
Distributed Concolic Algorithm of the SCORE
framework

Moonzoo Kim and Yunho Kim
CS Dept. KAIST, South Korea

Gregg Rothermel
CSE Dept. Univ. of Nebraska, Lincoln, US

1 Concolic Testing Process
This section presents an overview of the original (non-distributed) concolic testing pro-
cess that performs static instrumentation of a target program to extract symbolic path
formulas, which is the way SCORE operates. The concolic testing process proceeds
via the following steps:

1. Declaration of symbolic variables. Initially, a user must specify which variables
should be handled as symbolic variables, based on which symbolic path formulas are
constructed.

2. Instrumentation. A target source program is statically instrumented with probes,
which record symbolic path conditions from a concrete execution path when the target
program is executed. For example, at each conditional branch, a probe is inserted to
record the branch condition/symbolic path condition; then, the instrumented program
is compiled into an executable binary file.

3. Concrete execution. The instrumented binary is executed with given input val-
ues. For the first execution of the program, initial input values are assigned randomly.
From the second execution onwards, input values are obtained from Step 6.

4. Obtain a symbolic path formula ϕi. The symbolic execution part of the concolic
execution collects symbolic path conditions over the symbolic input values at each
branch point encountered for along the concrete execution path for a test case tci.
Whenever each statement s of the target program is executed, a corresponding probe
inserted at s updates the map of symbolic variables if s is an assignment statement, or
collects a corresponding symbolic path condition, c, if s is a branch statement. Thus,
a symbolic path formula ϕi is built at the end of the ith execution as c1 ∧ c2... ∧ cn
where cn is the last path condition executed and ck is executed earlier than ck+1 for all
1 ≤ k < n.

5. Generate a new symbolic path formula ψi. Given a symbolic path formula ϕi
obtained in Step 4, to obtain the next input values, ψi is generated by negating one path
condition cj and removing subsequent path conditions (i.e., ψi = c1 ∧ c2... ∧ ¬cj).

1

01:int main() {
02: int x, y,z, max_num=0;
03: SYM_INT(x); // Declaration of x, y, z
04: SYM_INT(y); // as symbolic integer
05: SYM_INT(z); // variables
06:
07: if(x >= y) {
08: // SYM_COND(x,y, ">=");
09: if(y >= z) {
10: // SYM_COND(y,z, ">=");
11: max_num = x;
12: } else {
13: // SYM_COND(y,z, "<");
14: if (x >= z){
15: // SYM_COND(x,z, ">=");
16: max_num = x;
17: } else {
18: // SYM_COND(x,z, "<");
19: max_num = z;
20: }
21: }
22: } else { ...}
23: printf("%d is the largest number among\
24: {%d,%d,%d}", max_num, x,y,z);
25: // SMT_Solve();
26:}

Figure 1: Example used to illustrate concolic testing

For example, if a depth first search (DFS) strategy is used, as it often is, to explore the
symbolic path formula, then cj is the last symbolic path condition in ϕi whose negated
path condition has not been executed previously. If ψi is unsatisfiable, another path
condition cj′ is negated and subsequent path conditions are removed until a satisfiable
path formula is found. If there are no further new paths to try, the algorithm terminates.

6. Select the next input values tci+1. A constraint solver such as a Satisfiability
Modulo Theory (SMT) solver generates a model that satisfies ψi. This model de-
termines the next concrete input values to try (i.e., tci+1), and the concolic testing
procedure iterates from Step 3 using these input values.

We illustrate this process through an example involving Figure 1, which returns the
largest number from three given integers.

1. Declaration of symbolic variables. A user declares x, y, and z as symbolic
integer variables by using SYM INT() (lines 3-5).

2. Instrumentation. A concolic testing tool (i.e., SCORE) inserts a probe to record a
corresponding path condition at each then branch in an automated manner. Similarly,
at each else branch, a probe is inserted to record a corresponding path condition. In
Figure 1, probes inserted through instrumentation are shown as comments. For exam-
ple, at line 10, SYM COND(y,z,">=") is inserted to record path condition y >= z.

2

Similarly, SYM COND(y,z,"<") is inserted at line 13 to record path condition y < z.
3. Concrete execution. Initial input values for the symbolic variables are randomly

chosen. We assume that x, y, and z are assigned 1, 1, and 0 as initial random values,
respectively (i.e., tc1 =< 1, 1, 0>). Then, the instrumented target program executes
lines 2-11 and lines 23-26.

4. Obtain a symbolic path formula ϕi. During the concrete execution of lines 2-
11, the probes record two symbolic path conditions x >= y and y >= z through
SYM COND(x,y, ">=") (line 8) and SYM COND (y,z,">=") (line 10) respec-
tively. Thus, the symbolic formula ϕ1 = (x >= y)∧ (y >= z) is obtained for the first
iteration.

