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ABSTRACT cess support for formal methods. 
Model checkers and other finite-state verification tools 
allow developers to detect certain kinds of errors au- 
tomatically. Nevertheless, the transition of this tech- 
nology from research to practice has been slow. While 
there are a number of potential causes for reluctance to 
adopt such formal methods, we believe that a primary 
cause is that practitioners are unfamiliar with specifi- 
cation processes, notations, and strategies. In a recent 
paper, we proposed a pattern-based approach to the 
presentation, codification and reuse of property specifi- 
cations for finite-state verification. Since then, we have 
carried out a survey of available specifications, collect- 
ing over 500 examples of property specifications. We 
found that most are instances of our proposed patterns. 
Furthermore, we have updated our pattern system to 
accommodate new patterns and variations of existing 
patterns encountered in this survey. This paper reports 
the results of the survey and the current status of our 
pattern system. 

Keywords 

We believe that the recent availability of tool support 
for finite-state verification provides an opportunity to 
overcome some of these barriers. Finite-state verifica- 
tion refers to a set of techniques for proving properties 
of finite-state models of computer systems. Properties 
are typically specified with temporal logics or regular 
expressions, while systems are specified as finite-state 
transition systems of some kind. Tool support is avail- 
able for a variety of verification techniques including, 
for example, techniques based on model checking [19], 
bisimulation [4], language containment [14], flow anal- 
ysis [lo], and inequality necessary conditions [l]. In 
contrast to mechanical theorem proving, which often 
requires guidance by an expert, most finite-state verifi- 
cation techniques can be fully automated, relieving the 
user of the need to understand the inner workings of the 
verification process. Finite-state verification techniques 
are especially critical in the development of concurrent 
systems, where non-deterministic behavior makes test- 
ing especially problematic. 

Patterns, finite-state verification, formal specification, 
concurrent systems 

1 INTRODUCTION 
Although formal specification and verification methods 
offer practitioners some significant advantages over the 
current state-of-the-practice, they have not been widely 
adopted. Partly this is due to a lack of definitive ev- 
idence in support of the cost-saving benefits of formal 
methods, but a number of more pragmatic barriers to 
adoption of formal methods have been identified [22], 
including the lack of such things as good tool support, 
appropriate expertise, good training materials, and pro- 

Despite the automation, users of finite-state verification 
tools still must be able to specify the system require- 
ments in the specification language of the tool. This 
is more challenging than it might at first appear. For 
example, consider the following requirement for an ele- 
vator: Between the time an elevator is called at a floor 
and the time it opens its doors at that floor, the ele- 
vator can arrive at that floor’ at most twice. To verify 
this property with a linear temporal logic (LTL) model 
checker, a developer would have to translate this infor- 
mal requirement into the following LTL formula: 

q ((cal1 A Oopen) + 
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((Tatfloor A lopen) U 
(open V ((atfloor A -open) U 

(open V ((Tatfloor A -open) U 
(open V ((atfloor A -open) U 

(open V (=tfioor U own)))>)>>>>> 

Not only is this formula difficult to read and understand, 
it is even more difficult to write correctly without some 
expertise in the idioms of the specification language. 
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We contend that acquiring this level of expertise rep- 
resents a substantial obstacle to the adoption of auto- 
mated finite-state verification techniques and that pro- 
viding an effective way for practitioners to draw on a 
large experience base can greatly reduce this obstacle. 
Even with significant expertise, dealing with the com- 
plexity of such a specification can be daunting. In many 
software development phases, such as design and cod- 
ing, complexity is addressed by the definition and use 
of abstractions. For complex specification problems, ab- 
straction is just as important. 

