SMT Solvers

An overview from the perspective of
Symbolic Excution

Based in part on Barrett & Seshia’s ICCAD’09 Tutorial



Boolean Satisfiability (SAT)

P

P>

Py

Is there an assignment to the p,, p,, ..., p, variables
such that ¢ evaluates to 1?




Satisfiability Modulo Theories

P1 xX=y

P> x+2z>1

w & OxFFFF = x

l;n x%26=v

Is there an assignment to the x,y,z,w variables
s.t. ¢ evaluates to 1?




Satisfiability Modulo Theories

* Given a formula in first-order logic, with
associated background theories, is the
formula satisfiable?

— Yes: return a satisfying solution

— No [generate a proof of unsatisfiability]




Applications of SMT

» Hardware verification at higher levels of
abstraction (RTL and above)

 Verification of analog/mixed-signal circuits
* Verification of hybrid systems

» Software model checking

» Software testing

» Security: Finding vulnerabilities, verifying
electronic voting machines, ...

* Program synthesis
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First-Order Logic

* A formal notation for mathematics, with
expressions involving
— Propositional symbols
— Predicates
— Functions and constant symbols
— Quantifiers
* In contrast, propositional (Boolean) logic

only involves propositional symbols and
operators




First-Order Logic: Syntax

* As with propositional logic, expressions in
first-order logic are made up of sequences
of symbols.

* Symbols are divided into logical symbols
and non-logical symbols or parameters.

 Example:
(x=y) Ay =2) A (f(z) = f(x)+1)




First-Order Logic: Syntax

* Logical Symbols
— Propositional connectives: V, A, 1, —, &
— Variables: v1, v2, . . .
— Quantifiers: v, 3
* Non-logical symbols/Parameters
— Equality: =

— Functions: +, -, %, bit-wise &, f(), concat, ...

— Predicates: <, is_substring, ...
— Constant symbols: 0, 1.0, null, ...
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Quantifier-free Subset

* We will largely restrict ourselves to
formulas without quantifiers (V, 3)

* This is called the quantifier-free subset/

fragment of first-order logic with the
relevant theory

11



Logical Theory

» Defines a set of parameters (non-logical
symbols) and their meanings

* This definition is called a signature.

« Example of a signature:
Theory of linear arithmetic over integers
Signature is (0,1,+,-,<) interpreted over Z
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Some Useful Theories

« Equality (with uninterpreted functions)
* Linear arithmetic (over Q or Z)
 Difference logic (over Q or Z)
* Finite-precision bit-vectors

— integer or floating-point
* Arrays / memories
* Misc.: Non-linear arithmetic, strings,

iInductive datatypes (e.qg. lists), sets, ...
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Theory of Equality and
Uninterpreted Functions (EUF)

* Also called the “free theory”

— Because function symbols can take any
meaning

— Only property required is congruence: that
these symbols map identical arguments to
identical values i.e., x =y = f(x) = f(y)

« SMTLIB name: QF UF
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" Data and Function Abstraction

with EUF

X0
X1

X, = X

xn-l

Bit-vectors to Abstract Domain (e.g. Z)

Functional units to Uninterpreted Functions

a=x N b=y = flab)= flxy)

Common Operations

P
> ITE(p, x, y)
y 0
If-then-else
X —
—x=y
y

Test for equality
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| Hardware Abstraction with EUF

IF/ID
Op_
_Rd

PC

ID/EX EX/WB
Ra_ \

Instr Adat
Mem ~ Reg

}

. File '

Imm '
t

Rb

P

* For any Block that Transforms or Evaluates Data:
— Replace with generic, unspecified function
— Also view instruction memory as function
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| Hardware Abstraction with EUF

IF/ID ID/EX EX/WB
" o o S
)
_Rd
Ra \ - \
Adat }
F4 ~ Reg. \ '
. File -
Imm ' 2
|

P

Rb

* For any Block that Transforms or Evaluates Data:
— Replace with generic, unspecified function
— Also view instruction memory as function
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Example QF _UF (EUF) Formula

