
A Case Study of the Application of Dynamic Symbolic Execution to
Real-World Binary Programs

Duc Bui Hoang, Yunho Kim and Moonzoo Kim
Computer Science Department, KAIST

291 Daehak-ro(373-1 Guseong-dong), Yuseong-gu, Daejeon
ducbuihoang@kaist.ac.kr kimyunho@kaist.ac.kr moonzoo@cs.kaist.ac.kr

Abstract:
Analyzing binary programs is necessary in many
situations when we do not have the programs source
code. In recent years, many binary analysis tools have
been developed such as CodeSurfer/x86, BitBlaze and
S2E. In this paper we developed a binary symbolic
execution engine based on BitBlaze. We applied the
engine to generate hundreds of test cases for a real-
world application on Windows: Acrobat Reader.
Besides, we also discussed lessons learned from
applying dynamic symbolic execution on real-world
programs.

Keywords: Binary analysis, software testing, formal

verification, concolic testing

1. Introduction

Analyzing binary programs is always in great
demand. Software companies need to test the actual
shipped software because compilation tools and post-
processing tools such as basic block transformers and
code obfuscators may introduce subtle bugs. Users
also want to check bugs in binary libraries because it
might not be feasible to obtain source code of third
party components, even components developed by
different groups in the same organization.

Dynamic symbolic execution (DSE) is a popular
automated testing technique for generating test cases
that explore execution paths of a program
systematically [1]. Given an initial input, the dynamic
symbolic execution technique executes the program
both concretely and symbolically. The path constraint
from conditional statements along the executed path is
then negated and solved to generate a new input that
lead the target program to exercise new path. This
process is repeated so that execution paths of the target
program are explored executed automatically and
systematically.

In an effort to detect bugs in real-world software
programs at the operating system level, we used
dynamic symbolic execution on top of BitBlaze to
generate test cases for Notepad and Adobe Acrobat
Reader on Windows XP. In this paper, we will
present our symbolic execution engine, experimental
results and lessons we learned from our attempts.

DSE tool’s component

Target program

Process

Object

 Data flow
Legend

Figure 1 BitBlaze architecture

2. BitBlaze: A binary analysis platform for
computer security

BitBlaze [2] is a platform for analyzing binary code

for security applications developed by Song et al. at

University of California at Berkeley. BitBlaze has three

main components: TEMU, Vine and Rudder. TEMU,

the dynamic analysis component, and Vine, the static

analysis component, are open source while Rudder,

the online dynamic symbolic execution component, is

not publicly available. The architecture of BitBlaze is

shown in Figure 1.

TEMU allows users to obtain an execution trace of a
run of the target program and information related to
its input. TEMU is built on top of QEMU virtual
machine inside which the analyzed program runs.
Therefore, users can gain information of all executed
instructions of the analyzed program and its
environment, i.e. all of its external libraries and
operating system. Users can use tracecap, a plugin of
TEMU that can mark all bytes in the input bytes as
tainted to record all instructions related to the tainted

TEMU

Emulated OS

Target
program

tracecap

Execution

trace

Translation

Vine

Weakest
precondition

STP

Translation

Vine IR

Initial
Input

An input that causes
the traced program

down to the taken path

mailto:ducbuihoang@kaist.ac.kr
mailto:kimyunho@kaist.ac.kr
mailto:moonzoo@cs.kaist.ac.kr

bytes such as the instructions that have tainted source
or destination operand. In the context of dynamic
symbolic execution, these tainted bytes are equivalent
to symbolic bytes.

Vine provides users with a functionality to perform
analysis on the execution trace. Vine can lift the
assembly code in the execution trace to Vine
intermediate representation (Vine IR). Vine supports
generating weakest precondition (wp) from the
intermediate representation. The weakest precondition
wp(P,Q) for a program P and post-condition Q is a
Boolean predicate such that when wp(P,Q) holds,
executing P is guaranteed to terminate in a state
satisfying Q. The solution of the weakest precondition
is an input that makes the target program to exercise
the same path it takes in the execution trace. Vine
interacts with STP, a SMT solver, to solve the
satisfiability of the weakest precondition formula.