5. Generate a new symbolic path formula ψi. If a DFS algorithm is used, ψ1 is
(x >= y) ∧ ¬(y >= z).

6. Select the next input values. At line 25, the target program finishes its first
iteration and invokes a constraint solver to solve ψ1. Suppose that an SMT solver
solves ψ1 and generates 1, 1, and 2 for x, y, and z as a solution (i.e., tc2 =<1, 1, 2>).
Then, the target program starts the second iteration with these values, and the entire
process from Step 3 is repeated.

2 Concolic Algorithm
Algorithm 1 presents the concolic testing algorithm that corresponds to Steps 3 through
6 just detailed. Algorithm 1 receives a current test case tci, neg limiti, and an index i
to the test case tci as parameters. neg limiti is an index to the path condition (PC) in ϕi
beyond which PCs should not be negated (lines 7-9) (i.e., ck should not be negated for
k < neg limiti), where ϕi is a symbolic path formula obtained from an execution path
on tci. (The use of neg limit prevents the recursive Concolic() call in line 13 from
generating redundant test cases). Initially, tc1 is given as a random value, neg limit1
is 1, and i = 1.

The algorithm generates symbolic path formulas ψis by negating PCs of ϕi one by
one in decreasing order (line 9). Then, it generates new test cases tci+1 by solving
the ψis (line 11). From each new test case tci+1 generated in the loop, the algorithm
generates further test cases to explore execution paths that share a common prefix (i.e.,
c1 ∧ ...∧¬cj) by calling Concolic(tci+1, j +1, i+1) in a recursive manner (line 13).

Note that the concolic algorithm traverses the execution tree of a target program in
a depth first search (DFS) order and, under the assumption that ϕi truly reflects pathi
and Solve(ψi) can solve ψi,1 it does not generate redundant test cases (see Theorem 1).
In addition, generated test cases do not explore the same execution path again (see
Corollary 1).

Theorem 1 (UNIQUENESS OF GENERATED TEST CASES)
∀k, l ≥ 1.(k ̸= l → tck ̸= tcl) in Algorithm 1.

1In practice, a program P may contain complex arithmetic or binary library calls that cannot be solved
or reasoned about by SMT solvers. Thus, the concolic algorithm generates symbolic path formulas without
such conditions, and in these cases this may result in the generation of identical symbolic path formulas from
different execution paths.

3

Input:
tci: ith test case to run
neg limiti: a position of the PC in ϕi beyond which PCs should not be
negated
i: a number of test cases generated so far
Output:
ntc: a number of test cases generated so far
A set of generated test cases (i.e., tci+1s of line 11)

1 Concolic(tci, neg limiti, i) {
2 // Step 3: Concrete execution
3 pathi = an execution path of a target program running on tci
4 // Step 4: Obtain a symbolic path formula ϕi = c1 ∧ ... ∧ cn
5 ϕi = a symbolic path formula obtained from pathi
6 j =| ϕi |; // | ϕi |= n where cn is the last PC in ϕi
7 while j >= neg limiti do
8 // Step 5: Generate ψi for the next input values
9 ψi = c1 ∧ ... ∧ cj−1 ∧ ¬cj ;

10 // Step 6: Selecting the next input values
11 tci+1 = Solve(ψi); // NULL if ψi is unsatisfiable
12 if tci+1 is not NULL then
13 i = Concolic(tci+1, j + 1, i+ 1);
14 end
15 j = j − 1;
16 end
17 ntc = i;
18 return ntc;
19 }

Algorithm 1: Original concolic algorithm

Suppose that there exist k, l ≥ 1 such that k ̸= l and tck = tcl. Then, there exist
corresponding symbolic path formulas ψk−1 and ψl−1 whose solution is tck(= tcl).
(Since tc1 is given as a random initial value, ψ0 = true.) Since ψk−1 and ψl−1 are
symbolic path formulas, if tck = tcl, then ψk−1 = ψl−1 (contrapositive of Lemma 2).
However, Lemma 1 shows that there are no k, l ≥ 0 such that k ̸= l and ψk = ψl.
Contradiction.

Corollary 1 (UNIQUENESS OF EXPLORED PATHS)
Concolic() in Algorithm 1 does not explore the same path again. In other words,
∀k, l ≥ 1.(k ̸= l → ϕk ̸= ϕl)

From Lemma 1 and Lemma 2.

Lemma 1 (UNIQUENESS OF GENERATED SYMBOLIC PATH FORMULAS)
∀k, l ≥ 0.(k ̸= l → ψk ̸= ψl) in Algorithm 1.