(X=Y) Ay =2) A (f(x) = 1(2))

Transitivity:
X=y)Aly=2)=(x=2)

Congruence:
(x=2z) = (f(x) =1(2))
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Equivalence Checking

of Program Fragments

int fun1(inty) {

_ _ SMT formula ¢
'Z”"_X)’/_Z’ Satisfiable iff programs non-equivalent
y =X (z=yAyl=x Ax1=z Aretl =x1*x1)
X = z; A
ret2 = y*
return xx; ( A yy)
} (ret! = ret2)
int fun2(int y) {
return y*y;

}

What if we use SAT to check equivalence?
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Equivalence Checking
of Program Fragments

int fun1(inty) {
Int X, z;
Z=Y,
y =X
X=2Z;

return x*x;

}

int fun2(int y) {
return y*y;

}

SMT formula ¢
Satisfiable iff programs non-equivalent

(z=yAyl=x Ax1=2z Aretl =x1"x1)
A

(ret2 =y%y)
N

(ret1 =ret2)

Using SAT to check equivalence (w/ Minisat)
32 bits for y: Did not finish in over 5 hours
16 bits for y: 37 sec.

8 bits for y: 0.5 sec.
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Equivalence Checking
of Program Fragments

int fun1(inty) {

| SMT formula ¢’
Int X, z;
nyi (z=yAyl=x Ax1=z Aretl =sq(x1))
y =X A
X =2, (ret2 =sq(y))
t KNI /\
} return Xx; (ret1 =ret2)
ISR ) Using EUF solver: 0.01 sec
return y*y;

}




Linear Arithmetic
(QF LRA, QF LIA)

 Boolean combination of linear constraints
of the form
(a; Xy +a,x, +...+a, X, ~Db)
e X;scouldbeinQorZ,~ € {>><<=

* Many applications, including:
— Verification of analog circuits
— Software verification, e.g., of array bounds
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Difference Logic
(QF _IDL, QF RDL)

e Boolean combination of linear constraints
of the form

~ € {29>DSD<9:}9 xi,s in @ Oor Z
* Applications:

— Software verification (most linear constraints
are of this form)

— Processor datapath verification
— Job shop scheduling / real-time systems
— Timing verification for circuits
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Arrays/Memories

 SMT solvers can also be very effective in
modeling data structures in software and
hardware
— Arrays in programs
— Memories in hardware designs: e.g.
instruction and data memories, CAMSs, etc.
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Theory of Arrays (QF_AX)
Select and Store

* Two interpreted functions: select and store
— select(A,i) Read from A at index |
— store(A,i,d) Write d to A at index |

 Two main axioms:

— select(store(A,i,d), i) = d

— select(store(A,i,d), j) = select(A,)) for i = j
* One other axiom:

— (V i. select(A,i) = select(B,i)) = A=B
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Equivalence Checking
of Program Fragments

int fun1(inty) {
int x[2];

x[0] =y;

y =X[1];

x[1] = x[O];

return x[1]*x[1];

}

int fun2(int y) {
return y*y;

}

SMT formula ¢”

[ x1 =store(x,0,y) A y1 = select(x1,1)
A X2 = store(x1,1,select(x1,0))

A ret1 = sq(select(x2,1)) ]
A\
(ret2 = sq(y) )
A

(ret1 =ret2)
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Difference Logic

In difference logic [NOOQO5], we are interested in the
satisfiability of a conjunction of arithmetic atoms.

Each atom is of the form x — y < ¢, where x and y are
variables, c is a numeric constant, and < € {=, <, <, >, >}.

The variables can range over either the integers (QF_IDL)
or the reals (QF_RDL).

