p0? If so, we have found a real error in P . If not, path p0 is a spurious error
path.

The Newton tool takes a C program and a (potential) error path as an
input. It then uses veri�cation condition generation (VCGen) to determine if
the path is feasible. The answer may be \yes" or \no". 4

3 We had to write stubs for the procedures SmartDevFreeBlock, and kernel procedures
IoCompleteRequest, KeAcquireSpinLock, and KeReleaseSpinLock. The analysis de-
termines that these procedures cannot a�ect state variables so the calls to them are
removed.

4 Since underlying decision procedures in the theorem prover and our axiomatization
of C are incomplete, \don't know" is also a possible answer. In practice, the theorem
provers we use [27, 13, 4] have been able to give a \yes" or \no" answer in every
example we have seen so far.

If the answer is \yes", then an error path has been found, and we report it to
the user. If the answer is \no" then Newton uses a new algorithm to identify
a small set of predicates that \explain" why the path is infeasible.

In the running example, Newton detects that the path p is infeasible, and
returns a single predicate (nPackets = npacketsOld) as the explanation for
the infeasibility. This is because the predicate (nPackets = nPacketsOld) is
required to be both true and false by path p. The assignment of nPacketsOld
to nPackets makes the predicate true, and the loop test requires it to be false
at the end of the do-while loop for the loop to iterate, as speci�ed by the path
p.

2.7 The Second Boolean Program

In the second iteration of the process, the predicate (nPackets = nPacketsOld)
is added to the set of predicates E0 to result in a new set of predicates E1.
Figure 4(b) shows the boolean program BP(P 0; E1) that C2bp produces. This
program has one additional boolean variable (b) that represents the predicate
(nPackets = nPacketsOld). The assignment statement nPackets = nPacketsOld;

makes this condition true, so in the boolean program the assignment b := T;

represents this assignment. Using a theorem prover, C2bp determines that if
the predicate is true before the statement nPackets++, then it is false after-
wards. This is captured by the assignment statement in the boolean program b

:= choose(F,b);. The choose function is de�ned as follows:

bool choose(pos, neg)

begin

if (pos) then return T; elsif (neg) then return F;

elsif (*) then return T; else return F; fi

end

The pos parameter represents positive information about a predicate while the
neg parameter represents negative information about a predicate. The choose

function is never called with both parameters evaluating to true. If both pa-
rameters are false then there is not enough information to determine whether
the predicate is de�nitely true or de�nitely false, so F or T is returned, non-
deterministically.

ApplyingBebop to the new boolean program shows that the label SLIC ERROR

is not reachable. In performing its �xpoint computation, Bebop discovers that
the following loop invariant holds at the end of the do-while loop:

(state = Locked ^ nPackets = nPacketsOld)
_ (state = Unlocked ^ nPackets 6= nPacketsOld)

That is, either the lock is held and the loop will terminate (and thus the lock
needs to be released after the loop), or the lock is free and the loop will it-
erate. The combination of the predicate abstraction of C2bp and the �xpoint
computation of Bebop has found this loop-invariant over the predicates in E1.

This loop-invariant is strong enough to show that the label SLIC ERROR is not
reachable.

3 C2BP: A Predicate Abstractor For C

C2bp takes a C program P and a set E = fe1; e2; : : : ; eng of predicates on
the variables of P , and automatically constructs a boolean program BP(P;E)[1,
2]. The set of predicates E are pure C boolean expressions with no function calls.
The boolean program BP(P;E) contains n boolean variables V = fb1; b2; : : : ; bng,
where each boolean variable bi represents a predicate ei. Each variable in V has
a three-valued domain: false, true, and �.5 The program BP(P;E) is a sound

abstraction of P because every possible execution trace t of P has a correspond-
ing execution trace t0 in B. Furthermore, BP(P;E0) is a precise abstraction of P
with respect to the set of predicates E0, in a sense stated and shown elsewhere [2].
Since BP(P;E) is an abstraction of P , it is guaranteed that an invariant I dis-
covered (by Bebop) in BP(P;E), as boolean combinations of the bi variables,
is also an invariant in the C code, where each bi is replaced by its corresponding
predicate ei.