4

First, if k = 0 Lemma 1 is trivially true, since ψ0 = true and ∀l ≥ 1.ψ0 ̸= ψl.
Second, suppose that 1 ≤ k < l. There are two places where a new symbolic

formula ψl is generated:

• ψk is different from ψl which is generated at the earliest subsequent iteration
where a new test case tcl+1 is generated, because | ψk |>| ψl | as j (i.e., | ψl |)
decreases monotonically through iterations.

• Case 2: inside a recursive Concolic() call (line 13)
ψk is different from any ψl that is generated inside of a recursive
Concolic(tck+1, j + 1, k + 1) call. This is because ∀l. | ψk |<| ψl | where
ψl is generated inside of Concolic(tck+1, j + 1, k + 1). Note that | ψk |= j
and ∀l. |ψl |> j, since neg limitk+1 in Concolic(tck+1, j + 1, k + 1) is j + 1
(line 7).

Therefore, since | ψk |̸=| ψl |, ψk ̸= ψl.
For the cases where k > l, the above proof applies in a similar manner. Therefore,

there exists no k, l ≥ 0 such that k ̸= l and tck = tcl.

Lemma 2 ∀k, l ≥ 0.(ψk ̸= ψl → tck+1 ̸= tcl+1) and ∀k, l ≥ 0.(ψk ̸= ψl → ϕk+1 ̸=
ϕl+1) in Algorithm 1

Suppose that ψk = ck1 ∧ ck2...∧ ckjk and ψl = cl1 ∧ cl2...∧ cljl . There are three cases
to handle to prove Lemma 2.

First, when k = l, Lemma 2 is trivially true.
Second, for the cases where k, l ≥ 0 ∧ k < l ∧ ψk ̸= ψl (k < l indicates that ψk

is generated before ψl is generated), there are two relationships between ψk and ψl.
Note that all generated symbolic path formulas (ψi’s) start from the same root of the
execution tree (i.e., main() of a target program).

• Case 1: ψk is not a prefix of ψl

There is at least one path condition ckm such that ¬ckm is a path condition of
ψl, since every symbolic path formula starts from the same program entry point.
Thus, tck+1 (a solution of ψk) cannot satisfy ψl and tck+1 ̸= tcl+1. In addition,
ϕk+1 ̸= ϕl+1, since ψk and ψl are prefixes of ϕk+1 and ϕl+1 respectively.

For example, ψk in Figure 2(a) is not a prefix of ψl. ψk has c1, but ψl has ¬c1
which results in tck+1 ̸= tcl+1 and ϕk+1 ̸= ϕl+1.

• Case 2: ψk is a prefix of ψl

Suppose that a symbolic path formula ϕk+1 = c(k+1)1∧c(k+1)2...∧c(k+1)t is ob-
tained from an execution path on tck+1 (a solution of ψk). Then, there is at least
one path condition c(k+1)m such that ¬c(k+1)m is a path condition of ψl. This
is because every symbolic path formula starts from the same root and c(k+1)m

should be negated to generate a subsequent ψl where m ≥ neg limitk+1. Note
that neg limitk+1 restricts the range of path conditions to negate so as to prevent
repetitive negations on same path conditions (line 7 of Algorithm 1) for all sub-
sequent ψl’s. Thus, tcl+1 cannot satisfy ϕk+1. Given that a solution of ψk (i.e.,

5

l
=
c1 c5

c1 c1

c2 c5

c2

k
=

c1 c2

c5

c1

c1
(x>0)

k
=c1

c2

Exit
point

c2

l
=c1 c2

tc
l+1
:x=6

Entry
point

tc
k+1
:

x=1

k+1
=c1 c2

c1

c2
(x<5)

k
is not a prefix of

l
(b)

k
is a prefix of

l

Entry
point

Figure 2: Two relationships between ψk and ψl

tck+1) is a solution of ϕk+1, tck+1 ̸= tcl+1. In addition, for a similar reason,
ϕk+1 ̸= ϕl+1.

For example, ψk = c1(x > 0) in Figure 2(b) is a prefix of ψl = c1 ∧ ¬c2((x >
0) ∧ ¬(x < 5)). Suppose that Solve() generates a solution to c1 as x = 1 (i.e.,
tck+1 : x = 1). Then, the next symbolic path formula ψl contains ¬c2, since
one path condition in ϕk+1 should be negated to generate ψl and c2 is located
lower than c1. Thus, ψl = c1 ∧ ¬c2 and its solution tcl+1 can be x = 6.

Third, for the cases where k, l ≥ 1 ∧ k > l ∧ ψk ̸= ψl, a similar proof for the
second case applies.