ICCAD 2009 Tutorial — p. 24/78



Difference Logic

The first step is to rewrite everything in terms of <:
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Difference Logic

The first step is to rewrite everything in terms of <:

*r—y=c — x—yY<cANxr—yz=c
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Difference Logic

The first step is to rewrite everything in terms of <:

*r—y=c — x—yY<cANxr—yz=c
S =g e = Y=0 S =
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Difference Logic

The first step is to rewrite everything in terms of <:

*r—y=c — x—yY<cANxr—yz=c
cr—y>c — Y—x< —cC
cr—y>c — Y—zxr<-—cC
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Difference Logic

The first step is to rewrite everything in terms of <:

T —1Y=2=c
r—1Y=>c
T —1Y>c
r—y<c

—

—
—
—

r—y<cNx—y=>c
y—xr < —c
y—x < —c
r—y < c— 1 (integers)
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Difference Logic

The first step is to rewrite everything in terms of <:

*r—y==c

*r—y=>c
*r—y>c
cr—y<c

crx—y<c

I

r—y<cNANzx—yz=c
y—xr < —c
=1 = =

r—y < c— 1 (integers)
r—y <c—9 (reals)
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Difference Logic

Now we have a conjunction of literals, all of the form
r—1y < c.

From these literals, we form a weighted directed graph with a
vertex for each variable.

For each literal z — y < ¢, there is an edge z — .

The set of literals is satisfiable iff there is no cycle for which
the sum of the weights on the edges is negative.

There are a number of efficient algorithms for detecting
negative cycles in graphs [CG96].
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Example: Q)F_IDL

T—Y=dNz—y>22Nz—xz>2Nw—x=2 AN z—w<0
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Example: Q)F_IDL

T—Y=dNz—y>22Nz—xz>2Nw—x=2 AN z—w<0

T—Y=205
z2—y > 2
Z—T > 2
w—T =2
z—w <0
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Example: Q)F_IDL

T—Y=9dNz—y>22Nz—xz>2 Nw—z2z=2 N 2—w<0

rT—Yy=209
z—y = 2
z2—T>2 =
w—T =2
z—w <0
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Example: Q)F_IDL

T—Y=9dNz—y>22Nz—xz>2 Nw—z2z=2 N 2—w<0

T —1Y =295 r—yYy<dANy—x2z< -9
z2—1y = 2 y—z2 < =2
z—x>2 = x—2<-=-3
w—x =2 w—T<2N1r—w< =2

z—w <0 z—w < —1
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Example: Q)F_IDL

VERS
A4




Roadmap

Theory Solvers

* Examples of Theory Solvers
* Combining Theory Solvers
* Extending Theory Solvers for SMT

ICCAD 2009 Tutorial — p. 31/78



Combining Theory Solvers

Theory solvers become much more useful if they can be used
together.

muz_sel = 0 — mux_out = select(regfile, addr)
mux_sel =1 — mux_out = ALU (alu0, alul)

For such formulas, we are interested in satisfiability with
respect to a combination of theories.

Fortunately, there exist methods for combining theory solvers.
The standard technique for this is the Nelson-Oppen
method [NO79, TH96].
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The Nelson-Oppen Method

The Nelson-Oppen method is applicable when:

1. The theories have no shared symbols (other than
equality).
2. The theories are stably-infinite.

A theory T is stably-infinite if every T-satisfiable
guantifier-free formula is satisfiable in an infinite
model.

3. The formulas to be tested for satisfiability are
quantifier-free

Many theories fit these criteria, and extensions exist in some
cases when they do not.
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The Nelson-Oppen Method

Suppose that T and 715 are theories and that Sat; is a theory
solver for T -satisfiability and Sat, for T -satisfiability.

We wish to determine if ¢ is T} U T5-satisfiable.

1. Convert ¢ to its separate form ¢, N ¢-.
2. Let S be the set of variables shared between ¢; and ¢,.

3. For each arrangement A of S:
(a) Run Sat; on ¢; U A.
(b) Run Sat, on ¢2 U A.
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The Nelson-Oppen Method

If there exists an arrangement such that both Sat; and Sat,
succeed, then ¢ is T7 U T5-satisfiable.

