
Industrial Application of Concolic Testing Approach:
A Case Study on libexif by Using CREST-BV and KLEE

Yunho Kim, Moonzoo Kim, YoungJoo Kim
CS Dept. KAIST, South Korea

kimyunho@kaist.ac.kr, moonzoo@cs.kaist.ac.kr,
jerry88.kim@gmail.com

Yoonkyu Jang
Samsung Electronics, South Korea

yoonkyu.jang@samsung.com

Abstract—As smartphones become popular, manufacturers
such as Samsung Electronics are developing smartphones with
rich functionality such as a camera and photo editing quickly,
which accelerates the adoption of open source applications
in the smartphone platforms. However, developers often do
not know the detail of open source applications, because they
did not develop the applications themselves. Thus, it is a
challenging problem to test open source applications effectively
in short time. This paper reports our experience of applying
concolic testing technique to test libexif, an open source
library to manipulate EXIF information in image files. We
have demonstrated that concolic testing technique is effective
and efficient at detecting bugs with modest effort in industrial
setting. We also compare two concolic testing tools, CREST-BV
and KLEE, in this testing project. Furthermore, we compare
the concolic testing results with the analysis result of the
Coverity Prevent static analyzer. We detected a memory access
bug, a null pointer dereference bug, and four divide-by-zero
bugs in libexif through concolic testing, none of which were
detected by Coverity Prevent.

I. INTRODUCTION

As smartphones become popular, rich features such as
a camera and photo editing are added to the smartphone
platforms. Due to high competition in the market, smart-
phone manufacturers such as Samsung Electronics should
develop smartphones with rich functions in a short time,
which accelerates the adoption of open source applications in
the smartphone platform. Although the reliability of popular
open source applications are high and field-proven by a
large number of users, there can still be uncovered flaws
in the applications. Thus, to ensure the high quality of
smartphone products, manufacturers have to test open source
applications adopted in the smartphone products in a careful
manner. However, developers do not know the detail of
open source applications, because they did not develop the
applications themselves. Testing such applications in a short
time is challenging given current industrial practice in which
developers manually generate test cases.

As a solution to this problem, we propose applying
concolic testing techniques to test open source applica-
tions. Concolic (CONCrete + symbOLIC) testing [26] (also
known as dynamic symbolic execution [28] and white-box
fuzzing [11]) combines concrete dynamic analysis and static

symbolic analysis to automatically generate test cases to
explore execution paths of a target program. However, due to
a large number of possible execution paths, concolic testing
might not detect bugs even after spending significant amount
of time. Thus, it is necessary to check if concolic testing can
detect bugs in open source applications in a practical manner
through case studies.

In this paper, we report our experience of applying
concolic testing tools to test libexif, an open-source
library to manipulate Exchangeable Image File Format
(EXIF) information in image files. libexif is adopted on
many smartphone platforms of Samsung Electronics such
as Android, Samsung Linux Platform, and Samsung Bada
platform. We have demonstrated that concolic testing tech-
nique is effective (in terms of the bug detection capability)
and efficient (in terms of the speed of test case generation)
to detect bugs in open-source applications. In addition, we
compared two popular concolic testing tools, CREST-BV(an
extended version of CREST with bit-vector (BV) support)
and KLEE, in terms of effectiveness and efficiency in this
testing project. Furthermore, we applied Coverity Prevent to
libexif and compared the result with those of CREST-
BV and KLEE. We detected one memory access bug, one
null pointer dereference bug, and four divide-by-zero bugs
in libexif by using CREST-BV and KLEE.

The organization of the paper is as follows. Section II
overviews libexif. Section III explains related work on
concolic testing tools. Section IV describes the backgrounds
of CREST-BV and KLEE. Section V overviews this testing
project. Section VI explains the testing methods we applied
to improve the bug detection capability of concolic testing.
Section VII describes the testing results by using CREST-
BV, KLEE, and Coverity Prevent. Section VIII summarizes
the lessons learned from the project. Section IX concludes
this paper with future work.

II. OVERVIEW OF LIBEXIF

libexif is an open source library to read/update/write
Exchangeable Image File Format (EXIF) [13] metainforma-
tion from and to image files [1]. libexif contains 238

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE
ICSE 2012, Zurich, Switzerland
Software Engineering in Practice

1143

functions in C (total 13,585 lines). The latest libexif was
released on Dec 2010 (version 0.6.20).

To understand libexif, we need to understand the
basic structure of an image file that contains the EXIF
metainformation. The structure of the image files is depicted
in Figure 1. The structure consists of

• a file header
• 0th image file directory (IFD) for primary image data

and its value
• EXIF IFD and its value
• GPS IFD and its value
• 1st IFD for thumbnail data and its value
• thumbnail image data
• primary image data

An IFD consists of a 2 byte counter to indicate a number of
tags in the IFD, tag arrays, and 4 byte offset to the next IFD.
Each tag consists of tag id (2 bytes), type (2 bytes), count
(i.e., a number of values) (4 bytes), and value (or offset to
the value if the value is larger than 4 bytes) (4 bytes).

Figure 1. Basic Structure of Image Files (quoted from [6])

The EXIF specification [6] defines a large number of tags
(185 pages long) for

• image data structure (image width, etc.)
• image data characteristics (gamma, etc.)
• picture-taking conditions (exposure time, etc.)

• user information (manufacturer notes, etc.)

One important tag is the manufacturer note tag that is used
for manufacturers of EXIF writers to record any desired
information; the contents are up to the manufacturer. In
other words, camera manufacturers define their own tags
(called maker note tags) such as a camera model number
and lens type and include a set of maker note tags in the
manufacturer note tag without restriction. Note that camera
manufacturers define a large number of their own maker
note tags and maker note tags are not specified in the official
EXIF specification. For example, Canon defines 400+ maker
note tags. We focus our effort to test libexif regarding
these maker note tags (see Sections V-B, VI-B and VII-B).

