
THE MODEL CHECKER SPIN

Shin Hong, KAIST 17th April,2007

1/33
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Contents

 Introduction

 PROMELA

 Linear Temporal Logic

 Automata-theoretic software verification

 Example : Simple Elevator

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 2

 SPIN is a software system to verify
asynchronous process system model.

3
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 Software have taken big portion of system.

 These software should fulfill its responsibility.

Failure of System Software might be a disaster.
4

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 To avoid software system failure,

 We want to prove correctness of a system
software.

→Verification of software is needed.

5
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction

 Testing
 Operate the program in some representative situation

and verify whether it behaves as expected.

 Dictum of Dijkstra

“ Program testing can be used to show the presence of
bugs, but never to show their absence. ”

 Model Checking

 Describing a system as an FSM and verifying
whether the system’s behavior satisfies the
desired properties.

6
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Peterson’s mutex

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 7

2 processes
3 processes

4 processes

http://www.pst.ifi.lmu.de/~hammer/statespaces/pet
erson/index.html

Introduction

 We want to prove correctness of system software .

 Concurrency
→ concurrent software may involve asynchrony.

→ Extremely complex.

 Embedded System
→Completeness of verification is needed.

Model checking is more suitable for
verification of system software.

8
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 Model Checking

 Requirements System

↓modeling languages ↓

 Requirements properties System model

Model Checking
(State Exploration)

Okay Counterexample

Satisfied
Not satisfied

9
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 Model Checking

 Requirements System

↓ ↓

 Requirements properties System model

Model Checking
(State Exploration)

Okay Counterexample

Satisfied
Not satisfied

State Explosion

10
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction

 SPIN is designed to provide

 An intuitive, program-like notation for specifying

design choices unambiguously without

implementation detail.

 Powerful, concise, notation for expressing
general correctness requirements.

 Scalability : Reduce limitation of problem size,
machine memory size, maximum runtime.

11
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Introduction
 Model Checker SPIN

 Requirements System

↓Linear Temporal Logic ↓ PROMELA

 Requirements properties System model

Model Checking
(State Exploration)

Okay
Counterexample

Satisfied Not satisfied

On-the-fly verification
Negative Claim
Algorithms

12
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

PROMELA (1/5)

 Process Meta Language

 Describes the behavior of systems of
potentially interacting processes.

 Processes , Objects, Message channels

13
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

PROMELA (2/5)

 Process

 Is instantiations of ‘proctype’

 defines behavior of system.

 is consisted of declaration+statements

 Data Object

 Basic data types : bool, byte, mtype, pid, int, etc.

 Two levels of scope only : Global and Process local

 Data structure using ‘typedef’

 Array

14
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

PROMELA (3/5)

 Message channels

 model the exchange of data between processes

 declared by ‘chan’ .

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 15

PROMELA (4/5)

 Statements

 Assignments and Expressions

 Deterministic steps

 Non-deterministic steps

 Selection

 Repetition

 I/O

 Communication

 Message channel

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 16

PROMELA (5/5)
chan STDIN ;

proctype Euclid(int x, y){

do

:: (x > y) -> x = x – y

:: (x < y) -> y = y – x

:: (x == y) -> goto done

do ;

done:

printf(“answer: %d\n”, x) }

init {

int a , b ;

STDIN?a ; STDIN?b;

run Euclid(a,b)}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 17

Message channel & Standard Input
Creating process
Repetition
Selection

Standard output

Declaration of data objects
Communication through channel
Instantiate a proctype

Automata-Theoretic Software Verification

Linear Temporal Logic (1/3)
 Fixed set of atomic formulas and temporal

connectives.

 Syntax

Φ ::= T | F | p | ! Φ | Φ^ Φ | Φ∨Φ | X Φ| ΦU Φ

18
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

Linear Temporal Logic (2/3)
an infinite word ξ=x0x1… over alphabet P(Prop)

ξ |= q iff q∈x0, for q∈P,

ξ |= ! Φ iff not ξ |= Φ,

ξ |= Φ1^ Φ2 iff ξ |= Φ1 and ξ |= Φ2

ξ |= Φ1∨Φ2 iff ξ |= Φ1 or ξ |= Φ2

ξ |= XΦ iff ξ1 |= Φ

ξ |= Φ 1UΦ2

iff there is an i≥0 s.t. ξi|= Φ 2 and ξj|= Φ 1 for all 0 ≤ j < i

19
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

Linear Temporal Logic (3/3)

 Safety Property

 Liveness Property

20
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

Finite State Program

 P = (Q, q0, R, V)

 Q : a finite set of states.

 q 0 : initial state

 R ⊆Q X Q : accessibility relation,

allowing non-determinism.

Assume that R is total so that a terminate
d execution as repeating forever its last st
ate.

 V : Q → P(Prop)

21
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

Büchi automaton
A generalized Büchi automaton A = (Σ, Q, Q0, ρ , F)

where

 Σ : alphabet

 Q : a finite set of states,

 Q0⊆Q : initial states

 ρ ⊆ Q X Σ X Q : transition relation

 F⊆ P(P(Q)) : a set of sets of accepting states.

An accepting execution σ is an execution such that

for each acceptance set Fi∈F, there exists at least one
state q∈Fi that appears infinitely often in σ.