In Vine IR, the path constraint of the program is
represented in a conjunction of post conditions. This
conjunction is represented in a sequence of assertions.
Every time the execution reaches a branching
statement, Vine generates a post condition variable
that records the path condition and an assertion to
indicate that the program follows a specific path from
inputs. The sequence of assertions represents a path
taken in the execution trace of the program.

3. Binary symbolic execution engine (BSEE)

 We implemented a symbolic execution engine
similar to Rudder in OCaml on top of Vine. While
Rudder is an online symbolic execution engine that
generates path constraint formula at the same time the
program runs, BSEE is an offline symbolic execution
engine which performs analysis on execution traces
after the target program runs. Firstly, the execution
trace of the target program is lifted to Vine IR. In order
to generate the new input, we negate one condition in
the path constraint in the Vine IR file. The negated IR
is then translated to the weakest precondition formula.
Finally, STP, a SMT solver, will solve this formula and
give the input that leads the target program into a
directed path, if any exists. Figure 2 shows the
architecture of BSEE.

 The main algorithm in BSEE is as the following:
* Input: an IR file; output: a set of new inputs that
exercise different branches of the program.
1. Create a list of post condition variables.
2. Choose a post condition variable in the list.
3. Negate the condition in the corresponding assertion.
4. Remove all instructions in the IR after the negated
assertion.

DSE tool’s component

Target program

Process

Object

 Data flow
Legend

5. Generate the weakest precondition for the modified
IR in the STP syntax.
6. If STP finds a set of values that satisfies the weakest
precondition formula within a time bound, we have a
new input file that comprises the sequence of the
values.
7. Repeat step 2 to 6 for the next variable in the list
until there is no remaining variable.

BSEE chooses and negates post conditions as the
following. A post condition variable can be chosen in
the list from the first to the last of the variable list. In
step 3, the condition for the assertion corresponding to
the chosen post-condition variable is negated by
adding the negation operator to the condition inside
assertions.

The following example illustrates how the algorithm
works in order to generate a new test case that
exercises the different branch for a branching
statement.

Given an if statement and with the initial input x=1
 if(x!=5)

gcc may translate it into the following assembly code
 0x0804841b: cmp $0x5, %eax

 0x0804841e: je 0x804842c <main+56>

A run of the instruction with x=1 results the following
contiguous excerpt from the execution trace:

Figure 2 BSEE architecture

New
inputs

TEMU

Emulated OS

Target
program

Input

pool

Execution
trace

Translation

BSEE

Weakest
precondition

STP

Negation

Translation

Vine IR

Initial
Input

New

component

tracecap

0804841b: cmp $0x5,%eax

0804841e: je 0x0804842c

08048420: … (not jump)

A summary of Vine IR corresponding to the above
trace
/*cmp $0x5,%eax*/

T_81_1520:reg32_t = R_EAX_5:reg32_t - 5:reg32_t;

R_ZF_13:reg1_t = T_81_1520:reg32_t == 0:reg32_t;

/*je 0x000000000804842c*/

cond_960:reg1_t = R_ZF_13:reg1_t == false;

assert(cond_960:reg1_t);

The application of the steps 2 and 3 to the example
results the following assertion:
cond_960:reg1_t = R_ZF_13:reg1_t == false;

assert(!cond_960:reg1_t);

//End of file

4. Experimental results
4.1. Experimental settings

Machine settings for testing Notepad and Acrobat
Reader are presented in Table 1. The input of the
programs is a file. The initial input file consists of 743
bytes of ASCII character ‘0’. 743 bytes is necessary size
for generating 737-byte-long new input while 737 bytes
is the minimal file size that TEMU can record executed
instructions. We found 737 bytes size by trying various
file sizes following binary search strategy. The
generated input is a sequence of bytes.

