
THE MODEL CHECKER SPIN

Shin Hong, KAIST 17th April,2007

1/33
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Contents

 Introduction

 PROMELA

 Linear Temporal Logic

 Automata-theoretic software verification

 Example : Simple Elevator

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 2

 SPIN is a software system to verify
asynchronous process system model.

3
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 Software have taken big portion of system.

 These software should fulfill its responsibility.

Failure of System Software might be a disaster.
4

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 To avoid software system failure,

 We want to prove correctness of a system
software.

→Verification of software is needed.

5
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction

 Testing
 Operate the program in some representative situation

and verify whether it behaves as expected.

 Dictum of Dijkstra

“ Program testing can be used to show the presence of
bugs, but never to show their absence. ”

 Model Checking

 Describing a system as an FSM and verifying
whether the system’s behavior satisfies the
desired properties.

6
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Peterson’s mutex

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 7

2 processes
3 processes

4 processes

http://www.pst.ifi.lmu.de/~hammer/statespaces/pet
erson/index.html

Introduction

 We want to prove correctness of system software .

 Concurrency
→ concurrent software may involve asynchrony.

→ Extremely complex.

 Embedded System
→Completeness of verification is needed.

Model checking is more suitable for
verification of system software.

8
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 Model Checking

 Requirements System

↓modeling languages ↓

 Requirements properties System model

Model Checking
(State Exploration)

Okay Counterexample

Satisfied
Not satisfied

9
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 Model Checking

 Requirements System

↓ ↓

 Requirements properties System model

Model Checking
(State Exploration)

Okay Counterexample

Satisfied
Not satisfied

State Explosion

10
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction

 SPIN is designed to provide

 An intuitive, program-like notation for specifying

design choices unambiguously without

implementation detail.

 Powerful, concise, notation for expressing
general correctness requirements.

 Scalability : Reduce limitation of problem size,
machine memory size, maximum runtime.

11
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 Model Checker SPIN

 Requirements System

↓Linear Temporal Logic ↓ PROMELA

 Requirements properties System model

Model Checking
(State Exploration)

Okay
Counterexample

Satisfied Not satisfied

On-the-fly verification
Negative Claim
Algorithms

12
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

PROMELA (1/5)

 Process Meta Language

 Describes the behavior of systems of
potentially interacting processes.

 Processes , Objects, Message channels

13
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

PROMELA (2/5)

 Process

 Is instantiations of ‘proctype’

 defines behavior of system.

 is consisted of declaration+statements

 Data Object

 Basic data types : bool, byte, mtype, pid, int, etc.

 Two levels of scope only : Global and Process local

 Data structure using ‘typedef’

 Array

14
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

PROMELA (3/5)

 Message channels

 model the exchange of data between processes

 declared by ‘chan’ .

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 15

PROMELA (4/5)

 Statements

 Assignments and Expressions

 Deterministic steps

 Non-deterministic steps

 Selection

 Repetition

 I/O

 Communication

 Message channel

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 16

PROMELA (5/5)
chan STDIN ;

proctype Euclid(int x, y){

do

:: (x > y) -> x = x – y

:: (x < y) -> y = y – x

:: (x == y) -> goto done

do ;

done:

printf(“answer: %d\n”, x) }

init {

int a , b ;

STDIN?a ; STDIN?b;

run Euclid(a,b)}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 17

Message channel & Standard Input
Creating process
Repetition
Selection

Standard output

Declaration of data objects
Communication through channel
Instantiate a proctype

Automata-Theoretic Software Verification

Linear Temporal Logic (1/3)
 Fixed set of atomic formulas and temporal

connectives.

 Syntax

Φ ::= T | F | p | ! Φ | Φ^ Φ | Φ∨Φ | X Φ| ΦU Φ

18
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

Linear Temporal Logic (2/3)
an infinite word ξ=x0x1… over alphabet P(Prop)

ξ |= q iff q∈x0, for q∈P,

ξ |= ! Φ iff not ξ |= Φ,

ξ |= Φ1^ Φ2 iff ξ |= Φ1 and ξ |= Φ2

ξ |= Φ1∨Φ2 iff ξ |= Φ1 or ξ |= Φ2

ξ |= XΦ iff ξ1 |= Φ

ξ |= Φ 1UΦ2

iff there is an i≥0 s.t. ξi|= Φ 2 and ξj|= Φ 1 for all 0 ≤ j < i

19
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

Linear Temporal Logic (3/3)

 Safety Property

 Liveness Property

20
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

Finite State Program

 P = (Q, q0, R, V)

 Q : a finite set of states.

 q 0 : initial state

 R ⊆Q X Q : accessibility relation,

allowing non-determinism.

Assume that R is total so that a terminate
d execution as repeating forever its last st
ate.

 V : Q → P(Prop)

21
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

Büchi automaton
A generalized Büchi automaton A = (Σ, Q, Q0, ρ , F)

where

 Σ : alphabet

 Q : a finite set of states,

 Q0⊆Q : initial states

 ρ ⊆ Q X Σ X Q : transition relation

 F⊆ P(P(Q)) : a set of sets of accepting states.

An accepting execution σ is an execution such that

for each acceptance set Fi∈F, there exists at least one
state q∈Fi that appears infinitely often in σ.