III. RELATED WORK

A. Concolic Testing Tools

The core idea of concolic testing is to obtain symbolic
path formulas from concrete executions and solve them to
generate test cases by using SMT solvers. Various concolic
testing tools have been implemented to realize this idea (see
[23] for a survey). We can classify the existing approaches
into the following three categories based on how they obtain
symbolic path formulas from concrete executions.

1) Static instrumentation of target programs: The con-
colic testing tools in this group instrument a source pro-
gram to insert probes that extract symbolic path formulas
from concrete executions at run-time. Many concolic testing
tools adopt this approach because it is relatively simple to
implement and, consequently, convenient when attempting
to apply new ideas in tools. In addition, it is easier to
analyze the performance and internal behavior of the tools
compared to the other approaches. In this group, CUTE [26],
DART [10], and CREST [4] operate on C programs, while
jCUTE [25] operates on Java programs.

2) Dynamic instrumentation of target programs: The
concolic testing tools in this group instrument a binary
program when it is loaded into memory (i.e., through a
dynamic binary instrumentation technique [20]). Thus, even
when the source code of a program is not available, its binary
can be automatically tested. In addition, this approach can
detect low-level failures caused by a compiler, linker, or
loader. SAGE [11] is a concolic testing tool that uses this
approach to detect security bugs in x86-binaries.

3) Instrumentation of virtual machines: The concolic
testing tools in this group are implemented as modified
virtual machines on which target programs execute. One
advantage of this approach is that the tools can exploit all
execution information at run-time, since the virtual machine
possesses all necessary information. PEX [28] targets C#
programs that are compiled into Microsoft .Net binaries,
KLEE [5] targets LLVM [18] binaries, and jFuzz [12] targets
Java bytecode on top of Java PathFinder [29], [22].

1144

B. Concolic Testing Case Studies

Concolic testing has been applied to detect bugs in
various applications such as sensor networks [24], web
applications [2], database applications [8], [21], embedded
systems [14], [15], linux command-line applications [16],
[15], etc. However, most related case studies concentrate on
the evaluation of the authors’ own techniques and do not
describe the detailed user efforts and difficulties to apply
concolic testing to real world applications. On the other
hand, we not only describe the whole process of applying
concolic testing to one real world application in detail, but
also provide test strategies to address the difficulties to apply
concolic testing to real world applications. Furthermore, we
compared CREST-BV [17] and KLEE [5] in terms of test
generation speed and the capability of detecting bugs and
also compared the concolic testing tools and a commercial
static analyzer, Coverity Prevent [3] to help practitioners to
choose an adequate tool for their project.

IV. OVERVIEW OF CREST-BV AND KLEE

We selected CREST-BV and KLEE to apply to libexif
for the following two reasons: (1) they can analyze target C
programs, and (2) since they are open source tools, we can
modify the source code to control testing experiments in a
refined manner, and analyze testing results in deep technical
level by obtaining various internal information.

A. CREST-BV

CREST-BV [17] is a concolic testing tool for C programs,
which is an extended version of CREST [4] with bit-
vector (BV) support. The original CREST supports only
linear-integer arithmetic (LIA) formulas so that non-linear
arithmetic operations in a target program cannot be analyzed
symbolically, which often causes CREST to fail to generate
test cases to reach specific branches. Therefore, to improve
the bug detection capability and branch coverage of CREST,
we have developed CREST-BV based on CREST 0.1.1 to
support bit-vector symbolic path formulas by using Z3 2.19
SMT solver [19].1 CREST-BV consists of the front-end
for instrumentation, the middle-end for symbolic execution,
and the back-end for solving the symbolic path formula
and generating a new test case. First, we develop probes
to symbolically record non-linear arithmetic operations and
extend the instrumentation engine to insert the probes at non-
linear arithmetic operations in a target program. Second, we
extend the middle-end to represent and symbolically execute
the non-linear path conditions. Finally, we extend the back-
end to translate a symbolic path formula into a bit-vector
SMT formula and solve the SMT formula with bit-level
accuracy. CREST-BV uses Z3 as a SMT solver because

1CREST-BV is a component of distributed concolic testing tool
SCORE [16]. CREST-BV can be downloaded from http://pswlab.kaist.ac.
kr/tools/crest-bv.

Yices does not support divide and modular operations in
bit-vector formulas through its API.

A concolic testing procedure can be described as follows:

1) Declaration of symbolic variables
Initially, a user must specify which variables should
be handled as symbolic variables, based on which
symbolic path formulas are constructed.

2) Instrumentation
A target source program is statically instrumented
with probes, which record symbolic path conditions
from a concrete execution path when the target pro-
gram is executed. For example, at each conditional
branch, a probe is inserted to record the branch con-
dition/symbolic path condition; then, the instrumented
program is compiled into an executable binary file.

3) Concrete execution
The instrumented binary is executed with given input
values. For the first execution, initial input values
are assigned randomly. From the second execution
onwards, input values are obtained from Step 6.

4) Obtain a symbolic path formula φi
The symbolic execution part of the concolic execution
collects symbolic path conditions over the symbolic
input values at each branch point encountered for
along the concrete execution path for a test case tci.
Whenever each statement s of the target program is
executed, a corresponding probe inserted at s updates
the map of symbolic variables if s is an assignment
statement, or collects a corresponding symbolic path
condition, c, if s is a branch statement. Thus, a
symbolic path formula φi is built at the end of the
ith execution as c1 ∧ c2... ∧ cn where cn is the last
path condition executed and ck is executed earlier than
ck+1 for all 1 ≤ k < n.