C2bp determines, for every statement s in P and every predicate ei 2 E,
how the execution of s can a�ect the truth value of ei. This is captured in the
boolean program by a statement sB that conservatively updates each bi to reect
the change. C2bp computes sB by (1) �rst computing the weakest precondition
of ei, and its negation with respect to s, and (2) strengthening the weakest
precondition in terms of predicates from E, using a theorem prover.

We highlight the technical issues in building a tool like C2bp:

{ Pointers: We use an alias analysis of the C program to determine whether
or not an update through a pointer dereference can potentially a�ect an
expression. This greatly increases the precision of the C2bp tool. Without
alias analysis, we would have to make very conservative assumptions about
aliasing, which would lead to invalidating many predicates.

{ Procedure calls: Since boolean programs support procedure calls, we are
able to abstract procedures modularly. The abstraction process for procedure
calls is challenging, particularly in the presence of pointers. After a call, the
caller must conservatively update local state that may have been modi�ed by
the callee. We provide a sound and precise approach to abstracting procedure
calls that takes such side-e�ects into account.

{ Precision-eÆciency tradeo�. C2bp uses a theorem prover to strengthen
weakest pre-conditions in terms of the given predicate set E. Doing this
strengthening precisely requires O(2jEj) calls to the theorem prover. We
have explored a number of optimization techniques to reduce the number
of calls made to the theorem prover. Some of these techniques result in an
equivalent boolean program, while others trade o� precision for computation

5 The use of the third value �, is encoded using control-nondeterminism as shown in
the choose function of Section 2. That is, \�" is equivalent to \choose(F,F)".

speed. We currently use two automatic theorem provers Simplify [27, 13] and
Vampyre [4]. We are also investigating using other decision procedures, such
as those embodied in the Omega test [30] and PVS [28].

Complexity. The runtime of C2bp is dominated by calls to the theorem prover.
In the worst-case, the number of calls made to the theorem prover for computing
BP(P;E) is linear in the size of P and exponential in the size of E. We can com-
pute sound but imprecise abstractions by considering only k-tuples of predicates
in the strengthening step. In all examples we have seen so far we �nd that we
lose no precision for k = 3. Thus, in practice the complexity is cubic in the size
of E.

4 BEBOP: A Model Checker for Boolean Programs

The Bebop tool [3] computes the set of reachable states for each statement of
a boolean program using an interprocedural dataow analysis algorithm in the
spirit of Sharir/Pnueli and Reps/Horwitz/Sagiv [34, 31]. A state of a boolean
program at a statement s is simply a valuation to the boolean variables that
are in scope at statement s (in other words, a bit vector, with one bit for each
variable in scope). The set of reachable states (or invariant) of a boolean program
at s is thus a set of bit vectors (equivalently, a boolean function over the set of
variables in scope at s).

Bebop di�ers from typical implementations of dataow algorithms in two
crucial ways. First, it computes over sets of bit vectors at each statement rather
than single bit vectors. This is necessary to capture correlations between vari-
ables. Second, it uses binary decision diagrams [5] (BDDs) to implicitly repre-
sent the set of reachable states of a program, as well as the transfer functions for
each statement in a boolean program. Bebop also di�ers from previous model
checking algorithms for �nite state machines, in that it does not inline proce-
dure calls, and exploits locality of variable scopes for better scaling. Unlike most
model checkers for �nite state machines, Bebop handles recursive and mutually
recursive procedures. Bebop uses an explicit control-ow graph representation,
as in a compiler, rather than encoding the control-ow with BDDs, as done in
most symbolic model checkers. It computes a �xpoint by iterating over the set
of facts associated with each statement, which are represented with BDDs.

Complexity. The worst-case complexity of Bebop is linear in the size of the
program control-ow graph, and exponential in the maximum number of boolean
variables in scope at any program point. We have implemented a number of
optimizations to reduce the number of variables needed in support of BDDs. For
example, we use live variable analysis to �nd program points where a variable
becomes dead and then eliminate the variable from the BDD representation. We
also use a global MOD/REF analysis of the boolean program in order to perform
similar variable eliminations.