In [9], we proposed to capture the experience base of ex- 
pert specifiers and enable the transfer of that experience 
between practitioners by way of a specification pattern 
system. This system is, essentially, a collection of pa- 
rameterizable, high-level, formalism-independent speci- 
fication abstractions. To maximize the coverage of these 
abstractions, we have described a variety of techniques 
for tuning their semantics to meet the needs of different 
users. We adopted a pattern-based approach to pre- 
senting our specification abstractions because of its fo- 
cus on the matching of problem characteristics to so- 
lution strategies. Patterns were originally developed to 
capture recurring solutions to design and coding prob- 
lems [12]. Design and coding languages are rich ex- 
pressive formalisms that provide for a wide-variety of 
solutions to a given problem, but the full range of possi- 
ble solutions is is usually much wider than is necessary 
or useful. Patterns are successful because practition- 
ers want to solve naturally occurring domain problems. 
They don’t need the full expressiveness of the languages 
they use and would often prefer guidance on how best 
to use language features to solve commonly occuring 
problems. 

We hypothesized that a pattern-based approach would 
also be successful in the domain of property specifica- 
tions for finite-state verification. While there are a num- 
ber of very expressive formalisms, such as CTL*, most 
of the specifications that we knew about fell into a rel- 
atively small number of categories. Thus, we believed 
that a collection of simple patterns could be defined to 
assist practitioners in mapping descriptions of system 
behavior into their formalism of choice, and that this 
might improve the transition of these formal methods 
to practice. 

To evaluate our hypothesis, we surveyed all the sources 
of property specifications we could locate and collected 
over 500 examples of property specifications for finite- 
state verification tools. As expected, we found that the 
vast majority (92%) are instances of patterns in our 
system. We subsequently updated the pattern system 
to accommodate new patterns and variations of existing 
patterns encountered in the survey. This paper gives an 
overview of our updated pattern system and reports the 

results of our survey of property specificatia,ns, the only 
study of its kind we are aware of. 

Section 2 describes our specification pattern system for 
finite-state verification. Section 3 presents the results 
of our survey. Section 4 compares our approach with 
related work and ‘Section 5 concludes. 

2 A SPECIFICATION PATTERN SYSTEM 
In this section, we describe our pattern system. We 
begin by giving some background on the notion of pat- 
terns. We then describe how this idea can be applied 
to the domain of, property specifications for finite-state 
verification. Finally, we describe how a set of such pat- 
terns can be organized and we give an overview of the 
current state of our pattern system. 

Property Specification Patterns 
Design patterns were introduced [12] as a means of lever- 
aging the experience of expert system designers. Pat- 
terns are intended to capture not only a description of 
recurring solutions to software design problems, but also 
the requirements addressed by the solution, the means 
by which the requirements are satisfied, and examples of 
the solution. All of this information should be described 
in a form that can be understood by practitioners so 
that they can identify similar requirements in their sys- 
tems, select patterns that address those requirements, 
and instantiate solutions that embody those patterns. 

For finite-state verification, the system is modeled as 
a transition system with a finite number of states and 
a set of transitions, possibly labeled with events, be- 
tween these states. A property specification pattern is 
a generalized description of a commonly occurring re- 
quirement on the permissible state/event sequences in 
such a finite-state model of a system. A property speci- 
fication pattern describes the essential structure of some 
aspect of a system’s behavior and provides expressions 
of this behavior in a range of common formalisms. 

An example of a property specification pattern is given 
in Figure 1 (we use a variant of the “gang-of-four” 
pattern format [12]). A pattern comprises a name or 
names, a precise statement of the pattern’s intent (i.e., 
the structure of the behavior described); mappings into 
common specification formalisms, examples of known 
uses, and relationships to other patterns. 

Some specification formalisms (e.g., quantified regular 
expressions (QRE) [20]) are event-based, while others 
(e.g., various temporal logics, such as LTL and compu- 
tation tree logic (CTL) [3]) are state-based. In our pat- 
terns, capital letters (e.g., P, Q, R, S) stand for events 
or disjunctions of events in event-based formalisms and 
stand for state formulas in state-based formnlisms. 

Each pattern has a scope, which is the extent of the 
program execution over which the pattern must hold. 
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Precedence 

Intent 
To describe a relationships between a pair of events/states where the occurrence of the first is a necessary 
pm-condition for an occurrence of the second. We say that an occurrence of the second is enabled by an 
occurrence of the first. Also known as Enables. 

Example Mappings 
In these mappings S enables the occurrence of P. 