5) Generate a new symbolic path formula ψi

When a target program terminates, to obtain the next
input values, ψi is generated by negating one path
condition cj and removing subsequent path conditions
of φi (i.e., ψi = c1 ∧ c2... ∧ ¬cj). The selection of
cj depends on a search strategy of CREST-BV. If ψi

is unsatisfiable, another path condition cj′ is negated
and subsequent path conditions are removed until a
satisfiable path formula is found. If there are no further
new paths to try, the algorithm terminates.

6) Select the next input values tci+1

A constraint solver such as a Satisfiability Modulo
Theory (SMT) solver [27] generates a model that
satisfies ψi. This model determines the next concrete
input values to try (i.e., tci+1), and the concolic
testing procedure iterates from Step 3 using these input
values.

1145

B. KLEE

KLEE [5] is an open source symbolic execution tool to
automatically generate test cases. KLEE is implemented as a
modified LLVM virtual machine targeting LLVM bytecode
programs. In addition to symbolic declaration of program
variables (see Step 1 in Section IV-A), KLEE provides a
symbolic POSIX library to enable analysis of programs that
utilize environment intensively in a convenient manner. For
example, a user can test a target program with a symbolic in-
put file with a command line option --sym-files <num
of files> <max file size>. KLEE supports bit-
vector (BV) formulas and uses STP [9] as a constraint solver.

A concolic testing procedure of KLEE is as follows.
While CREST-BV builds symbolic path formulas φis from
concrete execution paths one by one, KLEE builds a sym-
bolic execution tree by forking new symbolic processes for
symbolic executions of different branching decisions. When
a symbolic process pi of KLEE interprets a conditional
LLVM instruction corresponding to if(b) ... else
..., pi creates two symbolic queries φi ∧ b and φi ∧ ¬b
(where φi is a symbolic path formula from the initial/root
instruction to the current instruction in pi) to check whether
a current execution path can proceed to the true branch
and/or the false branch by solving the queries using STP.
If only one query is satisfiable, current symbolic process pi
proceeds to execute a corresponding branch. If both queries
are satisfiable, pi proceeds to a true branch (φi is updated
with φi∧b) and forks a new symbolic child process pj , which
proceeds to a false branch (φj is updated with φi∧¬b). Since
there can be multiple symbolic processes, a KLEE’s search
strategy decides which symbolic process to proceed. KLEE
repeats this procedure until it covers all possible symbolic
execution paths. If a time limit given by a user is reached,
KLEE stops execution of all symbolic processes, and creates
test cases by solving queries for all leaves in the current
symbolic execution tree.

V. PROJECT OVERVIEW

A. Project Goal and Scope

This project was conducted to evaluate effectiveness (in
terms of the bug detection capability) and efficiency (in
terms of the speed of test case generation) of concolic
testing technique on open source applications that are used
in Samsung smartphones. We selected libexif as a tar-
get application among several open source applications in
Samsung smartphones for the following reasons:

1) We targeted open source applications written in C,
since such applications can be used for multiple smart-
phone platforms including Samsung Bada OS, Sam-
sung Linux Platform (SLP), and Android, thus max-
imizing the benefits of the improved quality through
bug detection.

2) We excluded applications that contain heavy floating
point arithmetic operations, since branches of condi-
tional statements that contain floating point arithmetic
operations may not be covered completely. This is
because most SMT solvers do not solve path formulas
containing floating point arithmetic operations.

We focused on detecting the following run-time failure
bugs that cause a target program to crash.

• Divide-by-zero bugs:
Although divide-by-zero bugs can be detected with-
out explicit assert statements, we mechanically added
assert(<denominator>!=0) right before the
statements containing division operators whose denom-
inators are not constant. This is because these assert
statements increase the probability of detecting the
divide-by-zero bugs by forcing a concolic testing tool to
generate test inputs that make the denominator variables
zero to exercise false branches of the assert statements.

• Null pointer dereference bugs:
This bug is one of the main causes to crash a target
program. Unlike divide-by-zero, we did not add assert
statements such as assert(<pointer>!=NULL)
because current concolic testing tools cannot analyze
pointer variables symbolically, thus do not generate test
inputs that make the pointer variables null.

• Out-of-bound memory access bugs:
Out-of-bound memory access crashes a target program
with high probability, although this violation may not
always crash a target program.

The primary reason to concentrate on these run-time
failure bugs is that these bugs can disable normal operations
of smartphones and damage the user experience severely.
Another reason is that these run-time failure bugs can be
detected conveniently without manually inserting explicit
assert statements. It takes a large amount of time for human
engineers to understand detailed functionalities of libexif
and manually define/insert corresponding assert statements
to check the correctness of the functionalities.

For the testing experiments, one graduate student and one
engineer of Samsung Electronics took five days to apply
KLEE and CREST-BV to libexif to detect the run-
time failure bugs, not including exploratory experiments and
time taken to modify KLEE and CREST-BV for the testing
experiments.

B. Testing Target and Testing Environment

We selected test-mnote.c in libexif as a main
target program to test. test-mnote.c reads an image file
as an input and exercises many functionalities of libexif
including read/write of EXIF data from and to the image file,
creation/initialization of a libexif parser, manipulations
of EXIF data and so on. test-mnote.c calls 206 func-
tions among total 238 functions in libexif. Furthermore,

1146

test-mnote.c focuses to test a portion of libexif
code that handles maker note tags, which seems less reliable
compared to other parts of libexif, since maker note tags
are defined in an ad-hoc manner by camera manufacturers
(see Section II).