Input: A sequence of statements p = s1; s2; :::; sm.
store := null map;
history := null set;
conditions := null set;
/* start of Phase 1 */
for i = 1 to m do f
switch(si) f

\e1 := e2" :
let lval = LEval (store ; e1) and
let rval = REval(store ; e2) in f

if(store [lval] is de�ned)
history := history [f(lval ; store[lval])g

store [lval] := rval
g

\assume(e)" :
let rval = REval(store ; e) in f

conditions := conditions [frvalg
if(conditions is inconsistent)f

/*Phase 2 */
Minimize size of conditions while maintaining inconsistency
/*Phase 3 */
predicates := all dependencies of conditions using store and history
Say \Path p is infeasible"
return(predicates)

g
g

g
g
Say \Path p is feasible"
return

Fig. 5. The high-level algorithm used by Newton

5 NEWTON: A Predicate Discoverer

Newton takes a C program P and an error path p as inputs. For the purposes of
describing Newton, we can identify the path p as a sequence of assignments and
assume statements (every conditional is translated into an assume statement).
The assume statement is the dual of assert: assume(e) never fails. Executions
on which e does not hold at the point of the assume are simply ignored [15].

The internal state of Newton has three components: (1) store, which is
a mapping from locations to symbolic expressions, (2) conditions , which is a
set of predicates, and (3) a history which is a set of past associations between
locations and symbolic expressions. The high-level description of Newton is
given in Figure 5. The functions LEval and REval evaluate the l-value and r-
value of a given expression respectively. Newton maintains the dependencies
of each symbolic expression on the elements in store, to be used in Phase 3. It

s1: nPacketsOld = nPackets;

s2: req = devExt->WLHV;

s3: assume(!req);

s4: assume(nPackets != nPacketsOld);

loc. value deps. conds. deps.

1. nPackets: � ()

2. nPacketsOld: � (1)

loc. value deps. conds. deps.

1. nPackets: � ()

2. nPacketsOld: � (1)

3. devExt: � ()

4. � !WLHV : (3)

5. req: (3,4)

after s1 after s2

loc. value deps. conds. deps.

1. nPackets: � () !() (5)

2. nPacketsOld: � (1)

3. devExt: � ()

4. � !WLHV : (3)

5. req: (3,4)

loc. value deps. conds deps.

1. nPackets: � () !() (5)

2. nPacketsOld: � (1) (�!= �) (1,2)

3. devExt: � ()

4. � !WLHV : (3)

5. req: (3,4)

after s3 after s4

Fig. 6. A path of four statements and four tables showing the state of Newton after
simulating each of the four statements.

also uses symbolic constants for unknown values. We illustrate these using an
example. Consider a path with the following four statements:

s1: nPacketsOld = nPackets;

s2: req = devExt->WLHV;

s3: assume(!req);

s4: assume(nPackets != nPacketsOld);

This path is a projection of the error path from Bebop in Section 2.
Figure 6 shows four states of Newton, one after processing each statement

in the path. The assignment nPacketsOld = nPackets is processed by �rst in-
troducing a symbolic constant � for the variable nPackets, and then assigning
it to nPacketsOld. The assignment req = devExt->WLHV is processed by �rst
introducing a symbolic constant � for the value of devExt, then introducing a
second symbolic constant for the value of �->WLHV, and �nally assigning to
req. The conditional assume(!req) is processed by adding the predicate !()

to the condition-set. The dependency list for this predicate is (5) since its evalua-
tion depended on entry 5 in the store. Finally, the conditional assume(nPackets
!= nPacketsOld) is processed by adding the (inconsistent) predicate (� != �)

to the condition-set, with a dependency list (1,2). At this point, the theorem
prover determines that the condition-set is inconsistent, and Newton proceeds
to Phase 2.

VOID

SerialDebugLogEntry(IN ULONG Mask, IN ULONG Sig,

IN ULONG_PTR Info1, IN ULONG_PTR Info2, IN ULONG_PTR Info3)

{

KIRQL irql;

irql = KeGetCurrentIrql();

if (irql < DISPATCH_LEVEL) {

KeAcquireSpinLock(&LogSpinLock, &irql);

} else {

KeAcquireSpinLockAtDpcLevel(&LogSpinLock);

}

// other code (deleted)

if (irql < DISPATCH_LEVEL) {

KeReleaseSpinLock(&LogSpinLock, irql);

} else {

KeReleaseSpinLockFromDpcLevel(&LogSpinLock);

}

return;

}

Fig. 7. Code snippet from serial-port driver.