CTL S precedes P: 
Globally -JE[lS U(P A G))] 
Before R -u?~[(+'A~R)U(PA+A~R A EF(R))] 
After Q lE[-Q U(QA lE[-dU(P A-S)])] 
Between Q and R AG(Q+ +3[(+ A TR)U(P AdA -R A EF(R))]) 
After Q until R AG(Q + +[(+ A TR)U(P A+A TR)]) 

LTL S precedes P: 
Globally OP -+ (d’ iLd(s A +)) 
Before R OR-+(TPU(SVR)) 
After Q a-QVO(QA (lPU(S V 0-P))) 
Between Q and R q ((Q A OR)+(TPU(S V R))) 
After Q until R q (Q -+ ((-,PU(S v R)) V q hP)) 

Quantified Regular Expressions Let C be the set of all events, let [-P, Q, R] denote the expression that 
matches any symbol in E except P, Q, and R, and let e? denote zero or one instance of expression e. 
Event S precedes P: 
Globally [-PI* 1 ([-s,P]*;s;c*) 
Before R [-RI* 1 ([-P,R]*;R;C*) ) ([-S,P,R]*;S;C*) 
After Q [--Ql*; (Q; W’l* I W, PI*; S; C*>>>’ 
Between Q and R [-&I*;(&;([-P,R]* 1 ([-S,P,R]*;S;[-R]*));R;[-Q]*)*;(Q;[-RI')? 
After Q until R f-Q]*; (Q; (L-p, RI* I (k-s, p, RI*; S; [-RI*)); R; [-Ql*)*; 

(Q; (1-C RI* I (L-s, p, RI’; S; k--RI*)))? 
Examples and Known Uses 

Precedence properties occur quite commonly in specifications of concurrent systems. One example is describing 
a requirement that a resource (e.g., a lock) is only granted in response to a request. 

Precedence and response properties often go together. A response property says that when S occurs then an 
occurrence of P must follow. If we want to restrict P to only follow S then we use a precedence property. 
Note that these properties do not guarantee a one-to-one correspondance between an occurrence of S and an 
occurrence of P. Such additional constraints can be added using the constrained variations of these patterns. 

The mappings given in this pattern do not describe precedence properties where P and S occur simultanously 
(i.e., S must strictly precede P). To relax this constraint use the possibly empty variation of the pattern. 

Relationships 
A generalization of precedence properties that allows for multiple separate states/events to constitute P and 
S is called the precedence chain pattern. 

Figure 1: Precedence Pattern 
There are five basic kinds of scopes: global (the en- not occur). The scope is determined by specifying a 
tire program execution), before (the execution up to a starting and an ending state/event for the pattern. 
given state/event), after (the execution after a given 
state/event), between (any part of the execution from For state-delimited scopes, the interval in which the 

one given state/event to another given state/event) and property is evaluated is closed at the left and open at the 

after-until (like between but the designated part of the right end. Thus, the scope consists of all states begin- 

execution continues even if the second state/event does ning with the starting state and up to but not including 
the ending state. We chose closed-left open-right scopes 
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Global 

Before & 
I 

After Q 

Between Q and R 

After & until R 

State Sequence R Q QRQ 

Figure 2: Pattern Scopes 

because they are relatively easy to encode in specifica- 
tions and they have been the most commonly encoun- 
tered in the real property specifications we studied. It 
is possible, however, to define scopes that are open-left 
and closed-right; we explain how to construct these vari- 
ants of the mappings in a special part of the pattern sys- 
tem (described below). In event-based formalisms the 
underlying model does not allow two events to coincide, 
thus event-delimited scopes are open at both ends. 

Figure 2 illustrates the portions of an execution that 
are designated by the different kinds of scopes. We note 
that a scope itself should be interpreted as optional; if 
the scope delimiters are not present in an execution then 
the specification will be true. 

Scope operators are not present in most specification 
formalisms (interval logics are an exception). Never- 
theless, our experience indicates that many informal re- 
quirements are specified as properties of segments of 
program executions. Thus a pattern system for proper- 
ties should mirror this view to enhance usability. 