In the experiments, we traced the runs of Acrobat
Reader and Notepad since they open the initial input
file until a time bound of 10 minutes reaches or the
target program completes opening the file. Time
bound for STP is 30 seconds.

4.2. Generated test cases
In the case of Acrobat Reader, we generated 1469 test

cases in total. In the first run, from the initial input of
743 bytes of ‘0’, we trace Acrobat Reader in 10 minutes
and generated 736 new test cases of various lengths
from 1 to 738 bytes for Acrobat Reader in around two
hours. Post condition variables were chosen from the
first to the last variable in the post condition variable
list. In the second run, we traced Acrobat Reader in 10
minutes with a 738-byte-long input generated from the
first run. BSEE generated 733 test cases which vary
from 1 to 733 bytes long in two and a half hours.

In the case of Notepad, in spite that we tried various
methods, we failed to generate test cases for Notepad.
This is because Vine encountered an error when lifting
the execution trace to Vine IR. (see section 5.2)

5. Lessons learned
5.1. Large amount of data to process for
analyzing binary program execution

A major challenge of analyzing real-world
applications is we need to process a huge amount of
low level data. In general, the execution trace contains

Table 1 Test bed

CPU Intel Core2 Duo E8600 @ 3.33GHz

Memory 8 GB

Host OS Debian 6.0.3 32-bit

Guest OS Windows XP SP3(English) 32-bit

Target
programs

notepad.exe in Windows XP SP3
(5.1.2500.5512)

AcroRd32.exe – The main executable
file of Adobe Acrobat Reader 9.2.0

millions of instructions. For example, the 10-minute
execution trace of Acrobat Reader is 1.2GB large and
contains more than 19 million instructions. Though we
have information of external libraries and environment
but we also have to process all this information in
addition to the target program itself. Thus, we need to
separate the instructions that belong to the target
program from the instructions that belong to external
libraries and from the instructions that belong to the
operating system. (see the selective symbolic execution
technique [3] used in S2E platform [4])

5.2. Limitations of BitBlaze

BitBlaze could not record the execution trace when
the target program reads a very small file. Therefore
we lost a degree of control to the input of the target
program. In our experiments, this problem made us
unable to use small inputs generated by BSEE in
subsequent runs. This problem may be partly due to
the method that BitBlaze used to propagate and
monitor tainted bytes. Locations of bytes of file on disk
are marked as tainted so that TEMU can monitor and
record all operations on the above disk locations.
However, the target program may read those bytes
from the disk buffer in memory instead of directly
from disk and tainted information may be lost.

Furthermore, Vine failed to handle certain binary
instructions. For example, when Vine lifts execution
trace of Notepad to Vine IR, it failed to handle
instruction bytes 0xCD 0x2B 0x0 0x0 which is an
interrupt. Though we attempted to use a newer
version of VEX library that is responsible for this
problem but the problem persisted. Due to this bug we
could not generate test cases for Notepad.

 Besides, the analysis speed of BitBlaze is too slow for
the target programs. For example, to open 743-byte-
long file, Acrobat Reader took more than 60 minutes
and generated 35GB execution trace. Vine failed to
translate traces into Vine IR due to an out-of-memory
error. Table 2 shows the statistic of performance of
BitBlaze when applying to Acrobat Reader. Besides the
experiment in section 4, we performed two more
experiments in which Acrobat Reader was traced in a
15 minutes and 60 minutes.

Table 2 BitBlaze Performance

 Finally, TEMU can miss propagation of tainted data
in the executions of complicated applications. This
caused us unable to generate new values for all input
bytes. For example, in one experiment, from a 737-
byte-long input, we only obtained 98 values for from
STP. This is because TEMU missed propagation of
tainted data and replaced it by a concrete initialization.
Vine indicated this as a warning in the IR file:
“WARNING missed prop, using concrete init”.

