THE MODEL CHECKER SPIN

Shin Hong, KAIST 17t April, 2007

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 1/33

Contents

* Introduction

= PROMELA

» Linear Temporal Logic

» Automata-theoretic software verification

= Example : Simple Elevator

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 2

= SPIN is a software system to verify
asynchronous process system model.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 3

Introduction

= Software have taken big portion of system.
* These software should fulfill its responsibility.

The [lodel Checker SPIN
f 4

Introduction

= To avoid software system failure,

= We want to prove correctness of a system
software.

—> Verification of software is needed.

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 5

Introduction

= Testing

Operate the program in some representative situation
and verify whether it behaves as expected.

Dictum of Dijkstra

“ Program testing can be used to show the presence of
bugs, but never to show their absence. ”

= Model Checking

Describing a system as an FSM and verifying
whether the system’s behavior satisfies the
desired properties.

The Model Checker SPIN
Hong, Shin@PSWLab, CS, KAIST 6

4 processes, BH043 states:

4 processes

’M Peterson’s mutex

2 processes
3 processes

assert(ncrit =
nerit--:

flag[_pid] = 0: *'§
goto again;

The Model Checker SPIN
Hong Shin@PSWLab CS. KAIST http://www.pst.ifi.Imu.de/~hammer/statespaces/pet
1 121

erson/index.html

Introduction

= We want to prove correctness of system software .

Concurrency

— concurrent software may involve asynchrony.
— Extremely complex.

Embedded System

— Completeness of verification is needed.

> Model checking is more suitable for
verification of system software.

The Model Checker SPIN
Hong, Shin@PSWLab, CS, KAIST 8

Introduction
= Model Checking

Requirements System
! modeling languages l

Requirements properties System model

Model Checking
(State Exploration)

Satisfied .
/ \\Iot satisfied

Okay Counterexample

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST S

Introduction
= Model Checking

Requirements System

l I

Requirements properties System model

Model Checking
(State Exploration)

Satisfied
/ \\Iot satisfied

Okay Counterexample

State Explosion

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 10

Introduction
= SPIN is designed to provide

An intuitive, program-like notation for specifying
design choices unambiguously without
implementation detail.

Powerful, concise, notation for expressing
general correctness requirements.

Scalability : Reduce limitation of problem size,
machine memory size, maximum runtime.

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 11

Introduction
= Model Checker SPIN

Requirements System
| Linear Temporal Logic | PROMELA
Requirements properties System model

On-the=fy Vercation Model Checking
Negative @aim (State Exploration)

Algortims
\\lot satisfied

Counterexample

Okay

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 12

PROMELA (1/5)

* Process Meta Language

= Describes the behavior of systems of
potentially interacting processes.

* Processes, Objects, Message channels

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 13

PROMELA (2/5)

" Process
s instantiations of ‘proctype’
defines behavior of system.
is consisted of declaration+statements

= Data Object
Basic data types : bool, byte, mtype, pid, int, etc.
Two levels of scope only : Global and Process local

Data structure using ‘typedef
Array

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 14

PROMELA (3/5)

= Message channels
model the exchange of data between processes
declared by ‘chan’ .

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 15

PROMELA (4/5)

= Statements
Assignments and Expressions
Deterministic steps
Non-deterministic steps
Selection
Repetition
/O

= Communication

Message channel

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 16

PROMELA (5/5)

chan STDIN;; Message channel & Standard Input
proctype Euclid(int %, y){ Creating process
do Repetition
Selection

m(X>Y)->X=X-Yy
(X<y)->y=y—X
:: (x ==y) -> goto done
do;

done:
printf(*answer: %d\n”, x) } Standard output

init §
inta,b;
STDIN?a ; STDIN?b;
run Euclid(a,b)}

Declaration of data objects
Communication through channel
Instantiate a proctype

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 17

Automata-Theoretic Software Verification

Linear Temporal Logic (1/3)
* Fixed set of atomic formulas and temporal
connectives.

= Syntax
O:=T|F|p|!D [PAD|OVOD|XD|OUD

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

18

Automata-Theoretic Software Verification

Linear Temporal Logic (2/3)

an infinite word &=x_x.... over alphabet P(Prop)

El=qiff g=xo, forq &P,

El=1D iff not&|=0,

&=, NP, iff§ =0 and & |=0,
=0,V O, iff =P, oré|=0,
El=XO iffE =

&= ,Ud,

itff thereisanizo s.t.§|=®, and§|=®, forallo<j<i

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

19

Automata-Theoretic Software Verification

Linear Temporal Logic (3/3)

= Safety Property
= Liveness Property

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 20

Automata-Theoretic Software Verification
Finite State Program

= P=(Q, dor R, V)
Q : a finite set of states.
q,:initial state
R & QXQ:accessibility relation,
allowing non-determinism.

Assume that R is total so that a terminate
d execution as repeating forever its last st
ate.

V:Q — P(Prop)

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 21

Automata-Theoretic Software Verification

Buchli automaton
A generalized Bichi automaton A=(2,Q, Q,, p, F)

where
=3 : alphabet
= Q : a finite set of states,
= Q. &Q : initial states

" p & QX2XQ : transitionrelation
= F & P(P(Q)) : asetofsetsof accepting states.