All experiments were performed on 64 bit Fedora Linux
9 equipped with a 3.6 GHz Core2Duo processor and 16
gigabytes of memory. For the testing experiments, we
used CREST-BV with Z3 2.19 SMT solver and KLEE
rev.136605 [5]. KLEE supports bit-vector formulas and
uses STP rev.1398 [9]. In these series of experiments,
we measured the branch coverage via gcov by executing
test-mnote.c on the generated test cases.

VI. TESTING METHODS

The number of feasible execution paths of a target pro-
gram is very large even for a small program due to loops.
For example, if each execution path consists of 100 branch
conditions on average, in theory, there can be 1.26×1030(=
2100) execution paths to analyze. Consequently, a concolic
testing tool can analyze only a small subset of the entire
execution paths in practice. Therefore, we have to develop
testing strategies to focus on a set of execution paths that
may expose symptoms of bugs. We have developed the
following two testing strategies described in Sections VI-A
and VI-B respectively.

A. Baseline Concolic Testing

We feed a small symbolic file as an input to
test-mnote.c. We set the size of the input sym-
bolic file at 244 bytes, since another test program
(test-parser.c) in libexif that tests only minimal
functionalities of libexif (i.e., creation and destruction
of a EXIF data parser) uses a 244 byte long image file. In
other words, we use a symbolic file that consists of 244
symbolic variables whose size is 1 byte each. Note that a
larger symbolic file would enlarge the size of search space
significantly, to decrease the probability of detecting bugs in
a given limited time.

B. Concolic Testing with Focus on Maker Note Tags with
Concrete Image Files

We focus on analyzing execution paths that are exercised
based on the maker note tags. A rationale for this strategy is
that the portion of libexif that handles maker note tags
may be buggy due to ad-hoc definitions of maker note tags
(see Section II). Another reason is that such code takes a
large portion of libexif; five functions among the largest
ten in libexif are designed to handle maker note tags
and they comprise 27% of the total libexif branches.

To focus on handling maker note tags, we declare the
bytes of the input image file that correspond to maker note
tags symbolically; the other bytes in the image file are
handled concretely. By concentrating on the maker note tags,

we expect to detect bugs related to the maker note tags with
high probability within a given limited time. We used the
following six input image files that contain the maker note
tags (downloaded from [13]). For each search strategy, we
executed CREST-BV and KLEE six times for the six image
files respectively.

• sanyo-vpcg250.jpg
• sanyo-vpcsx550.jpg
• canon-ixus.jpg
• nikon-e950.jpg
• fujifilm-finepix40i.jpg
• olympus-c960.jpg

C. KLEE and CREST-BV Settings

We applied KLEE to libexif with depth first search
(DFS), random path, random search, covering new, inter-
leaving of DFS + covering new search strategies as these
five search strategies may cover different paths and different
branches (see [5] for the detail of the search strategies) 2

We executed KLEE with --max-time as 900, 1800,
and 3600 seconds (15, 30, and 60 minutes respectively) for
each testing strategy. 3 The --max-time option restricts
only symbolic execution time, not including time spent to
generate test cases from the current symbolic execution tree
when the target program is forced to stop. If this test case
generation process takes more than a given amount of time,
KLEE halts without generating possible test cases further.
We modified the KLEE source code to generate all possible
test cases without time limit; thus, the actual amounts
of testing time were larger than 15, 30, and 60 minutes
respectively. In addition, we disabled counter example cache
(CEC) unit of KLEE, since CEC slowed down KLEE several
times compared to KLEE without CEC. 4

Then, we applied CREST-BV to libexif with DFS,
random path, and control flow graph based search (CFG)
search strategies (see [4] for the detail of the search strate-
gies). We executed CREST-BV with DFS and random path
for the equal amount of time spent by KLEE. For the CFG
search strategy, we executed CREST-BV in 15, 30, and 60
minutes, since no search strategy of KLEE is equivalent
to the CFG search strategy. In addition, we added source
code of small but frequently used five library functions
(memcmp(), memcpy(), bsearch(), qsort() and

2We selected “covering new” among the six non-uniform random search
strategies of KLEE, since this strategy likely increases the branch coverage
quickly. Also, we performed the interleaved combination of DFS and the
covering new search strategies similarly to that of [5].

3The complete options given to KLEE are as follows:
--simplify-sym-indices --emit-all-errors
--disable-inlining --use-forked-stp
--optimize --libc=uclibc --posix-runtime
--max-time=[900,1800,3600] --watchdog
--allow-external-sym-calls --use-batching-search
--batch-instructions=10000 --sym-args 1 1 1
--sym-files 1 244

4We contacted the KLEE development team regarding this issue, but
have not received a response.

1147

strcmp() (total 173 lines)) to test-mnote.c, since
CREST-BV does not support symbolic C library automat-
ically. For a symbolic file input, we modified a file read
function in libexif so that every byte read from an input
file was declared as a symbolic variable.

We repeated all these series of experiments five times
to get execution time, a number of generated test cases,
and branch coverage on average. In addition, we applied
Coverity Prevent [3] to libexif and compared the result
with those of CREST-BV and KLEE. Coverity Prevent is a
static analyzer to detect the run-time failure bugs in large
programs.

VII. EXPERIMENTAL RESULTS

A. Baseline Concolic Testing

1) KLEE Results: Table I shows time taken for each of
the five search strategies of KLEE with --max-time 900,
1800, and 3600 seconds . This table also shows numbers of
test cases generated and branch coverage ratios achieved for
each search strategy. In addition, the third rightmost to the
fifth rightmost columns of the table show the total amount
of time spent for the five search strategies, total number of
test cases generated, and the total branch coverage obtained
based on the all test cases. The rightmost two columns
show a number of bugs detected (effectiveness) and test case
generation speed (efficiency).