We note that the various specification formalisms have 
different semantics and expressive power, and that a 
property that can be expressed easily in one formalism 
may be unnatural, or even impossible to capture pre- 
cisely, in a different formalism. For instance, in state- 
based formalisms such as LTL or CTL, it is reasonable 
to specify that a certain proposition hold throughout a 
scope (the Universality pattern), and to regard this as 
being in some sense dual to the Absence property stat- 
ing that a proposition holds at no state in the scope. 
In event-based formalisms, although it is easy to re- 
quire that only certain events occur within a scope, the 
property that a proposition holds throughout the scope 
would probably be expressed in terms of the appropriate 

occurrence of an event indicating that the proposition 
has become true and the absence of an event indicating 
that it has become false, which does not bear a sim- 
ple relation to the Absence pattern. Similarly, we note 
that some formalisms can express conditions involving 
infinite executions, while others are limited to finite se- 
quences of states or events. Although we expect that, 
in practice, almost all of the properties to be specified 
can be expressed in almost all of the com.monly used 
formalisms, the pattern system should point out these 
differences to the user. 

A System of Specification Patterns 
We have developed a system of property specification 
patterns for finite-state verification tools. The pattern 
system is a set of patterns organized into one or more 
hierarchies, with connections between related patterns 
to facilitate browsing. A user would search. for the ap- 
propriate pattern to match the requirement being spec- 
ified, use the mapping section to obtain a template of 
the property in the formalism used by a particular tool, 
and then instantiate that template by plugging in the 
state formulas or events specific to the requirement. 

In defining a specification formalism, one attempts to 
give a small set of independent concepts from which 
a large class of interesting specifications can be con- 
structed. With the collection of specification patterns, 
however, we are neither trying to give a smallest set that 
can generate the useful specifications nor a complete 
listing of specifications. Patterns are in the system be- 
cause they appear frequently as property specifications. 
We hypothesize that only a small fraction of the possible 
properties that can be specified using logics or regular 
expressions commonly occur in practice. These proper- 
ties, and simple variants of them, make up our pattern 
system. We expect the set of patterns to grow over 
time as developers encounter property specifications of 
real systems that do not easily map onto the existing 
patterns. 

The Patterns 
Space limitations prohibit description of the patterns 
in full detail; for that we have set up a web-site IS]. 
The full patterns contain additional examples, explana- 
tion of relationships among the patterns, and mappings 
to various formalisms. A list of our set of patterns, 
with short descriptions, follows. In the descriptions, for 
brevity, we use the phrase “a given state/event occurs” 
to mean “a state in which the given state formula is 
true, or an event from the given disjunction of events, 
occurs.” 

Absence A given state/event does not occur within a 
scope. 

Existence A given state/event must occur within a 
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scope. 

Bounded Existence A given state/event must occur k 
times within a scope. Variants of this pattern specify 
at least k occurrences and at most k occurrences of a 
state/event. The elevator property in Section 1 is an 
instance of this pattern. 

Universality A given state/event occurs throughout a 
scope. 

Precedence A state/event P must always be preceded 
by a state/event Q within a scope. Figure 1 gives the 
key elements of the pattern. 

Response A state/event P must always be followed by 
a state/event Q within a scope. 

Chain Precedence A sequence of states/events 
9 , . . . , P,, must always be preceded by a sequence 
of states/events Qi, . . . , Qm. This pattern is a gen- 
eralization of the Precedence pattern. 

Chain Response A sequence of states/events 
s >*-* 1 P,, must always be followed by a sequence 
of states/events Qi, . , . , Qm. This pattern is a 
generalization the Response pattern. It can be used 
to express bounded FIFO relationships. 

Organization 
We believe the most useful way to organize the patterns 
is in a hierarchy based on their semantics. For exam- 
ple, some patterns require states/events to occur or not 
occur (e.g., the Absence pattern), while other patterns 
constrain the order of states/events (e.g., the Response 
pattern). One organization for our pattern system is 
the hierarchy illustrated in Figure 3. This hierarchy 
distinguishes properties that deal with the occurrence 
and ordering of states/events during system execution. 

