SMT Solvers

An overview from the perspective of Symbolic Excution

Boolean Satisfiability (SAT)

Is there an assignment to the $p_1, p_2, ..., p_n$ variables such that ϕ evaluates to 1?

Satisfiability Modulo Theories

Is there an assignment to the x,y,z,w variables s.t. ϕ evaluates to 1?

Satisfiability Modulo Theories

- Given a formula in first-order logic, with associated background theories, is the formula satisfiable?
 - Yes: return a satisfying solution
 - No [generate a proof of unsatisfiability]

Applications of SMT

- Hardware verification at higher levels of abstraction (RTL and above)
- Verification of analog/mixed-signal circuits
- Verification of hybrid systems
- Software model checking
- Software testing
- Security: Finding vulnerabilities, verifying electronic voting machines, ...
- Program synthesis

•

References

Satisfiability Modulo Theories

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.

Chapter 8 in the Handbook of Satisfiability, Armin Biere, Hans van Maaren, and Toby Walsh, editors, IOS Press, 2009.

SMTLIB: A repository for SMT formulas (common format) and tools

SMTCOMP: An annual competition of SMT solvers

Roadmap

- Background and Notation
- Survey of Theories
- Theory Solvers
- A Parameterized Solver Framework

First-Order Logic

- A formal notation for mathematics, with expressions involving
 - Propositional symbols
 - Predicates
 - Functions and constant symbols
 - Quantifiers
- In contrast, propositional (Boolean) logic only involves propositional symbols and operators

First-Order Logic: Syntax

- As with propositional logic, expressions in first-order logic are made up of sequences of symbols.
- Symbols are divided into logical symbols and non-logical symbols or parameters.
- Example:

$$(x = y) \land (y = z) \land (f(z) \ge f(x)+1)$$

First-Order Logic: Syntax

- Logical Symbols
 - Propositional connectives: \vee , \wedge , \neg , \rightarrow , \leftrightarrow
 - Variables: v1, v2, . . .
 - Quantifiers: ∀, ∃
- Non-logical symbols/Parameters
 - Equality: =
 - Functions: +, -, %, bit-wise &, f(), concat, ...
 - Predicates: ≤, is_substring, ...
 - Constant symbols: 0, 1.0, null, ...

Quantifier-free Subset

- We will largely restrict ourselves to formulas without quantifiers (∀, ∃)
- This is called the quantifier-free subset/ fragment of first-order logic with the relevant theory

Logical Theory

- Defines a set of parameters (non-logical symbols) and their meanings
- This definition is called a signature.
- Example of a signature:

Theory of linear arithmetic over integers Signature is $(0,1,+,-,\leq)$ interpreted over \mathbb{Z}

Roadmap

- Background and Notation
- Survey of Theories
- Theory Solvers
- A Parameterized Solver Framework

Some Useful Theories

- Equality (with uninterpreted functions)
- Linear arithmetic (over Q or Z)
- Difference logic (over Q or Z)
- Finite-precision bit-vectors
 - integer or floating-point
- Arrays / memories
- Misc.: Non-linear arithmetic, strings, inductive datatypes (e.g. lists), sets, ...

Theory of Equality and Uninterpreted Functions (EUF)

- Also called the "free theory"
 - Because function symbols can take any meaning
 - Only property required is *congruence*: that these symbols map identical arguments to identical values i.e., $x = y \Rightarrow f(x) = f(y)$
- SMTLIB name: QF_UF

Data and Function Abstraction with EUF

Bit-vectors to Abstract Domain (e.g. \mathbb{Z})

Functional units to Uninterpreted Functions

$$a = x \land b = y \Rightarrow f(a,b) = f(x,y)$$

Common Operations

If-then-else

$$x = y$$

Test for equality

Hardware Abstraction with EUF

- For any Block that Transforms or Evaluates Data:
 - Replace with generic, unspecified function
 - Also view instruction memory as function

Hardware Abstraction with EUF

- For any Block that Transforms or Evaluates Data:
 - Replace with generic, unspecified function
 - Also view instruction memory as function

Example QF_UF (EUF) Formula

$$(x = y) \land (y = z) \land (f(x) \neq f(z))$$

Transitivity:

$$(x = y) \land (y = z) \Rightarrow (x = z)$$

Congruence:

$$(x = z) \Rightarrow (f(x) = f(z))$$

```
int fun1(int y) {
                      SMT formula \phi
   int x, z;
                      Satisfiable iff programs non-equivalent
   z = y;
   y = x;
                      (z = y \land y1 = x \land x1 = z \land ret1 = x1*x1)
   x = z;
                      (ret2 = y*y)
  return x*x;
                       (ret1 \neq ret2)
int fun2(int y) {
    return y*y;
                     What if we use SAT to check equivalence?
```

```
SMT formula \phi
int fun1(int y) {
                     Satisfiable iff programs non-equivalent
   int x, z;
   z = y;
                     (z = y \land y1 = x \land x1 = z \land ret1 = x1*x1)
   y = x;
   x = z;
                     (ret2 = y*y)
  return x*x;
                     (ret1 \neq ret2)
                  Using SAT to check equivalence (w/ Minisat)
int fun2(int y) {
                     32 bits for y: Did not finish in over 5 hours
    return y*y;
                     16 bits for y: 37 sec.
                      8 bits for y: 0.5 sec.
```

```
int fun1(int y) {
                       SMT formula \( \phi' \)
   int x, z;
   z = y;
                       (z = y \land y1 = x \land x1 = z \land ret1 = sq(x1))
   y = x;
   x = z;
                       (ret2 = sq(y))
  return x*x;
                       (ret1 \neq ret2)
int fun2(int y) {
                             Using EUF solver: 0.01 sec
    return y*y;
```

Linear Arithmetic (QF_LRA, QF_LIA)

Boolean combination of linear constraints of the form

$$(a_1 x_1 + a_2 x_2 + ... + a_n x_n \sim b)$$

- x_i 's could be in $\mathbb Q$ or $\mathbb Z$, $\sim \in \{\geq,>,\leq,<,=\}$
- Many applications, including:
 - Verification of analog circuits
 - Software verification, e.g., of array bounds

Difference Logic (QF_IDL, QF_RDL)

Boolean combination of linear constraints of the form

$$x_i - x_j \sim c_{ij}$$
 or $x_i \sim c_i$
 $\sim \in \{\geq, >, \leq, <, =\}, x_i$'s in \mathbb{Q} or \mathbb{Z}

- Applications:
 - Software verification (most linear constraints are of this form)
 - Processor datapath verification
 - Job shop scheduling / real-time systems
 - Timing verification for circuits

Arrays/Memories

- SMT solvers can also be very effective in modeling data structures in software and hardware
 - Arrays in programs
 - Memories in hardware designs: e.g. instruction and data memories, CAMs, etc.

Theory of Arrays (QF_AX) Select and Store

- Two interpreted functions: select and store
 - select(A,i)Read from A at index i
 - store(A,i,d) Write d to A at index i
- Two main axioms:
 - select(store(A,i,d), i) = d
 - select(store(A,i,d), j) = select(A,j) for $i \neq j$
- One other axiom:
 - $-(\forall i. select(A,i) = select(B,i)) \Rightarrow A = B$

```
int fun1(int y) {
  int x[2];
  x[0] = y;
  y = x[1];
  x[1] = x[0];
  return x[1]*x[1];
int fun2(int y) {
     return y*y;
```

```
SMT formula \phi"

[ x1 = store(x,0,y) \( \times y1 = select(x1,1) \)
\( \times x2 = store(x1,1,select(x1,0)) \)
\( \times ret1 = sq(select(x2,1)) \)
\( (ret2 = sq(y)) \)
\( \times ret2 \)
```

Roadmap

- Background and Notation
- Survey of Theories
- Theory Solvers
- A Parameterized Solver Framework

In *difference logic* [NO05], we are interested in the satisfiability of a conjunction of arithmetic atoms.

Each atom is of the form $x - y \bowtie c$, where x and y are variables, c is a numeric constant, and $\bowtie \in \{=, <, \leq, >, \geq\}$.

The variables can range over either the *integers* (QF_IDL) or the *reals* (QF_RDL).

•
$$x - y = c \implies x - y \le c \land x - y \ge c$$

•
$$x - y = c \implies x - y \le c \land x - y \ge c$$

•
$$x - y \ge c \implies y - x \le -c$$

•
$$x - y = c \implies x - y \le c \land x - y \ge c$$

•
$$x - y \ge c \implies y - x \le -c$$

•
$$x - y > c \implies y - x < -c$$

•
$$x - y = c \implies x - y \le c \land x - y \ge c$$

•
$$x - y \ge c \implies y - x \le -c$$

•
$$x - y > c \implies y - x < -c$$

•
$$x - y < c \implies x - y \le c - 1$$
 (integers)

•
$$x - y = c \implies x - y \le c \land x - y \ge c$$

•
$$x - y \ge c \implies y - x \le -c$$

•
$$x - y > c \implies y - x < -c$$

•
$$x - y < c \implies x - y \le c - 1$$
 (integers)

•
$$x - y < c \implies x - y \le c - \delta$$
 (reals)

Now we have a conjunction of literals, all of the form $x - y \le c$.

From these literals, we form a weighted directed graph with a vertex for each variable.

For each literal $x - y \le c$, there is an edge $x \stackrel{c}{\longrightarrow} y$.

The set of literals is satisfiable iff there is no cycle for which the sum of the weights on the edges is negative.