6. Related work
Binary analysis tools are more prevalent these days.

CodeSurfer/x86 [5] is a static analysis tool for
analyzing memory accesses in x86 executable files.
BSEE analyzes execution of the target program in
order to generate test cases that cover different
execution paths of the target program instead of
focusing on memory access analysis as
CodeSurfer/x86 does. S2E platform [4] which is built
on QEMU [6] and KLEE [7] enables multiple-path
analysis of binary programs, libraries and drivers at
the operating system level. However, so far, S2E does
not support a symbolic disk drive that creates symbolic
bytes for the target program. SAGE [8] generates test
cases on binary programs by using dynamic symbolic
execution. While SAGE only records the target
program’s user-mode execution, BSEE records all
instructions executed in the entire software stack, from
the target program to the operating system.

BitBlaze was used in many tools to detect security
vulnerabilities. Yin et al. [9] and Liang et al. [10] built
tools based on TEMU to detect hooks and analyze
hooking behaviors of malwares.

7. Conclusion
In this paper, we developed BSSE, a symbolic

execution engine for binary programs based on
BitBlaze binary analysis platform and generated test
cases for Acrobat Reader, a real-world binary program
on Windows. From the experiments, we found that
there are still many challenges and limitation of the
existing tool that make dynamic symbolic execution
not applicable to real-world applications at the
operating system level.

References

[1] Y. Kim and M. Kim, "SCORE: a Scalable Concolic

Testing Tool for Reliable Embedded Software," in ACM

SIGSOFT Foundation of Software Engineering (FSE) Tool

demonstration track, Szeged, 2011.

[2] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.

Kang, Z. Liang, J. Newsome, P. Poosankam and P.

Saxena, "BitBlaze: A New Approach to Computer

Security via Binary Analysis," in International Conference

on Information Systems Security, 2008.

[3] V. Chipounov, V. Georgescu and C. Zamfir, "Selective

Symbolic Execution," in 5th Workshop on Hot Topics in

System Dependability (HotDep), Lisbon, 2009.

[4] V. Chipounov, V. Kuznetsov and G. Candea, "S2E: A

Platform for In Vivo Multi-Path Analysis of Software

Systems," in Conference on Architectural Support for

Programming Languages and Operating Systems, 2011.

[5] G. Balakrishnan, G. Balakrishnan, R. Gruian, T. Reps

and T. Teitelbaum, "CodeSurfer/x86 - A Platform for

Analyzing x86 Executables," in Conference on Compiler

Construction, 2005.

[6] F. Bellard, "Qemu, a fast and portable dynamic

translator," in USENIX 2005 Annual Technical Conference,

2005.

[7] C. Cadar, D. Dunbar and D. Engler, "KLEE: unassisted

and automatic generation of high-coverage tests for

complex systems programs," in USENIX conference on

Operating systems design and implementation, 2008.

[8] P. Godefroid, M. Y. Levin and D. A. Molnar,

"Automated Whitebox Fuzz Testing," in Network

Distributed Security Symposium, 2008.

[9] H. Yin, P. Poosankam, S. Hanna and D. Song,

"HookScout: Proactive B inary-Centric Hook Detection,"

in 7th Conference on Detection of Intrusions and Malware &

Vulnerability Assessment (DIMVA'10), 2010.

[10] H. Yin, Z. Liang and D. Song, "HookFinder: Identifying

and Understanding Malware Hooking Behaviors," in

15th Annual Network and Distributed System Security

Symposium, 2008.

Target
program

AcroRd32.exe

notepad.exe

Tracing time 10min 15min 60min 1min

Size of trace
file

1.2GB 2.1GB 35.0GB 72MB

Translation
time (execution
trace to Vine IR)

2min out of
memory

out of
memory

1min
(interrupted
by an error)

Size of Vine IR 23MB N/A N/A N/A