In addition to the patterns themselves, we provide a set 
of pattern notes, which explain how to combine and/or 
vary the patterns. For example, pattern templates are 
typically parameterized by individual events or state 
formulae. In some cases, however, we can allow pat- 
terns of states/events to be substituted into the tem- 
plates. Pattern notes give the user guidance on when it 
is safe to make these substitutions. There are also pat- 
tern notes describing how to construct known variants 
of the patterns, such as those with left-open right-closed 
scopes, or those in which specific states/events are ab- 
sent from segments of a pattern. 

In the original pattern system described in [9], we pro- 
vided mappings to three formalisms: LTL, CTL, and 
QREs. We have since added mappings for two addi- 
tional formalisms: Graphical Interval Logic (GIL) [7] 
and the INCA query language [5] (due to space limita- 
tions, we do not show these mappings in Figure 1). 

3 SURVEY OF PROPERTY SPECIFICA- 
TIONS 

In [9], we first proposed the idea of a pattern system for 
property specifications for finite-state verification. We 
assumed that the specifications people write fall into 
a small number of categories, although we gave little 
empirical evidence for this important assumption. Since 
then, we have collected over 500 example specifications 
and found that, indeed, most fall into a small number of 
familiar categories. We describe our survey of property 
specifications in this section. 

Data Collection 
We collected example specifications from: 

l Verification papers in the literature. 
l Others who have written/collected specifications. 

In particular, we contacted researchers who have 
built/used verification tools and asked for example 
specifications. We also sent a request for examples 
to several mailing lists and newsgroups. 

l Student projects from two offerings of the first au- 
thor’s graduate course in finite-state verification. 

In all, we collected 555 specifications from at least 35 
different sources. The specifications collected were in 
many forms. For most we had an expression of the 
requirement in a specific specification formalism (e.g., 
LTL). For many we also had an informal prose descrip- 
tion of the requirement. The specifications came from 
a wide variety of application domains, including: hard- 
ware protocols, communication protocols, GUIs, control 
systems, abstract data types, avionics, operating sys- 
tems, distibuted object systems, and databases. Com- 
plete descriptions of these specifications can be found 
on our Specification Patterns web page [8], along with 
citations for 34 published papers from which many of 
them were taken. 

We examined each specification and manually deter- 
mined whether it matched a pattern and, if so, the scope 
of the property. In most cases, the formal version of the 
specification was an instantiation of a template mapping 
for a specific pattern/scope; in this case.the classifica- 
tion was trivial. If we could not find a trivial match, 
we looked at the specification more carefully and still 
counted it as a match if: 

l The specifichtion was formally equivalent to an in- 
stantiation of one of our ternplate mappings. For 
example, the LTL formula YOP is equivalent to 
q TP, which is our mapping for (global) absence of 
P. 

l The specification can be obtained from one of our 
patterns using parameter substitution. As de- 
scribed in Section 2, the template mapping pa- 
rameters for logics are usually state-formulae (i.e., 
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Figure 3: A Pattern Hierarchy 
boolean combinations of propositions). For some 
patterns/scopes, it is safe to substitute tempo- 
ral formulae into the template; guidance on when 
this is correct is given in a pattern note. We en- 
countered 13 cases in which the requirement “in- 
finitely often P” was realized using the CTL for- 
mula AG(AF(P)), which is a universal pattern in- 
stantiated with the parameter AF(P). 

l The specification was a known variant of one of our 
patterns. As noted in Section 2, the mappings for 
our scopes are closed on the left and open on the 
right. Nearly all of the non-global specifications 
we collected were left-closed right-open, but three 
were left-open right-closed. As mentioned in Sec- 
tion 2, a pattern note explains how to open the left 
end of the scope and how to close the right, end. 
Other variants mentioned in the pattern notes in- 
clude chain patterns where certain states or events 
are forbidden between elements of the chains. 

l The specification was a new van’ant of one of our 
patterns. We discovered two interesting variants of 
the Response pattern. The first, describes an execu- 
tion in which S must respond to P and there must 
be no Zs between the (stimulus) P and the (re- 
sponse) S. The second requires that the response 
be in the next state/event. We found 41 instances 
of the constrained response variant and 8 instances 
of the next response variant. We have added pat- 
tern notes explaining how to adjust the mappings 
to obtain these variants. 

l The formal expression of the specification was 
clearly in error, and the correct specification was 
a instance of one of our patterns. About 10 of the 
specifications we collected were clearly in error- 
either the formal expression did not match the 
prose description, or the formal expression did not 
make sense. When the intent of the specification 
was clear, and the intent matched one of the pat- 
terns, we counted the example as a match. 