If no such arrangement exists, then ¢ is 77 U T5-unsatisfiable.
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Example

Consider the following QF_U F LI A formula:

p=1<z N x<2 A flz)# f(1) N flz)# f(2).
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Example

Consider the following QF_U F LI A formula:

p=1<z N x<2 A flz)# f(1) N flz)# f(2).

We first convert ¢ to a separate form:

ovr = f(z) # fly) N flz)# f(2)
dria=1<zxz AN 2<2 Ny=1 A z2=2

The shared variables are {x,y, z}. There are 5 possible
arrangements based on equivalence classes of z, y, and z.
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Example

our = f(z) # fly) N fz)# f(2)
opia=1<z AN x2<2 ANy=1 AN z2=2

1. {r=y,z=2y= 2z}
2. {z=vy,x# 2,y # 2}
3. {z #y,x =2y # 2}
4. {z#y,v#2,y=2}
5. {x #£y,x+# 2,y # 2}




Example

our = f(z) # fly) N fz)# f(2)
opia=1<z AN x2<2 ANy=1 AN z2=2

1. {x =y, = z,y = z}: inconsistent with ¢y .
2. {z=y,x# 2,y # 2}
3. {z#y,z=12y# 2}
4. {x £y, x # z,y =z}
5. {x#y,x # 2,y # 2}




Example

our = f(z) # fly) N fz)# f(2)
opia=1<z AN x2<2 ANy=1 AN z2=2

1. {x =y, = z,y = z}: inconsistent with ¢y .
2. {x =y,x # z,y # z}: inconsistent with ¢ 5.
3. {z#y,v=2yF# 2}
4. {x £y, x # z,y =z}
5. {z#y,z# 2,y # 2}
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Example

our = f(z) # fly) N flz) # f(2)
opia=1<z AN x2<2 ANy=1 AN z2=2

1. {x =y, = z,y = z}: inconsistent with ¢y .
2. {x =y,x # z,y # z}: inconsistent with ¢ 5.
3. {x £y, x = z,y # z}: inconsistent with ¢y 5.

4. {x#y,x+#2y==z}
5. {r#y,x# 2,y # 2}
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Example

our = f(z) # fly) N flz) # f(2)
opia=1<z AN x2<2 ANy=1 AN z2=2

1. {x =y, = z,y = z}: inconsistent with ¢y .
2. {x =y,x # z,y # z}: inconsistent with ¢ 5.
3. {x £y, x = z,y # z}: inconsistent with ¢y 5.
4. {x #£y,x # z,y = z}: inconsistent with ¢ 4.
5. {z #y,z# 2,y # 2}
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Example

our = f(z) # fly) N flz) # f(2)
opia=1<z AN x2<2 ANy=1 AN z2=2

1. {x =y, = z,y = z}: inconsistent with ¢y .
2. {x =y,x # z,y # z}: inconsistent with ¢ 5.
3. {x £y, x = z,y # z}: inconsistent with ¢y 5.
4. {x #£y,x # z,y = z}: inconsistent with ¢ 4.
5. {x #£y,x # 2,y # z}: inconsistent with ¢ 4.
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Example

our = f(z) # fly) N flz) # f(2)
opia=1<z AN x2<2 ANy=1 AN z2=2

1. {x =y, = z,y = z}: inconsistent with ¢y .
2. {x =y,x # z,y # z}: inconsistent with ¢ 5.
3. {x £y, x = z,y # z}: inconsistent with ¢y 5.

4. {x #£y,x # z,y = z}: inconsistent with ¢ 4.
5. {x #£y,x # 2,y # z}: inconsistent with ¢ 4.

Therefore, ¢ is unsatisfiable.
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Roadmap

Theory Solvers

* Examples of Theory Solvers
* Combining Theory Solvers
* Extending Theory Solvers for SMT
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Desirable Characteristics of Theory Solvers

Theory solvers must be able to determine whether a
conjunction of literals is satisfiable.