Phase 2 removes the predicate !() from the condition store, since the re-
maining predicate (�!= �) is inconsistent by itself. Phase 3 traverses store en-
tries 1 and 2 from the dependency list. A post processing step then determines
that the symbolic constant � can be uni�ed with the variable nPackets, and
Newton produces two predicates: (nPacketsOld = nPackets) and (nPacketsOld 6=
nPackets). Since one is a negation of the other, only one of the two predicates
needs to be added in order for the path to be ruled out in the boolean pro-
gram. Though no symbolic constants are present in the �nal set of predicates
in our example, there are other examples where the �nal list of predicates have
symbolic constants. C2bp is able to handle predicates with symbolic constants.
We do not discuss these details here due to want of space. The history is used
when a location is overwritten with a new value. Since no location was written
more than once in our example, we did not see the use of history . Newton also
handles error paths where each element of the path is also provided with values
to the boolean variables from Bebop, and checks for their consistency with the
concrete states along the path.
Complexity. The number of theorem-prover calls made by Newton on a path
p is O(j p j), where j p j is the length of the path.

6 NT Device Drivers: Case Study

This section describes our experience applying the SLAM toolkit to check prop-
erties of Windows NT device drivers. We checked two kinds of properties: (1)

Locking-unlocking sequences for locks should conform to allowable sequences (2)
Dispatch functions should either complete a request, or make a request pending
for later processing. In either case, a particular sequence of Windows NT speci�c
actions should be taken.

The two properties have di�erent characteristics from a property-checking
perspective.

{ The �rst property depends mainly on the program's control ow. We checked
this property for a particular lock (called the \Cancel" spin lock) on three
kernel mode drivers in the Windows NT device driver tool kit. We found
two situations where spurious error paths led our process to iterate. With its
inter-procedural analysis and detection of variable correlations, the SLAM
tools were able to eliminate all the spurious error paths with at most one iter-
ation of the process. In all the drivers, we started with 2 predicates from the
property speci�cation and added at most one predicate to rule out spurious
error paths.

{ The second property is data-dependent, requiring the tracking of value ow
and alias relationships. We checked this property on a serial port device
driver. It took 4 iterations through the SLAM tools and a total of 33 predi-
cates to validate the property.

The drivers we analyzed were on the order of a thousand lines of C code
each. In each of the drivers we checked for the �rst property, the SLAM tools
ran in under a minute on an 800MHz Pentium PC with 512MB RAM. For the
second property on the serial driver, the total run time for all the SLAM tools
was about three minutes to complete all the four iterations.

We should note that we did not expect to �nd errors in these device drivers,
as they are supposed to be examplars for others to use. Thus, the fact that the
SLAM tools did not �nd errors in these program is not too surprising. We will
report on the defect detection capabilities of the tools in a future paper.

6.1 Property 1

We checked for correct lock acquisition/release sequences on three kernel mode
drivers: MCA-bus, serial-port and parallel-port. The SLAM tools validated the
property on MCA-bus and parallel-port drivers without iteration. However, in-
terprocedural analysis was required for checking the property, as calls to the ac-
quire and release routines were spread across multiple procedures in the drivers.
Furthermore, in the serial-port driver, the SLAM tools found one false error
path in the �rst iteration, which resulted in the addition of a single predicate.
Then the property was validated in the second iteration. The code-snippet that
required the addition of the predicate is shown in Figure 7. The snippet shows
that the code has a dependence on the interrupt request level variable (irql)
that must be tracked in order to eliminate the false error paths. At most three
predicates were required to check this property.

6.2 Property 2

A dispatch routine to a Windows NT device driver is a routine that the I/O
manager calls when it wants the driver to perform a speci�c operation (e.g,
read, write etc.) The dispatch routine is \registered" by the driver when it is
initialized. A dispatch routine has the following prototype:

NTSTATUS DispatchX(IN PDEVICE_OBJECT DeviceObject, IN PIRP irp)

The �rst parameter is a pointer to a so called \device object" that represents
the device, and the second parameter is a pointer to a so called \I/O request
packet", or \IRP" that contains information about the current request.