An accepting execution o is an execution such that

for each acceptance set F,€F, there exists at least one
state q&F, that appears infinitely often in o.

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 22

Automata-Theoretic Software Verification

A finite state program P=(W,w_,R,V) can be viewed
as a Buchi automaton
A=(2,W,iw,}, p,W) where 3=P(Prop)
s'&p(s,a) iff s >s" and a=V(s)

=>» Any infinite run of the automaton is accepting

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 23

Automata-Theoretic Software Verification

» Global reachability graph : Asynchronous
product of processes

= Requirement properties

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 24/34

Automata-Theoretic Software Verification

= For afinite-state program P and LTL formula ¥,

= There exists a Buchi automaton Athat accept
exactly the computations satisfying .

= The verification problem is to verify that all
infinite words accepted by the automaton A,
satisfy the formula V.

" LA SL,(Ay) ~ Ly(Ap) NL(—A)=8

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 25

Automata-Theoretic Software Verification

L A =L ,(A)NL_A,)

etA =(2,Q,Q°,p,F,)A2=(2,Q,,Q°,p,,F,)
Let A=(2,Q,,Q° p,F) where

Q=Q,XQ,X{1,2}, Qo=Q° XQ°_ X{1},F=F XQ,X{a}

(Q", ¥, NEp(qt)a)if s'Sp.(q,a), t' Ep,(g,a)and is]
unlessi=1and q&F_, in which case j=2

or i=2 and t&F,_, in which case j=1.

The acceptance condition guarantee that both tracks visit
accepting state infinitely often if and only if it goes
infinitely often through F_XQ_,X{a}.

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 26

Simple Elevator

= 3 floor, 1 elevator

= The elevator goes up until 3" floor and then

goes C

» Eachf
may o

The Model Checker SPIN

own until 15t floor.

oor has its door to elevator. Each door

hen when elevator is at the same floor.

from “System and Software Verification”
by B'erard et al

Hong,Shin@PSWLab,CS,KAIST 27

Simple Elevator

= 3 floor, 1 elevator

= The elevator goes up until 3" floor and then
goes down until 15t floor.

» Each floor has its door to elevator. Each door
may open when elevator is at the same floor.

The Model Checker SPIN
Hong, Shin@PSWLab,CS,KAIST 28

Simple Elevator

= 3 floor, 1 elevator

= The elevator goes up until 3" floor and then
goes down until 15t floor.

» Each floor has its door to elevator. Each door
may open when elevator is at the same floor.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 29

Simple Elevator::C

#define OPENED 1
#define CLOSED 1

sem_t openclosedoor[3];
static byte whatfloor;
static byte doorisopen[3];

void door(byte floor)
{
while(a) §
sem_acquire(openclosedoor[floor-1]);
doorisopen[floor-1] = OPENED ;
doorisopen([floor-1] = CLOSED;

sem_release(openclosedoor([floor-1]);

}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

void elevator()

{

byte floor =1;

while(a) §
if (rand() % 2)==0)§
if (floor !=3) floor++;
else if (floor !=1) floor--;
}
else §
sem_release(openclosedoor([floor-1]);
sem_acquire(openclosedoor[floor-1]);

}
}

30

Simple Elevator::C

byte args[3];

void main()

{
inti;byte *temp; pid_t pid;
sem_init(openclosedoor([o], 0);
sem_init(openclosedoor[1], 0) ;
sem_init(openclosedoor[2], 0);

for(i=o;i<3;i++){
args[i] =1;
pid = thread_create(door, &(args[i])) ;
thread_join(pid);

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 31

Simple Elevator: :PROMELA

proctype elevator()

bit doorisopen([3];)
chan openclosedoor=[o0] of {byte, bit} byte floor=1;
do
:: (floor '=3) -> floor++
proctype door(byte i) :: (floor !=1) -> floor—
{ :: openclosedoorl!floor,1;
; openclosedoor?eval(floor),o;
0 do
:: openclosedoor?eval(i), 1; 5
doorisopen[i-1]=1; init {
doorisopenli-1]=0; atomic{

run door(a) ; run door(2) ;

openclosedoorl!i,o
Y ! run door(3) ; run elevator() ;

od 3
! }

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 32

Simple Elevator::Verification

= assert(

doorisopen(i-1]&&!doorisopen[i%3]&&!doorisopen([(i+1)%3]);

#define openi doorisopen[o] #define open2 doorisopen[1]
#define open3 doorisopen[2] #define closea !doorisopen([o]

#define close2 !doorisopen[i] #define close3 !doorisopen[2]

= []J(openi->Xclosedi)
= [](openz ->X closed2)

= [](open3 ->X closedy)

= <>(openi|| openz || open3)

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 33

Further Reading

* w-language
= Partial order reduction
= Memory management technique in SPIN

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 34

References

[1] The Model Checker SPIN, G.J.Holtzmann.
[2] The SPIN model checker, G.J.Holtzmann.
[3] Systems and Software Verification, Berard et al.

[4] Simple On-the-fly automatic verification of Linear temporal logic,
Vardi et al.

[5] An Automata-Theoretic Approach to Linear Temporal Logic,
M.Y.Vardi.

[6] Moonzoo Kim’s lecture notes on CS750 Fall2006, CS KAIST.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 35

Discussion

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