There are a number of efficient algorithms for detecting negative cycles in graphs [CG96].

$$x - y = 5 \land z - y \ge 2 \land z - x > 2 \land w - x = 2 \land z - w < 0$$

$$x - y = 5 \land z - y \ge 2 \land z - x > 2 \land w - x = 2 \land z - w < 0$$

$$x - y = 5$$

 $z - y \ge 2$
 $z - x > 2$ \Rightarrow
 $w - x = 2$ $w - x \le 2 \land x - w \le -2$
 $z - w < 0$

$$x - y = 5 \land z - y \ge 2 \land z - x > 2 \land w - x = 2 \land z - w < 0$$

$$x - y = 5$$

$$z - y \ge 2$$

$$z - x > 2 \Rightarrow$$

$$w - x = 2 \qquad w - x \le 2 \land x - w \le -2$$
$$z - w < 0$$

$$x - y = 5 \land z - y \ge 2 \land z - x > 2 \land w - x = 2 \land z - w < 0$$

$$x - y = 5$$

$$z - y \ge 2$$

$$z - x > 2$$

$$x - y \le 5 \land y - x \le -5$$

$$y - z \le -2$$

$$x - x > 2 \Rightarrow x - z \le -3$$

$$w - x = 2$$

$$z - w < 0$$

$$x - y \le 5 \land y - x \le -5$$

$$y - x \le -2$$

$$x - x \le -3$$

$$x - x \le 2 \land x - x \le -2$$

Roadmap

Theory Solvers

- Examples of Theory Solvers
- Combining Theory Solvers
- Extending Theory Solvers for SMT

Combining Theory Solvers

Theory solvers become much more useful if they can be used together.

```
mux\_sel = 0 \rightarrow mux\_out = select(regfile, addr)

mux\_sel = 1 \rightarrow mux\_out = ALU(alu0, alu1)
```

For such formulas, we are interested in satisfiability with respect to a *combination* of theories.

Fortunately, there exist methods for combining theory solvers. The standard technique for this is the Nelson-Oppen method [NO79, TH96].

The Nelson-Oppen Method

The Nelson-Oppen method is applicable when:

- 1. The theories have *no shared symbols* (other than equality).
- 2. The theories are *stably-infinite*.

A theory T is *stably-infinite* if every T-satisfiable quantifier-free formula is satisfiable in an infinite model.

3. The formulas to be tested for satisfiability are *quantifier-free*

Many theories fit these criteria, and extensions exist in some cases when they do not.

The Nelson-Oppen Method

Suppose that T_1 and T_2 are theories and that Sat_1 is a theory solver for T_1 -satisfiability and Sat_2 for T_1 -satisfiability.

We wish to determine if ϕ is $T_1 \cup T_2$ -satisfiable.

- 1. Convert ϕ to its *separate form* $\phi_1 \wedge \phi_2$.
- 2. Let S be the set of variables shared between ϕ_1 and ϕ_2 .
- 3. For each *arrangement* Δ of S:
 - (a) Run Sat_1 on $\phi_1 \cup \Delta$.
 - (b) Run Sat_2 on $\phi_2 \cup \Delta$.

The Nelson-Oppen Method

If there exists an arrangement such that both Sat_1 and Sat_2 succeed, then ϕ is $T_1 \cup T_2$ -satisfiable.

If no such arrangement exists, then ϕ is $T_1 \cup T_2$ -unsatisfiable.

Consider the following QF_UFLIA formula:

$$\phi = 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2).$$

Consider the following QF_UFLIA formula:

$$\phi = 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2).$$

We first convert ϕ to a separate form:

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

The shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z.

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

1.
$$\{x = y, x = z, y = z\}$$

2.
$$\{x = y, x \neq z, y \neq z\}$$

3.
$$\{x \neq y, x = z, y \neq z\}$$

4.
$$\{x \neq y, x \neq z, y = z\}$$

5.
$$\{x \neq y, x \neq z, y \neq z\}$$

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

- 1. $\{x=y, x=z, y=z\}$: inconsistent with ϕ_{UF} .
- **2.** $\{x = y, x \neq z, y \neq z\}$
- **3.** $\{x \neq y, x = z, y \neq z\}$
- **4.** $\{x \neq y, x \neq z, y = z\}$
- **5.** $\{x \neq y, x \neq z, y \neq z\}$

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

- 1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_{UF} .
- 2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_{UF} .
- **3.** $\{x \neq y, x = z, y \neq z\}$
- **4.** $\{x \neq y, x \neq z, y = z\}$
- **5.** $\{x \neq y, x \neq z, y \neq z\}$

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

- 1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_{UF} .
- 2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_{UF} .
- 3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_{UF} .
- **4.** $\{x \neq y, x \neq z, y = z\}$
- **5.** $\{x \neq y, x \neq z, y \neq z\}$

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

- 1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_{UF} .
- 2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_{UF} .
- 3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_{UF} .
- 4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_{LIA} .
- **5.** $\{x \neq y, x \neq z, y \neq z\}$

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

- 1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_{UF} .
- 2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_{UF} .
- 3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_{UF} .
- 4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_{LIA} .
- 5. $\{x \neq y, x \neq z, y \neq z\}$: inconsistent with ϕ_{LIA} .