All dispatch routines must either process the IRP immediately (call this
option A), or queue the IRP for processing later (call this option B). Every IRP
must be processed under one of these two options. If the driver chooses option
A, then it has to do the following actions in sequence:

1. Set the irp->IoS.status to some return code other than STATUS PENDING

(such as STATUS SUCCESS, STATUS CANCELLED etc.)
2. Call IoCompleteRequest(irp)
3. Return the same status code as in step 1.

If the driver chooses option B, then it has do the following actions in sequence:

1. Set irp->IoS.status to STATUS PENDING
2. Call the kernel function IoMarkIrpPending(irp)

3. Queue the IRP into the driver's internal queue using the kernel function
IoStartPacket(irp)

4. Return STATUS PENDING

Note that this is a partial speci�cation for a dispatch routine |just one of
several properties that the dispatch routine must obey. Figure 8 shows a Slic
speci�cation for this property. The variable $1 is used by Slic to denote the �rst
parameter of the function, and the variable $return is used to denote the return
value. Note that we �rst store the IRP at the entry of the dispatch routine in a
state variable gIrp and then later check if the calls to IoCompleteRequest and
IoMarkIrpPending refer to the same IRP.
Checking the instrumented driver. We started the �rst iteration of SLAM
with 7 predicates from the Slic speci�cation. It took 4 iterations of the SLAM
tools and a total of 33 predicates to discover the right abstraction to validate
this property. The discovered predicates kept track of the value of the ow of
the irp pointer and the status value through several levels of function calls. We
found one bug in the fourth iteration, which turned out to be due to an error in
the Slic speci�cation. After �xing it, the property passed.

7 Related Work

SLAM seeks a sweet spot between tools based on veri�cation condition genera-
tion(VCGen) [14, 25, 26, 6] that operate directly on the concrete semantics, and

state {

enum {Init, Complete, Pending}

s = Init;

PIRP gIrp = 0;

}

Dispatch.entry {

s, gIrp = Init, $2;

}

IoCompleteRequest.call{

if(gIrp == $1) {

if(s != Init) abort;

else s = Complete;

}

}

IoMarkIrpPending.call{

if(gIrp == $1) {

if(s != Init) abort;

else s = Pending;

}

}

Dispatch.exit{

if (s == Complete) {

if($return == STATUS_PENDING)

abort;

} else if (s == Pending) {

if($return != STATUS_PENDING)

abort;

}

}

Fig. 8. Slic speci�cation for completing an IRP or marking it as pending.

model checking or data ow-analysis based tools [8, 21, 18, 16] that operate on
abstractions of the program. We use VCGen-based approach on �nite (poten-
tially interprocedural) paths of the program, and use the knowledge gained to
construct abstract models of the program.Newton uses VCGen on the concrete
program, but as it operates on a single �nite interprocedural path at a time, it
does not require loop-invariants, or pre-conditions and post-conditions for proce-
dures. C2bp also reasons about the statements of the C program using decision
procedures, but does so only locally, one statement at a time. Global analysis is
done only on the boolean program abstractions, using the model checkerBebop.
Thus, our hope is to scale without losing precision, as long as the property of
interest allows us to do so, by inherently requiring a small abstraction for its
validation or invalidation.

SLAM generalizes Engler et al.'s approach [18] in three ways: (1) it is sound
(modulo the assumptions about memory safety); (2) it permits interprocedural
analysis; (3) it avoids spurious examples through iterative re�nement (in some
of the code Engler et al. report on, their techniques generated three times as
many spurious error paths as true error paths, a miss rate of 75%.6) In fact,
with a suitable de�nition of abstraction, and choice of initial predicates, the
�rst iteration of the SLAM process is equivalent to performing Engler et al.'s
approach interprocedurally.

6 Jon Pincus, who led the development of an industrial-strength error detection tool
for C called PRE�x [6], observes that users of PRE�x will tolerate a false alarm rate
in the range 25-50% depending on the application [29].