For each specification, we recorded the following infor- 
mation (when available) : 

Requirement A prose description of the requirement,. 

Pattern The pattern of which we determined this re- 
quirement is an instance (if any). 

Scope The scope of the pattern. 

Parameters Notes on the parameters provided to the 
template (e.g., arrays of propositions, nested tempo- 
ral formulae). 

Mappings Mappings of the property to formal speci- 
fication languages (LTL, CTL, QR.Es, GIL, INCA). 
Most examples collected have exactly one mapping. 

Source The source of the example (i.e., person, cita- 
tion). 

Domain The application domain the example is from. 

Note Any additional information on the example. 

An sample entry for a specification is: 

REQUIREXNT: When a server requests its registration in 
the ROT, it will eventually be registered. 

PATTERN: Response 
SCOPE: Global 
PARAMIZTERS: Propositions (boolean vector) 
LTL: [](RequestedRegisterImpl[i] -> 0ServerRegisteredCil) 
NOTE: this is replicated for all modeled servers 
SOURCE: Gregory Duval \cite<duval:98>, RI, pp. 48 
DOMAIN: Distributed Object System 

As noted above, all of the specifications we found are 
available on the World Wide Web at [8]. 

Results 
The data are summarized in Table 1, which gives to- 
tals for each pattern/scope combination, and in Fig- 
ure 4, which graphs the totals for each pattern and 
scope (examples not matching any pattern are grouped 
under UNKNOWN). Of the 555 example specifications 
we collected, 511 (92%) matched one of our patterns. 
As shown in Figure 4, the most, common pattern in the 
sample is Response, with the next, most common being 
Universality and its dual Absence. Together, these three 
patterns accbunted for 80% of the sample. 

Although we found at least one instance of each pattern, 
Figure 4 shows that a few patterns cover a majority of 
the samtile. In fact, the frequencies of the patterns, 
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Scope 
Pattern Glbl Aftr Btwn Untl Tot 
Absence 41 5 12 18 9 85 
Universality 110 5 2 1 119 
Existence 12 4 8 1 26 
Bound Exist 0 0 1 0 1 
Response 241 3 0 0 245 
Precedepce 25 1 0 0 26 
Fksp. Chain 8 0 0 0 8 
Prec. Chain 1 0 0 0 1 
UNKNOWN 1 44 
Total 438 8 25 29 11 1 555 

Table 1: Totals for Patterns/Scopes (All Data) 

Patterns 

UNKNOWN 

Global 

Between 

After 

Until 

Before 

Scopes 

Figure 4: Total Number of Instances for Pat- 
terns/Scopes 

when put in order, drop off very quickly. This raises 
the issue of size: how many patterns should be in the 
pattern system? The more patterns in the system, the 
more likely a match will be found. On the other hand, 
the system should be small enough to be easily browsed. 
Adding patterns that match very few real specifications 
may not be worth the slight increase in the pattern sys- 
tem’s size. 

As can be seen from Figure 4, most examples (80%) 
used a global scope. Also, note that almost all exam- 

Patterns 

Response 48 

Universality 
32 

Absence 

UNKNOWN 

Precedence 

Existence 

Resp. Chain 

Pm. Chain <l o 

Bounded Exist. <l 
0 

Scopes 

Global 

Between 

After 

Until 

Before 

us 
Them 

Figure 5: Percentage of Specifications for Each Pat- 
tern/Scope (Us vs. Them) 

ples that used a non-global scope were instances of Ab- 
sence, Universality, or Existence. These three patterns 
are conceptually the simplest; for global scopes, they 
map to single operators of temporal logics. 