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

- 1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_{UF} .
- 2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_{UF} .
- 3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_{UF} .
- 4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_{LIA} .
- 5. $\{x \neq y, x \neq z, y \neq z\}$: inconsistent with ϕ_{LIA} .

Therefore, ϕ is *unsatisfiable*.

Roadmap

Theory Solvers

- Examples of Theory Solvers
- Combining Theory Solvers
- Extending Theory Solvers for SMT

Desirable Characteristics of Theory Solvers

Theory solvers must be able to determine whether a conjunction of literals is satisfiable.

However, in order to integrate a theory solver into a modern SMT solver, it is helpful if the theory solvers can do more.

Desirable Characteristics of Theory Solvers

Some desirable characterstics of theory solvers include:

- Incrementality easy to add new literals or backtrack to a previous state
- Layered/Lazy able to detect simple inconsistencies quickly, able to detect difficult inconsistencies eventually
- Equality Propagating If theory solvers can detect when two terms are equivalent, this greatly simplifies the search for a satisfying arrangement

Desirable Characteristics of Theory Solvers

Some desirable characterstics of theory solvers include:

- Model Generating When reporting satisfiable, the theory solver also provides a concrete value for each variable or function symbol
- Proof Generating When reporting unsatisfiable, the theory solver also provides a checkable proof
- Interpolant Generating If $\phi \wedge \neg \psi$ is unsatisfiable, find a formula α containing only symbols appearing in both ϕ and ψ such that:
 - $\circ \phi \wedge \neg \alpha$ is unsatisfiable
 - $\circ \ \alpha \land \neg \psi$ is unsatisfiable

Lazy SMT

Theory solvers check the satisfiability of conjunctions of literals.

What about more general Boolean structure?

What is needed is a combination of *Boolean reasoning* and *theory reasoning*.

The *eager* approach to SMT does this by encoding theory reasoning as a Boolean satisfiability problem.

Here, I will focus on the *lazy* approach in which both a Boolean engine and a theory solver work together to solve the problem [dMRS02, BDS02a].

The architecture of Lazy SMT

ula ϕ_a

solver

- 1. Separate ϕ into ϕ_{T_i} and ϕ_s
- 2. Abst
 3. Chec
 4. If UN

 Caveat: This is a very high
 level sketch that abstracts

- 5. If SA many details. SMT papers
- 6. If all will not explain it in this way.
- 7. Try another SAT assignment for $[\phi_s]_a$ and go to 5, if there are none, then done (ϕ UNSAT)

The architecture of Lazy SMT

- 1. Separate ϕ into ϕ_{T_i} and ϕ_s
- 2. Abstract the result to a propositional formula ϕ_a
- 3. Check ϕ_a for SAT
- 4. If UNSAT, then done (ϕ UNSAT)
- 5. If SAT, then check $\phi_{T_i} \wedge [\phi_s]_a$ with theory solver
- 6. If all ϕ_{T_i} are SAT, then done (ϕ SAT)
- 7. Try another SAT assignment for $[\phi_s]_a$ and go to 5, if there are none, then done (ϕ UNSAT)

Separating a formula

Recall the formula

$$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

We separate it as follows

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

$$\phi_{LIA} = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

$$\phi_s = x = y \land x = z \land y = z$$

So the original formula is

$$\phi_{UF} \wedge \phi_{LIA} \wedge \phi_S$$

Abstracting a formula

Take each unique conjunct and represent it as a propositional variable

So

$$\phi_{UF} = f(x) \neq f(y) \land f(x) \neq f(z)$$

becomes

$$\phi_{UF} = a \wedge b$$

where, for example,

$$a = f(x) \neq f(y)$$

Arrangements

When the abstracted formula is SAT we have an assignment to the propositional variables

The abstracted version of

$$\phi_s = x = y \land x = z \land y = z$$

becomes

$$[\phi_s]_a = g \wedge h \wedge i$$

and in a SAT assignment we may have $g, \neg h, \neg i$

$$x = y \land x \neq z \land y \neq z$$

For symbolic execution ...

- What do the path conditions look like?
- What different theories are involved?
- What is the most restrictive theory possible?
- Do path conditions vary with the program?
- Can we determine, for a program what theories are needed?
- Can we extend an SMT solver with a solver for those theories?