For example, with DFS and max-time=3600, KLEE
spent 3705 seconds to generate 4868 test cases that covered
8.1% of the branches of libexif (see the last row and
the second to fourth columns of Table I). Through the
all five search strategies with max-time=3600, KLEE
generated 34125 test cases to cover 20.4% of the branches
of libexif in 12 hours (=46244 seconds) (see the last
row and the third rightmost to the fifth rightmost columns
of Table I).

Evaluation of the effectiveness and efficiency of KLEE
on libexif is as follows:

• Effectiveness in terms of bug detection capability:
KLEE detected an out-of-bound memory access bug
within the first 50 test cases generated via the random
path, the random search, the covering new, and the
DFS+covering new strategies; it took less than 60
seconds for each search strategy to detect the bug. This
bug is located in exif_data_load_data () of
exif-data.c as follows (line 2):
...
1:if (offset + 6 + 2 > ds) { return; }
2:n = exif_get_short(d+6+offset, ...);
...

offset is an unsigned 32 bit integer variable to
indicate an offset to the value of a tag (see Section II).
libexif ignores offset if it is out of bound (see
line 1). However, if offset ≥ 232 − 8, integer
overflow occurs and libexif continues to line 2,

where exif_get_short() accesses out-of-bound
memory address pointed by d+6+offset.

• Efficiency in terms of the speed of test case generation:
KLEE generated 0.9 test case per one second on
average (=(1.1+0.9+0.7)/3) (see the rightmost column
of Table I). We observed that the speed of test case
generation decreased as execution time increased. For
example, KLEE generated 1.1 test cases per one second
when KLEE executed for 10400 seconds. But KLEE
generated 0.7 test cases per one second for 46244
seconds.
This is because executions go deeper/longer as testing
time increases, which increases the sizes of symbolic
path formulas consequently. Because SMT solvers take
longer time to solve longer formula in general, the
time taken to analyze each symbolic execution formula
increases as the length of the execution path increases.
Thus, the average speed of test case generation de-
creases as the testing time increases.

In addition, we observed that the total branch coverage
achieved through all five search strategies is not larger
than that of the covering new strategy. For example, with
max-time as 900, 1800, and 3600 seconds, the covering
new search strategy covered 11.1%, 19.7%, and 20.4% of
the libexif branches respectively (see the 13th column
of Table I) and the total branch coverages achieved via all
five search strategies were the same (i.e., 11.1%, 19.7%,
and 20.4% respectively) (see the third rightmost column of
Table I). This is because the five search strategies covered
execution paths that executed almost same statements in this
baseline concolic testing setting on libexif.

One reason for this result is that, in this baseline concolic
testing setting on libexif, test-mnote.c will termi-
nate quickly by rejecting the symbolic input file because
the file does not conform to the image structure shown
in Figure 1. Thus, most executions exercised only simple
validity check routines and had little chance to generate
diverse symbolic execution paths via different search strate-
gies. In other words, this baseline concolic testing setting
on libexif could not exploit the diversity of the five
different search strategies much.

We also observed that branch coverage did not increase
much over increasing number of test cases. For example, for
DFS, KLEE covered 8.1% of the branches through 1289 test
cases, but covered the same 8.1% of the branches through
4868 test cases (see the second and the fourth columns of
Table I). A reason for the non-increasing branch coverage
over the increasing number of test cases is that libexif
has a large number of execution paths that execute the same
statements through loops.

2) CREST-BV Results: Table II shows that, through DFS,
random path, and CFG based search strategies, CREST-BV
spent 17811 seconds to generate 367768 test cases to cover

1148

Table I
STATISTICS ON THE BASELINE CONCOLIC TESTING EXPERIMENTS BY USING KLEE

DFS Random Random Covering DFS + Total of the # of TC
Time path search new covering new 5 search strategies bugs gen.
option time # of Br.cov. time # of Br.cov. time # of Br.cov. time # of Br.cov. time # of Br.cov. time # of Br.cov. dete- speed
(sec) (sec) TC (%) (sec) TC (%) (sec) TC (%) (sec) TC (%) (sec) TC (%) (sec) TC (%) cted (#/sec)
900 1001 1289 8.1 2577 2280 11.1 2294 3192 11.1 2574 3072 11.1 1954 2022 11.1 10400 11855 11.1 1 1.1

1800 1903 2450 8.1 5530 4121 11.1 4832 5277 11.1 4944 4083 19.7 4928 3089 19.7 22137 19020 19.7 1 0.9
3600 3705 4868 8.1 10506 7084 11.1 9406 9945 19.1 12609 4543 20.4 10018 7685 19.7 46244 34125 20.4 1 0.7

Table II
STATISTICS ON THE BASELINE CONCOLIC TESTING EXPERIMENTS BY USING CREST-BV

Correspon- DFS Random Control flow Total of the # of TC
ding KLEE path graph (CFG) based 3 search strategies bugs gen.
time option time # of Br.cov. time # of Br.cov. time # of Br.cov. time # of Br.cov. dete- speed

(sec) (sec) TC (%) (sec) TC (%) (sec) TC (%) (sec) TC (%) cted (#/sec)
900 1001 12671 20.2 2577 100934 9.3 900 25191 21.8 4478 138796 22.3 1 31.0

1800 1903 22317 20.2 5530 171531 9.3 1800 25752 21.8 9233 219600 22.3 1 23.8
3600 3705 42499 20.3 10506 259625 10.3 3600 65644 21.8 17811 367768 22.3 1 20.6

22.3% of the branches in libexif (see the last row and the
third rightmost to the fifth rightmost columns of Table II).