Constructing abstract models of programs has been studied in several con-
texts. Abstractions constructed by [18] and [22] are based on specifying transi-
tions in the abstract system using a pattern language, or as a table of rules. Au-
tomatic abstraction support has been built into the Bandera tool set [17]. They
require the user to provides �nite domain abstractions of data types. Predicate
abstraction, as implemented in C2bp is more general, and can capture relation-
ships between variables. The predicate abstraction in SLAM was inspired by
the work of Graf and Saidi [20] in the model checking community. E�orts have
been made to integrate predicate abstraction with theorem proving and model
checking [32]. Though our use of predicate abstraction is related to these e�orts,
our goal is to analyze software written in common programming languages.

The SLAM tools C2bp and Bebop can be used in combination to �nd loop-
invariants expressible as boolean functions over a given set of predicates. The
loop-invariant is computed by the model checker Bebop using a �xpoint com-
putation on the abstraction computed by C2bp. Prior work for generating loop
invariants has used symbolic execution on the concrete semantics, augmented
with widening heuristics [35, 36]. The Houdini tool guesses a candidate set of
annotations (invariants,preconditions, postconditions) and uses the ESC/Java
checker to refute inconsistent annotations until convergence [19].

Boolean programs can be viewed as abstract interpretations of the underlying
program [9]. The connections between model checking, dataow analysis and
abstract interpretation have been explored before [33] [10]. The model checker
Bebop is based on earlier work on interprocedural dataow analysis [34, 31].
Automatic iterative re�nement based on error paths �rst appeared in [23], and
more recently in [7]. Both e�orts deal with �nite state systems.

An alternative approach to static validation of safety properties, is to provide
a rich type system that allows users to encode both safety properties and program
annotations as types, and reduce property validation to type checking [12].

8 Conclusions

We have presented a fully automated methodology to validate/invalidate tem-
poral safety properties of software interfaces. Our process does not require user
supplied annotations, or user supplied abstractions. When our process converges,
it always give a de�nitive \yes" or \no" answer.

The ideas behind the SLAM tools are novel. The use of boolean programs
to represent program abstractions is new. To the best of our knowledge, C2bp
is the �rst automatic predicate abstraction tool to handle a full-scale program-
ming language, and perform a sound and precise abstraction. Bebop is the �rst
model checker to handle procedure calls using an interprocedural dataow anal-
ysis algorithm, augmented with representation tricks from the symbolic model
checking community. Newton uses a path simulation algorithm in a novel way,
to generate predicates for re�nement.

We have demonstrated that the SLAM tools converge in a few iterations on
device drivers from the Microsoft DDK.

The SLAM toolkit has a number of limitations that we plan to address. The
logical model of memory is a limitation, since it is not the actual model used by
C programs. We plan to investigate using a physical model of memory. We also
are exploring what theoretical guarantees we can give about the termination of
our iterative re�nement. Finally, we plan to evolve the SLAM tools by applying
them to more code bases, both inside and outside Microsoft.

Acknowledgements.We thank Rupak Majumdar and Todd Millstein for their
hard work in making the C2bp tool come to life. Thanks to Andreas Podelski for
helping us describe the C2bp tool in terms of abstract interpretation. Thanks
also to the members of the Software Productivity Tools research group at Mi-
crosoft Research for many enlightening discussions on program analysis, pro-
gramming languages and device drivers, as well as their numerous contributions
to the SLAM toolkit.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In PLDI 01: Programming Language Design and Im-
plementation(to appear). ACM, 2001.

2. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstractions for
model checking C programs. In TACAS 01: Tools and Algorithms for Construction
and Analysis of Systems(to appear). Springer-Verlag, 2001.

3. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean pro-
grams. In SPIN 00: SPIN Workshop, LNCS 1885, pages 113{130. Springer-Verlag,
2000.

4. D. Blei and et al. Vampyre: A proof generating theorem prover |
http://www.eecs.berkeley.edu/ rupak/vampyre.

5. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677{691, 1986.

6. W. R. Bush, J. D. Pincus, and D. J. Siela�. A static analyzer for �nding dynamic
programming errors. Software-Practice and Experience, 30(7):775{802, June 2000.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction re�nement. In CAV 00: Computer Aided Veri�cation, LNCS 1855,
pages 154{169. Springer-Verlag, 2000.