However, in order to integrate a theory solver into a modern
SMT solver, it is helpful if the theory solvers can do more.
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Desirable Characteristics of Theory Solvers

Some desirable characterstics of theory solvers include:

* Incrementality - easy to add new literals or backtrack to a
previous state

* [ayered/Lazy - able to detect simple inconsistencies
quickly, able to detect difficult inconsistencies eventually

* Equality Propagating - If theory solvers can detect when
two terms are equivalent, this greatly simplifies the
search for a satisfying arrangement
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Desirable Characteristics of Theory Solvers

Some desirable characterstics of theory solvers include:

* Model Generating - When reporting satisfiable, the theory
solver also provides a concrete value for each variable or
function symbol

* Proof Generating - When reporting unsatisfiable, the
theory solver also provides a checkable proof

* Interpolant Generating - If ¢ A\ —) is unsatisfiable, find a
formula o containing only symbols appearing in both ¢
and v such that:

° ¢ A -« IS unsatisfiable
° a A —p is unsatisfiable
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Lazy SMT

Theory solvers check the satisfiability of conjunctions of
literals.

What about more general Boolean structure?

What is needed is a combination of Boolean reasoning and
theory reasoning.

The eager approach to SMT does this by encoding theory
reasoning as a Boolean satisfiability problem.

Here, | will focus on the lazy approach in which both a
Boolean engine and a theory solver work together to solve
the problem [dMRS02, BDS02a].
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The architecture of Lazy SMT

. Separate ¢into ¢T,and ¢

. Abst .. .
' Chec Caveat: This is a very high

¢ un level sketch that abstracts
fca many details. SMT papers | <olver

f all Will not explain it in this way.

. Try another SAT assighnment for [qbs]a and go to 5,
if there are none, then done (@ UNSAT)

ula @




The architecture of Lazy SMT

. Separate ¢into ¢T,and ¢

. Abstract the result to a propositional formula ¢,
. Check®q for SAT

f UNSAT, then done ( ¢ UNSAT)

f SAT, then check ¢T,L- A [¢s]awith theory solver
f alloT, are SAT, then done (¢ SAT)

. Try another SAT assighnment for [qbs]a and go to 5,
if there are none, then done (@ UNSAT)




Separating a formula

Recall the formula
L<zAz<2Af(z)# f(1)Af(z)# f(2)

We separate it as follows

our = [(z) # f(y) A f(z) # [(2)
Oria=1<axANx<2ANy=1ANz=2

Os =T =YANT=2NYy==2

So the original formula is

OUF N Prra N @s



Abstracting a formula

Take each unique conjunct and represent it as a
propositional variable

So

our = f(x) # f(y) N f(x) # f(2)
becomes

¢ur = a b

where, for example,

a= f(r)# f(y)



Arrangements

When the abstracted formula is SAT we have an
assignment to the propositional variables

The abstracted version of
Os =T =YANT=2NYy=2=2
becomes

Dsla =gANh AT
and in a SAT assighment we may have g, —h, 1

rT=YNTF2NYF=2



OUF.LIA....

L

separate formula I

Our N drra N ¢s

abstract

Pa

SAT

e L L R check -----------------

¢UF /\ LIA /\ \
Solver | Solver |
I I [
I I I
- SAT | |
[ [ q I
, - assignment :
[ il il
' - ' |
I equalities I I
f . |

|
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
L

> UNSAT

SAT



QUF,LIA,...

I separate formula I

Arre N he v 0 N A~
Lots of very interesting
detail in a real SMT UNSAT

., Solver. They are the

s future of automated
reasoning, so they are ST
worth studying Q> sar

equalities



QUF.LIA,...
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W
W
W

For symbolic execution ...

nat do the path conditions look like?
nat different theories are involved?

nat is the most restrictive theory possible?

Do path conditions vary with the program?

Can we determine, for a program what
theories are needed?

Can we extend an SMT solver with a solver for
those theories?