Regarding effectiveness, CREST-BV detected the same
out-of-bound memory access bug via random path and CFG
based search strategies within the first 100 test cases (in less
than 10 seconds). Regarding efficiency, however, CREST-
BV demonstrated far better performance than KLEE. The
speed of test case generation by CREST-BV was 28 times
faster than that of KLEE, since CREST-BV generated 25.1
test cases per one second (= (31.0+23.8+20.6)/3) while
KLEE generated 0.9 test cases per one second on average.

One reason for the speed difference is that symbolic
path formulas of KLEE were almost three times longer
than those of CREST-BV. For example, with DFS and
max-time=1800, the average number of clauses in each
query of KLEE was 141 while the average number of clauses
in each symbolic path formula of CREST-BV with the
equivalent setting was 55. This is because KLEE analyzes
not only the executions of a target program, but also the
executions of the external symbolic C libraries used by
the target program. Another reason was that since KLEE
utilizes SMT array theory [9] to support symbolic arrays [7],
a symbolic execution query that contains array operations
is more difficult to solve than a symbolic path formula of
CREST-BV that does not support symbolic arrays.

Also note that the total branch coverage achieved by
CREST-BV through the three search strategies (22.3%) was
higher than that of KLEE through the five search strategies
(20.4%) for max-time=3600. This result is not surpris-
ing, since CREST-BV generated 10 times more test cases
(367768) than KLEE did (34125) with max-time=3600.

In addition, we made the following observations, which
are similar to the observations with KLEE.

• Three different search strategies together did not im-
prove the branch coverage much. For example, with

the CFG-based search strategy and max-time=3600,
CREST-BV covered 21.8% of the libexif branches.
But with all the three search strategies, CREST-BV
covered 22.3% of the branches in total (0.5% improve-
ment).

• We observed that the speed of test case generation
decreased as execution time increased. For example,
CREST-BV generated 31.0 test cases per one second
when CREST-BV executed for 4478 seconds. But it
generated 20.6 test cases per one second for 17811
seconds.

B. Concolic Testing with Focus on Maker Note Tags with
Concrete Image Files

1) KLEE Results: Table III shows total time taken
for each of the five search strategies of KLEE with
--max-time 900, 1800, and 3600 seconds (15, 30, and
60 minutes respectively) on the six image files in total.
This table also shows total numbers of test cases generated
and total branch coverage ratios achieved for each search
strategy on the six image files. Table III shows that KLEE
spent 31 hours (=112506 seconds) to generate 144248 test
cases that achieved 49.5% of libexif branches with
max-time=3600.

The evaluation of effectiveness and efficiency of KLEE
in this experiment is as follows:

• Effectiveness in terms of bug detection capability:
KLEE detected a null pointer dereference bug
via the random search, the covering new,
and the DFS+covering new strategies with
canon-ixus.jpg within the first 700 test
cases (in 10 minutes). This bug is located in
mnote_canon_tag_get_description() of
mnote_canon_tag.c as follows (see line 5):
...

1149

Table III
STATISTICS ON THE CONCOLIC TESTING WITH FOCUS ON MAKER NOTE TAGS WITH 6 IMAGE FILES BY USING KLEE

DFS Random path Random search Covering new DFS+covering new Total of the 5 strategies # of TC
Time (Sum on the 6 files) (Sum on the 6 files) (Sum on the 6 files) (Sum on the 6 files) (Sum on the 6 files) on the 6 files each bugs gen.
option time # of Br.cov. time # of Br.cov. time # of Br.cov. time # of Br.cov. time # of Br.cov. time # of Br.cov. dete- speed
(sec) (sec) TC (%) (sec) TC (%) (sec) TC (%) (sec) TC (%) (sec) TC (%) (sec) TC (%) cted (#/sec)
900 5424 15804 44.5 5526 4800 44.3 5592 6684 44.7 5994 20454 44.7 5880 23424 44.7 28416 71166 49.2 1 2.5

1800 10830 24936 44.7 11010 8172 44.7 11154 10758 44.7 11646 24492 44.7 11652 34890 44.7 56292 103248 49.2 1 1.8
3600 21642 39270 44.7 21996 11342 44.7 22416 15378 45.0 23142 29988 45.0 23310 48270 45.0 112506 144248 49.5 1 1.3

Table IV
STATISTICS ON THE CONCOLIC TESTING WITH FOCUS ON MAKER NOTE TAGS WITH 6 IMAGE FILES BY USING CREST-BV

Correspon- DFS Random path CFG based Total of the 3 strategies # of TC
ding KLEE (Sum on the 6 files) (Sum on the 6 files) (Sum on the 6 files) on the 6 files each bugs gen
time option time # of Br.cov. time # of Br.cov. time # of Br.cov. time # of Br.cov. dete- speed

(sec) (sec) TC (%) (sec) TC (%) (sec) TC (%) (sec) TC (%) cted (#/sec)
900 5424 93645 48.7 5526 130387 58.7 5400 98800 56.1 16350 322832 66.2 5 19.7
1800 10830 174173 48.7 11010 245873 59.3 10800 181362 56.5 32640 601408 67.1 5 18.4
3600 21642 309931 48.7 21996 433570 59.6 21600 325261 57.4 65238 1068762 68.1 5 16.4

1:for(i=0;i<sizeof(table)/sizeof(table[0]);i++)
2: //t is a maker note tag read from an image
3: if (table[i].tag==t) {
4: //Null-pointer dereference occurs!!!
5: if(!*table[i].description)
6: return "";
...