8. J. Corbett, M. Dwyer, J. Hatcli�, C. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting �nite-state models from Java source code. In ICSE 2000:
International Conference on Software Engineering, pages 439{448. ACM, 2000.

9. P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for the
static analysis of programs by construction or approximation of �xpoints. In POPL
77: Principles of Programming Languages, pages 238{252. ACM, 1977.

10. P. Cousot and R. Cousot. Temporal abstract interpretation. In POPL 00: Princi-
ples of Programming Languages, pages 12{25. ACM, 2000.

11. M. Das. Uni�cation-based pointer analysis with directional assignments. In PLDI
00: Programming Language Design and Implementation, pages 35{46. ACM, 2000.

12. R. DeLine and M. F�ahndrich. Enforcing high-level protocols in low-level software.
In PLDI 01: Programming Language Design and Implementation(to appear). ACM,
2001.

13. D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover {
http://research.compaq.com/src/esc/simplify.html.

14. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static check-
ing. Technical Report Research Report 159, Compaq Systems Research Center,
December 1998.

15. E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
16. M. Dwyer and L. Clarke. Data ow analysis for verifying properties of concurrent

programs. In FSE 94: Foundations of Software Engineering, pages 62{75. ACM,
1994.

17. M. Dwyer, J. Hatcli�, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,
and H. Zheng. Tool-supported program abstraction for �nite-state veri�cation. In
ICSE 01: Software Engineering (to appear), 2001.

18. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
speci�c, programmer-written compiler extensions. In OSDI 00: Operating System
Design and Implementation. Usenix Association, 2000.

19. C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation inference for modular
checkers. Information Processing Letters (to appear), 2001.

20. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV
97: Computer Aided Veri�cation, LNCS 1254, pages 72{83. Springer-Verlag, 1997.

21. G. Holzmann. The Spin model checker. IEEE Transactions on Software Engineer-
ing, 23(5):279{295, May 1997.

22. G. Holzmann. Logic veri�cation of ANSI-C code with Spin. In SPIN 00: SPIN
Workshop, LNCS 1885, pages 131{147. Springer-Verlag, 2000.

23. R. Kurshan. Computer-aided Veri�cation of Coordinating Processes. Princeton
University Press, 1994.

24. L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering, SE-3(2):125{143, 1977.

25. K. R. M. Leino and G. Nelson. An extended static checker for Modula-3. In CC
98: Compiler Construction, LNCS 1383, pages 302{305. Springer-Verlag, 1998.

26. G. Necula. Proof carrying code. In POPL 97: Principles of Programming Lan-
guages, pages 106{119. ACM, 1997.

27. G. Nelson. Techniques for program veri�cation. Technical Report CSL81-10, Xerox
Palo Alto Research Center, 1981.

28. S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining speci-
�cation, proof checking, and model checking. In CAV 96: Computer-Aided Veri�-
cation, LNCS 1102, pages 411{414. Springer-Verlag, 1996.

29. J. Pincus. personal communication, October 2000.
30. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-

cations of the ACM, 35(8):102{114, August 1992.
31. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataow analysis via

graph reachability. In POPL 95: Principles of Programming Languages, pages
49{61. ACM, 1995.

32. H. Sa�idi and N. Shankar. Abstract and model check while you prove. In CAV 99:
Computer-aided Veri�cation, LNCS 1633, pages 443{454. Springer-Verlag, 1999.

33. D. Schmidt. Data ow analysis is model checking of abstract interpretation. In
POPL 98: Principles of Programming Languages, pages 38{48. ACM, 1998.

34. M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow analysis.
In Program Flow Analysis: Theory and Applications, pages 189{233. Prentice-Hall,
1981.

35. N. Suzuki and K. Ishihata. Implementation of an array bound checker. In POPL
77: Principles of Programming Languages, pages 132{143. ACM, 1977.

36. Z. Xu, B. P. Miller, and T. Reps. Safety checking of machine code. In PLDI 00:
Programming Language Design and Implementation, pages 70{82. ACM, 2000.