22
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

A finite state program P=(W,w0,R,V) can be viewed

as a Büchi automaton

Ap=(∑,W,{w0}, ρ,W) where ∑=P(Prop)

s’∈ρ(s,a) iff s →s’ and a=V(s)

Any infinite run of the automaton is accepting

23
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

 Global reachability graph : Asynchronous
product of processes

 Requirement properties

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 24/34

Automata-Theoretic Software Verification

 For a finite-state program P and LTL formula Ψ ,

 There exists a Büchi automaton A Ψ that accept
exactly the computations satisfying ψ.

 The verification problem is to verify that all
infinite words accepted by the automaton AP

satisfy the formula Ψ.

 Lω(AP)⊆L ω (AΨ) ~ L ω (AP) ∩ L ω(￢A Ψ) = {}

25
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Automata-Theoretic Software Verification

L ω (A) = L ω (A1) ∩ L ω(A 2)
let A1=(Σ,Q1,Q0

1,ρ1,F1),A2=(Σ,Q2, Q0
2,ρ2,F2)

Let A=(Σ,Q1,Q0,ρ,F) where

Q=Q1XQ2X{1,2} , Q0=Q0
1XQ0

2X{1},F=F1XQ2X{1}

(q ’, t’, j)∈ρ((q,t,i),a) if s’∈ρ1(q,a), t’∈ρ2(q,a)and i=j

unless i=1 and q∈F1, in which case j=2

or i=2 and t∈F2, in which case j=1.

The acceptance condition guarantee that both tracks visit
accepting state infinitely often if and only if it goes
infinitely often through F1XQ2X{1}.

26
The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST

Simple Elevator

 3 floor, 1 elevator

 The elevator goes up until 3rd floor and then
goes down until 1st floor.

 Each floor has its door to elevator. Each door
may open when elevator is at the same floor.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 27

3rd floor

2nd floor

1st floorElevator

door3

door2

door1
from “System and Software Verification”
by B’erard et al

Simple Elevator

 3 floor, 1 elevator

 The elevator goes up until 3rd floor and then
goes down until 1st floor.

 Each floor has its door to elevator. Each door
may open when elevator is at the same floor.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 28

3rd floor

2nd floor

1st floor

Elevator

door3

door1

door2

Simple Elevator

 3 floor, 1 elevator

 The elevator goes up until 3rd floor and then
goes down until 1st floor.

 Each floor has its door to elevator. Each door
may open when elevator is at the same floor.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 29

3rd floor

2nd floor

1st floor

Elevator

door2

door1

door3

Simple Elevator::C

#define OPENED 1

#define CLOSED 1

sem_t openclosedoor[3] ;

static byte whatfloor ;

static byte doorisopen[3] ;

void door(byte floor)

{

while(1) {

sem_acquire(openclosedoor[floor-1]) ;

doorisopen[floor-1] = OPENED ;

doorisopen[floor-1] = CLOSED ;

sem_release(openclosedoor[floor-1]) ;

}

}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 30

void elevator()
{

byte floor = 1 ;

while(1) {
if ((rand() % 2) == 0) {

if (floor != 3) floor++ ;
else if (floor != 1) floor-- ;

}
else {

sem_release(openclosedoor[floor-1]) ;
sem_acquire(openclosedoor[floor-1]) ;

}
}

}

Simple Elevator::C
byte args[3] ;

void main()

{

int i ;byte * temp ; pid_t pid ;

sem_init(openclosedoor[0], 0) ;

sem_init(openclosedoor[1], 0) ;

sem_init(openclosedoor[2], 0) ;

for (i = 0 ; i < 3 ; i++) {

args[i] = I ;

pid = thread_create(door, &(args[i])) ;

thread_join(pid) ;

}

}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 31

Simple Elevator::PROMELA

bit doorisopen[3] ;

chan openclosedoor=[0] of {byte, bit}

proctype door(byte i)

{

do

:: openclosedoor?eval(i), 1 ;

doorisopen[i-1] = 1 ;

doorisopen[i-1] = 0 ;

openclosedoor!i,0

od

}

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 32

proctype elevator()
{

byte floor = 1 ;
do
:: (floor != 3) -> floor++
:: (floor != 1) -> floor—
:: openclosedoor!floor,1 ;

openclosedoor?eval(floor),0;
do

}

init {
atomic{

run door(1) ; run door(2) ;
run door(3) ; run elevator() ;

}
}

Simple Elevator::Verification
 assert(

doorisopen[i-1]&&!doorisopen[i%3]&&!doorisopen[(i+1)%3]);

#define open1 doorisopen[0] #define open2 doorisopen[1]

#define open3 doorisopen[2] #define close1 !doorisopen[0]

#define close2 !doorisopen[1] #define close3 !doorisopen[2]

 [](open1 -> X closed1)

 [](open2 -> X closed2)

 [](open3 -> X closed3)

 <>(open1 || open2 || open3)

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 33

Further Reading

 ω-language

 Partial order reduction

 Memory management technique in SPIN

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 34

References

[1] The Model Checker SPIN, G.J.Holtzmann.

[2] The SPIN model checker, G.J.Holtzmann.

[3] Systems and Software Verification, Berard et al.

[4] Simple On-the-fly automatic verification of Linear temporal logic,
Vardi et al.

[5] An Automata-Theoretic Approach to Linear Temporal Logic,
M.Y.Vardi.

[6] Moonzoo Kim’s lecture notes on CS750 Fall2006, CS KAIST.

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 35

Discussion

The Model Checker SPIN
Hong,Shin@PSWLab,CS,KAIST 36