22
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

A finite state program P=(W,w0,R,V) can be viewed

as a Büchi automaton

Ap=(∑,W,{w0}, ρ,W) where ∑=P(Prop)

s’∈ρ(s,a) iff s →s’ and a=V(s)

Any infinite run of the automaton is accepting

23
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

 Global reachability graph : Asynchronous
product of processes

 Requirement properties

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 24/34

Automata-Theoretic Software Verification

 For a finite-state program P and LTL formula Ψ ,

 There exists a Büchi automaton A Ψ that accept
exactly the computations satisfying ψ.

 The verification problem is to verify that all
infinite words accepted by the automaton AP

satisfy the formula Ψ.

 Lω(AP)⊆L ω (AΨ) ~ L ω (AP) ∩ L ω(￢A Ψ) = {}

25
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

L ω (A) = L ω (A1) ∩ L ω(A 2)
let A1=(Σ,Q1,Q0

1,ρ1,F1),A2=(Σ,Q2, Q0
2,ρ2,F2)

Let A=(Σ,Q1,Q0,ρ,F) where

Q=Q1XQ2X{1,2} , Q0=Q0
1XQ0

2X{1},F=F1XQ2X{1}

(q ’, t’, j)∈ρ((q,t,i),a) if s’∈ρ1(q,a), t’∈ρ2(q,a)and i=j

unless i=1 and q∈F1, in which case j=2

or i=2 and t∈F2, in which case j=1.

The acceptance condition guarantee that both tracks visit
accepting state infinitely often if and only if it goes
infinitely often through F1XQ2X{1}.

26
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Simple Elevator

 3 floor, 1 elevator

 The elevator goes up until 3rd floor and then
goes down until 1st floor.

 Each floor has its door to elevator. Each door
may open when elevator is at the same floor.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 27

3rd floor

2nd floor

1st floorElevator

door3

door2

door1
from “System and Software Verification”
by B’erard et al

Simple Elevator

 3 floor, 1 elevator

 The elevator goes up until 3rd floor and then
goes down until 1st floor.

 Each floor has its door to elevator. Each door
may open when elevator is at the same floor.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 28

3rd floor

2nd floor

1st floor

Elevator

door3

door1

door2

Simple Elevator

 3 floor, 1 elevator

 The elevator goes up until 3rd floor and then
goes down until 1st floor.

 Each floor has its door to elevator. Each door
may open when elevator is at the same floor.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 29

3rd floor

2nd floor

1st floor

Elevator

door2

door1

door3

Simple Elevator::C

#define OPENED 1

#define CLOSED 1

sem_t openclosedoor[3] ;

static byte whatfloor ;

static byte doorisopen[3] ;

void door(byte floor)

{

while(1) {

sem_acquire(openclosedoor[floor-1]) ;

doorisopen[floor-1] = OPENED ;

doorisopen[floor-1] = CLOSED ;

sem_release(openclosedoor[floor-1]) ;

}

}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 30

void elevator()
{

byte floor = 1 ;

while(1) {
if ((rand() % 2) == 0) {

if (floor != 3) floor++ ;
else if (floor != 1) floor-- ;

}
else {

sem_release(openclosedoor[floor-1]) ;
sem_acquire(openclosedoor[floor-1]) ;

}
}

}

Simple Elevator::C
byte args[3] ;

void main()

{

int i ;byte * temp ; pid_t pid ;

sem_init(openclosedoor[0], 0) ;

sem_init(openclosedoor[1], 0) ;

sem_init(openclosedoor[2], 0) ;

for (i = 0 ; i < 3 ; i++) {

args[i] = I ;

pid = thread_create(door, &(args[i])) ;

thread_join(pid) ;

}

}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 31

Simple Elevator::PROMELA

bit doorisopen[3] ;

chan openclosedoor=[0] of {byte, bit}

proctype door(byte i)

{

do

:: openclosedoor?eval(i), 1 ;

doorisopen[i-1] = 1 ;

doorisopen[i-1] = 0 ;

openclosedoor!i,0

od

}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 32

proctype elevator()
{

byte floor = 1 ;
do
:: (floor != 3) -> floor++
:: (floor != 1) -> floor—
:: openclosedoor!floor,1 ;

openclosedoor?eval(floor),0;
do

}

init {
atomic{

run door(1) ; run door(2) ;
run door(3) ; run elevator() ;

}
}

Simple Elevator::Verification
 assert(

doorisopen[i-1]&&!doorisopen[i%3]&&!doorisopen[(i+1)%3]);

#define open1 doorisopen[0] #define open2 doorisopen[1]

#define open3 doorisopen[2] #define close1 !doorisopen[0]

#define close2 !doorisopen[1] #define close3 !doorisopen[2]

 [](open1 -> X closed1)

 [](open2 -> X closed2)

 [](open3 -> X closed3)

 <>(open1 || open2 || open3)

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 33

Further Reading

 ω-language

 Partial order reduction

 Memory management technique in SPIN

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 34

References

[1] The Model Checker SPIN, G.J.Holtzmann.

[2] The SPIN model checker, G.J.Holtzmann.

[3] Systems and Software Verification, Berard et al.

[4] Simple On-the-fly automatic verification of Linear temporal logic,
Vardi et al.

[5] An Automata-Theoretic Approach to Linear Temporal Logic,
M.Y.Vardi.

[6] Moonzoo Kim’s lecture notes on CS750 Fall2006, CS KAIST.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 35

Discussion

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 36