As mentioned above, some of the example specifications 
were collected from researchers and students who have 
a connection with one or more of us. To see whether 
the 304 specifications written by “us” (including our 
collaborators and students) differ significantly from the 
251 specifications written by “them” (everyone else), 
we separate the data and compare the two data sets 
in Figure 5. Although there were some differences be- 
tween the two data sets, note that the ranking of the 
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Response 

Universality 

Absence 

UNKNOWN 

Precedence 

Existence 

Resp. Chain 

Prec. Chain 

Patterns 

Bounded Exist. y 

Scopes 

Global 

Between 

Before 
i 

8 

6 
1 
4 

Before 
After 

Figure 6: Percentage of Specifications for Each Pat- 
tern/Scope (Before vs. After) 

four most common patterns (Response, Universality, 
Absence, UNKNOWN) is the same. The rankings for 
the remaining patterns were different, but given the 
small number of instances of these patterns in the data 
set (fewer than lo), the data are likely to be noisy. One 
difference is that we wrote more specifications with non- 
global scopes, although the vast majority of our specifi- 
cations also used a global scope. Interestingly, we wrote 
more specifications that fall outside the pattern system 
than others. 

Another interesting question is whether having the pat- 
tern system affects the kind of specifications people 
write. Finite-state verification is often used to check 
critical requirements, but the exact choice of require- 

ments to be checked, as well as the way these require- 
ments are expressed in terms of the model, is usually left 
to the analyst. Given a pattern system to assist in the 
formulation of property mappings, an analyst might be 
more likely to use more complex patterns and/or scopes. 
To investigate this, we took the set of specifications we 
or those affiliated with us had written (the “us” set from 
above), and divided it into the 165 specifications writ- 
ten before we developed the pattern system and the 139 
specifications written after. This comparison is shown 
in Figure 6. 

The differences in this case are more pronounced (al- 
though the sample size is smaller, so there may be more 
noise). Several more complex patterns (e.g., chains) 
only appear after the pattern system was introduced. 
More specifications created after the development of the 
pattern system used non-global scopes (33% vs. 5%), 
and those later specifications were more evenly (though 
not uniformly) spread over the different patterns. Also, 
note that all specifications written after the pattern sys- 
tem matched one of the patterns. 

We have demonstrated that a pattern system for prop- 
erty specifications for finite-state verification is poten- 
tially useful by showing that most specifications fall into 
a small number of categories. To show that. the system 
is actually useful would require answering several more 
difficult questions, including: 

l Do-patterns facilitate the learning of the specifica- 
tion formalisms? 

l Do patterns allow specifications to be written more 
quickly? 

a Are the specifications generated from patterns 
more likely to be correct? 

Although we believe that the answer to all of these 
questions is yes, definitive answers would require ex- 
periments with human subjects. To date, we have only 
annecdotal evidence to support our claims, largely from 
the first author’s experience teaching a finite-state ver- 
ification course in a Masters level software engineering 
curriculum. 

4 RELATED WORK 
Traditionally, specification formalisms are presented in 
terms of a minimal set of operators in order to sim- 
plify their semantics definition. Additional operators 
are then defined in terms of those operators, e.g., q IP = 
YOTP, so only a few primitives need to be formally de- 
fined. Users of such formalisms would prefer to write 
specifications at a higher level than this, so many for- 
malisms provide built-in higher-level operators or ab- 
stractions. The classic example is leads-to, introduced 
by Owicki and Lamport [21], which plays a critical role 
in formalisms such as UNITY [2] and TLA 11151. Leads- 
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to corresponds to a global response pattern in our sys- 
tem. A number of formalisms have been designed to 
allow for the definition of additional higher-level de- 
rived operators. For example, LUSTRE [13] property 
specifications, which are safety properties written in a 
linear-time temporal logic, are often written in terms of 
derived operators. In [13], the authors illustrate this ca- 
pability by defining since and never operators in terms 
of the basic LUSTRE operators. These derived opera- 
tors correspond to an existence with an after scope and 
an absence with a global scope, respectively. Our pat- 
tern system supports a common, but fixed set of specifi- 
cation abstractions in formalisms that lack explicit sup- 
port for defining abstractions. 