This bug crashes libexif if an input image
file contains an unknown maker note tag ID for
Canon cameras. This is because the last element
of table contains its description as null to
indicate the end of table, which contains a list
of maker note tags and corresponding descriptions
for Canon cameras. Similar functions for other cam-
era companies such as Fujifilm or Sanyo check
if table[i].description becomes null, but
mnote_canon_tag_get_description() does
not, which can cause null pointer dereference.

• Efficiency in terms of the speed of test case generation:
KLEE generated 1.9 test case per one second on
average (= (2.5+1.8+1.3)/3).

In addition, we observed that the five search strategies
together improved branch coverage around 1.1 times, in
contrast to the baseline concolic testing. For example, KLEE
covered 44.7% of the libexif branches via DFS with
max-time=3600 seconds on the six image files. But
the five search strategies together covered 49.5% of the
libexif branches. This is because KLEE generated nor-
mal/meaningful symbolic executions based on the concrete
input image files that conform to the structure of Figure 1,
and utilized diversity of the five different search strategies.

2) CREST-BV Results: Table IV shows that CREST-BV
generated 1068762 test cases to cover 68.1% of the branches
in libexif in 18 hours (=65238 seconds) via the three
search strategies on the six input image files.

The evaluation of effectiveness and efficiency of CREST-
BV in this experiment is as follows:

• Effectiveness in terms of bug detection capability:
CREST-BV detected the same null pointer
dereference bug as KLEE did via all three search
strategies with canon-ixus.jpg within the
first 100 test cases (in one minute). In addition,
CREST-BV detected four divide-by-zero bugs in
mnote_olympus_entry_get_value() in
mnote-olympus-entry.c as follows (see line 4):
...
1:vr=exif_get_rational(...);
2://Added for concolic testing
3:assert(vr.denominator!=0);
4:a = vr.numerator / vr.denominator;
...

vr is a rational number that is read from an input
image file (line 1), which consists of numerator
and denominator. An assert statement at line 3 is
mechanically inserted to force CREST-BV to generate
symbolic inputs to make vr.denominator zero (see
Section V-A). If an input image file contains vr whose
denominator is zero, libexif crashes due to the
divide-by-zero bug. mnote-olympus-entry.c has
three more similar divide-by-zero bugs. CREST-BV de-
tected these bugs within the first 23000 test cases in 30
minutes. Note that KLEE could not detect these divide-
by-zero bugs, since none of the test cases generated by
KLEE reached the bug locations.

• Efficiency in terms of the speed of test case generation:
CREST-BV generated 18.2 test case per one second
on average (= (19.7+18.4+16.4)/3), which is 10 times
faster than KLEE (KLEE generated 1.9 test cases per
one second on average).

C. Comparison between CREST-BV and Coverity Prevent

Coverity Prevent [3] is a commercial static analyzer that
can analyze a large source code in C/C++/Java quickly at

1150

static time. Since Coverity Prevent also targets the run-time
failure bugs, we compared the concolic testing results with
the static analysis result of Coverity Prevent. We applied
Coverity Prevent to libexif with a maximal warning
level option to detect as many bugs as possible. Coverity
Prevent reported the following run-time failure warnings
after analyzing libexif in 5 minutes:

• Null pointer dereference (3 warnings):
Coverity Prevent detected a null-pointer dereference
bug in exif_loader_get_buf() of
exif-loader.c, which crashes libexif if
loader is null (line 2).
1:if(!loader||(loader->data_format ...) {
2: exif_log(loader->log, ...);

We could not detect this bug using concolic
testing, because test-mnote.c does not call
exif_loader_get_buf(). The other 2 warnings
were false alarms.

• Out-of-bound memory access (1 warning):
After manual analysis, this warning turned out to be a
false alarm.

In addition, Coverity Prevent generated the following
warnings other than the run-time failure bugs:

• Operands do not affect result (1 warning):
A condition in one conditional statement is evaluated
as false regardless of the values of its operands.

• Recursion in included headers (6 warnings):
Coverity Prevent generated warnings regarding recur-
sively nested header files.

• Calling risky function (4 warnings):
Coverity Prevent considers strcpy() and
sprintf() risky, since they can access illegal
memory if the allocated memory space for destination
is smaller than that of the source. After manual
analysis, however, we found that these functions were
used correctly in libexif.

Note that Coverity Prevent could not detect any bugs
CREST-BV detected. Therefore, even after applying Cover-
ity Prevent, it will be beneficial to apply a concolic testing
tool to detect the run-time failure bugs.

VIII. LESSONS LEARNED

In this section, we summarize the lessons learned from
this testing project, which, we believe, can be applied to
other projects of similar domains.

A. Practical Application of Concolic Testing

Through the project, we demonstrated that concolic test-
ing techniques are effective to detect corner case bugs
by detecting one out-of-bound memory access bug (see
Section VII-A), one null pointer dereference bug and four
divide-by-zero bugs (see Section VII-B). Compared to the
random testing using a 244 byte random image file for

3600 seconds, which covered only 3.8% of the branches
and detected no bug, this bug detection result of concolic
testing was significant. Furthermore, it took only one week
for us to detect such critical bugs without much knowledge
on libexif (see Section V-A). Thus, concolic testing
technique can be a practical solution to test open source
applications in industrial setting.

Another interesting observation was that CREST-BV and
KLEE were more effective to detect the run-time failure
bugs than Coverity Prevent in this testing project. This is
because concolic testing techniques perform precise context
sensitive analysis with concrete run-time information while
Coverity Prevent performs context insensitive static analysis
for a large code fast. Thus, it is a good idea to apply both
static analyzers such as Coverity Prevent and concolic testing
tools such as KLEE and CREST-BV together.