Like our patterns, interval logics (e.g., [7]) provide the 
user with a higher-level mechanism for defining the seg- 
ments of the system’s execution over which a property 
must hold. In fact, the interval construction operators 
provided by such logics are much more general than our 
five scopes. We have essentially taken five commonly oc- 
curing intervals and packaged them with the patterns. 

Some recent work in requirements engineering has ex- 
plored the use of templates or patterns in the construc- 
tion of requirements. For instance, van Lamsweerde and 
his co-authors [6,18] have suggested using a library of re- 
finements to construct detailed requirements from goals, 
and the Attempt0 Controlled English project [ll], which 
uses a restricted subset of natural language to formulate 
requirements, offers annotated templates to guide non- 
expert users. These efforts are aimed at the develop- 
ment of essentially complete requirements for a system, 
while our pattern system is concerned more with the 
translation of particular aspects of such requirements 
into the formal specifications suitable for use with finite- 
state verification tools. 

There has been little study of the classes of specifica- 
tions that developers may or do write. Manna and 
Pnueli [17] address this issue from a theoretical angle by 
proposing a syntactic classification of LTL formula that 
completely describes the space of possible specifications 
one may write in LTL. Their taxonomy of specifications 
includes categories that are much broader than our pat- 
terns. As a consequence, most of our patterns are eas- 
ily categorized in their classification: precedence, ab- 
sence, and universal patterns with global scopes are all 
safety properties, existence patterns with global scope 
are guarantee properties, and response patterns with 
global scope are response properties. Our k-bounded ex- 
istence pattern is very similar to their k-bounded over- 
taking property (which is a safety property). With chain 
patterns and complex scopes the’mapping to syntactic 
categories is more difficult (due to the nature of the 
canonical forms which define the categories). In con- 
trast to this work, the goal of our work is to give a 

constructive description of the classes of specifications 
that occur most frequently in practice. 

In [16], Manna and Pnueli adopt a more pragmatic ap- 
proach that is in line with the intent of our pattern sys- 
tem. They claim that very little of the general theory of 
temporal logic is required to handle the most important, 
and common, correctness properties of concurrent pro- 
grams. They define a restricted proof-system that han- 
dles invatiance properties (which subsume most univer- 
sal and absence patterns), response properties (which 
subsume response patterns) and precedence properties 
(which subsume precedence and bounded existence and 
are similar to chain patterns). Their precedence proper- 
ties also subsume after-until scope versions of universal 
and absence patterns. The data we present in this paper 
support Manna and Pnueli’s intuition about common 
properties, since we found that absence, universal and 
response patterns constitute the bulk of the properties 
in our survey. 

5 CONCLUSIONS 
We believe that the definition and use of high-level 
abstractions in writing formal specifications is an im- 
portant factor in making automated formal methods, 
specifically finite-state verification tools, more usable. 
Our specification pattern system provides a set of com- 
monly occuring high-level specification abstractions for 
formalisms that do not support the definition of such ab- 
stractions directly. We have described an updated pat- 
tern system we developed for property specifications in 
finite-state verification and have collected a large sam- 
ple of specifications that suggests that most property 
specifications people write are instances of patterns in 
this system. 

We are currently exploring several directions for further 
work on specification patterns. We are working to define 
patterns to simplify writing a class of assume-guarantee 
properties in CTL. Writing such specifications in LTL is 
straightforward; in CTL, however, such properties can 
be quite tricky to express. We are studying the benefits 
of defining a language for property specification based 
on the patterns, providing automated support for com- 
piling properties expressed in that language to specific 
formalisms and checking the legality of pattern substi- 
tutions. We are studying approaches for checking the 
consistency of pattern mappings expressed in multiple 
formalisms. For example, while CTL and LTL are not, 
in general, co-expressive, all of our CTL and LTL map- 
pings lie in the all-paths fragment of CTL*; thus we 
may be able to formally justify the equivalence of those 
mappings. 

The survey described in this paper is certainly not ex- 
haustive, and we expect that, as the application of 
finite-state verification technology spreads, the types of 
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specifications used by developers may change over time. 
We view the pattern system as a dynamic entity that 
will grow through a process of dialog and critical review 
by the.community of developers and users of finite-state 
verification techniques and we welcome contributions 
from that community. 
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