B. Importance of Testing Methodology

Although concolic testing is an automated test case gen-
eration technique, through the project, we confirmed that
good testing methodology designed by a human engineer
can improve the effectiveness of concolic testing in a large
degree. For example, if we performed only the baseline
concolic testing (see Section VI-A), we would not detect
the null pointer dereference bug and the four divide-by-zero
bugs (see Section VII-B).

A main reason for the necessity of carefully designed
testing strategy for concolic testing is that a target search
space is very large for most target programs and concolic
testing can analyze only a small portion of the space in
practice. Therefore, developers or testing engineers should
devise smart testing strategies to maximize the effectiveness
of concolic testing.

C. Advantages of CREST-BV over KLEE

We found that CREST-BV has several advantages over
KLEE in terms of both effectiveness and efficiency. First
of all, CREST-BV is 10 to 28 times faster than KLEE
in terms of test case generation speed in this project (see
Section VII). Second, branch coverage achieved in a given
amount of time by CREST-BV is higher than KLEE as
CREST-BV generates test cases much faster than KLEE (for
example, CREST-BV covered total 68.1% of the branches in
libexif while KLEE did total 49.5% in the concolic test-
ing with focus on maker note tags with max-time=3600
as described in Table III). Finally, based on these two
aforementioned advantages, CREST-BV has better bug de-
tecting capability than KLEE does. For example, CREST-BV
detected four divide-by-zero bugs, which KLEE did not (see
Section VII-B).

IX. CONCLUSION AND FUTURE WORK

We have applied two concolic testing tools, CREST-
BV and KLEE, to open source application libexif to

1151

detect run-time failure bugs. We found corner case bugs in
libexif such as a memory access bug, a null pointer
dereference bug, and divide-by-zero bugs, which crash
libexif at run-time, thus causing serious problems. Con-
sidering that libexif is a popular open source application
and field-proven by many users, it is interesting that we
could detect such critical bugs in one week without much
knowledge of libexif. Thus, we believe that concolic
testing technique can be a practical solution to test open
source applications in industrial setting.

In addition, we made several interesting observations
through the project. Although concolic testing is an auto-
mated technique, human engineer can improve the effective-
ness of concolic testing by devising smart testing strategies,
since we need to focus search space to analyze out of a large
number of possible execution paths. Samsung Electronics
and KAIST will continue collaboration to improve the
concolic testing techniques and apply CREST-BV to more
applications on Samsung smartphone platforms.

ACKNOWLEDGEMENT

This work was supported by Samsung Electronics, the
ERC of MEST/NRF (Grant 2012-0000473), and Basic Sci-
ence Research Program of MEST/NRF (2010-0005498).

REFERENCES

[1] The libexif C EXIF library. http://libexif.sourceforge.net/.

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. Ernst. Finding bugs in dynamic web applications. In
ISSTA, 2008.

[3] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few
billion lines of code later: Using static analysis to find bugs
in the real world. CACM, 53:66–75, February 2010.

[4] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. Technical Report UCB/EECS-2008-123, EECS
Department, University of California, Berkeley, Sep 2008.

[5] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In OSDI, 2008.

[6] CIPA and JEITA. Exchangeable image file format for digital
still cameras: Exif version 2.3. http://www.cipa.jp/english/
hyoujunka/kikaku/pdf/DC-008-2010 E.pdf.

[7] B. Elkarablieh, R. Godefroid, and M. Levin. Precise pointer
reasoning for dynamic test generation. In ISSTA, 2009.

[8] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input
generation for database applications. In ISSTA, 2007.

[9] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors
and arrays. In CAV, 2007.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In PLDI, 2005.

[11] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. In NDSS, 2008.

[12] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. jFuzz:
A concolic whitebox fuzzer for Java. In NFM, 2009.

[13] JEITA. Exif.org. http://www.exif.org/.

[14] M. Kim, Y. Kim, and Y. Choi. Concolic testing of the multi-
sector read operation for flash storage platform software.
FACJ, 24(2), 2012.

[15] M. Kim, Y. Kim, and Y. Jang. Industrial application of
concolic testing on embedded software: Case studies. In ICST,
2012.

[16] M. Kim, Y. Kim, and G. Rothermel. A scalable distributed
concolic testing approach: An empirical evaluation. In ICST,
2012.

[17] Y. Kim and M. Kim. CREST-BV: a concolic testing tool for
C programs with bit-vector support, 2012. http://pswlab.kaist.
ac.kr/tools/crest-bv/.

[18] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO, 2004.

[19] L. Moura and N. Bjorner. Z3: An efficient SMT solver. In
TACAS, 2008.

[20] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In PLDI, 2007.

[21] K. Pan, X. Wu, and T. Xie. Generating program inputs for
database application testing. In ASE, 2011.

[22] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level
symbolic execution and system-level concrete execution for
testing nasa software. In ISSTA, 2008.

[23] C. Pasareanu and W. Visser. A survey of new trends in
symbolic execution for software testing and analysis. STTT,
11(4):339–353, 2009.

[24] R. Sasnauskas, O. Landsiedel, M. h. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle. KleeNet: Discovering in-
sidious interaction bugs in wireless sensor networks before
deployment. In IPSN, 2010.

[25] K. Sen and G. Agha. CUTE and jCUTE : Concolic unit
testing and explicit path model-checking tools. In CAV, 2006.

[26] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In ESEC/FSE, 2005.

[27] SMT-LIB: The satisfiability module theories library. http:
//combination.cs.uiowa.edu/smtlib/.

[28] N. Tillmann and W. Schulte. Parameterized unit tests. In
ESEC/FSE, 2005.

[29] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking
programs. In ASE, Sept. 2000.

1152