3 Distributed Concolic Algorithm
The distributed concolic algorithm relies on the fact that the following core part of
Algorithm 1 can be processed independently:

From each new test case tci+1 in the loop, the algorithm generates fur-
ther test cases to explore all possible execution paths that share a common
prefix (i.e., c1 ∧ ... ∧ ¬cj) by calling Concolic(tci+1, j + 1, i + 1) in a
recursive manner (line 13).

In other words, the loop in Algorithm 1 generates test case pairs (i.e., (tci+1, j + 1)s),
each of which can be processed by a distributed node independently. To generate
test cases in a distributed manner, a node processes (tc, neg limit) in its queue qtc
(lines 14-33 of Algorithm 2) and stores a new pair (tci+1, j+1) in qtc (line 27). In this
way, a recursive Concolic() call (line 13 of Algorithm 1) is transformed into a loop
with qtc in Algorithm 2 (lines 14-33). Or, a node transfers (tc, neg limit)s in qtc to
other nodes whose qtc is empty so that the other nodes can process (tc, neg limit)s.

Initially, one startup node running DstrConcolic() starts the testing process
(lines 6-7) and begins generating test cases. Then, the node transfers generated test
cases to other nodes that request initial test cases (lines 9-10). If qtc is empty (exiting

6

the loop of lines 14-33) and the qtcs of all distributed nodes are empty, the algorithm
terminates (line 39). Otherwise (i.e., there is another node n′′ that has test cases), a
current node n requests test cases from another node n′′ (line 35) and receives test
cases from n′′ (line 36). The received test cases are then added into qtc (line 37) and
the algorithm continues from line 13.

This distributed concolic algorithm does not generate redundant test cases (test
cases that cover the same path), just as the non-distributed concolic algorithm does not
(again, with the assumption that ϕi truly reflects pathi and Solve(ψi) can solve ψi).
Theorems 2 and 3 confirm this property of the distributed algorithm in the SCORE
framework.

Theorem 2 If there is only one node and the node runs DstrConcolic() with startup
as true in Algorithm 2, the node does not generate redundant test cases.

A brief proof sketch is as follows. We prove that Algorithm 2 with startup as true is
equivalent to Algorithm 1. This can be shown by step-by-step transformation of the re-
cursiveConcolic() of Algorithm 1 into the while loop (lines 14-33) with qtc of Algo-
rithm 2 (qtc simulates a call stack to store actual parameters of recursive Concolic()).
Then, from Theorem 1 and Corollary 1, Algorithm 2 does not generate redundant test
cases.

Theorem 3 Algorithm 2 does not generate redundant test cases among the distributed
nodes.

A brief proof sketch is as follows. Theorem 2 shows that DstrConcolic() does
not generate redundant test cases on one node. In addition, DstrConcolic() gen-
erates test cases based on only (tc, neg limit) in qtc. Thus, a node n that receives
(tc, neg limit)s from a node n′ generates the same test cases, as if n′ generates the
test cases from these (tc, neg limit)s. In other words, when Algorithm 2 terminates,
the total set of test cases generated by multiple distributed nodes are the same as the
set of test cases generated by one node. Consequently, Theorem 3 follows from Theo-
rem 2.

7

Input:
startup: a flag to indicate whether a current node n is a startup node or not.
Output:
TCn: a set of test cases generated at a current node n (i.e., tci+1s of line 25)

1 DstrConcolic(startup) {
2 qtc = ∅; // a queue containing (tc, neg limit)s
3 TCn = ∅; // a set of generated test cases
4 i = 1;
5 if startup then
6 tc1 = random value; // initial test case
7 Add (tc1, 1) to qtc;
8 else
9 Send a request for test cases to n′;

10 Receive (tc, neg limit)s from n′;
11 Add (tc, neg limit)s to qtc;
12 end
13 while true do
14 while | qtc |> 0 do
15 Remove (tc, neg limit) from qtc;
16 // Step 3: Concrete execution
17 pathi = an execution path of a target program running on tc
18 // Step 4: Obtain a symbolic path formula ϕi
19 ϕi = a symbolic path formula obtained from pathi
20 j =| ϕi |;
21 while j >= neg limit do
22 // Step 5: Generate ψi for the next input values
23 ψi = c1 ∧ ... ∧ cj−1 ∧ ¬cj ;
24 // Step 6: Select the next input values
25 tci+1 = Solve(ψi);
26 if tci+1 is not NULL then
27 Add (tci+1, j + 1) to qtc;
28 TCn = TCn ∪ {tci+1};
29 i = i+ 1;
30 end
31 j = j − 1;
32 end
33 end
34 if there is a test case in another node n′′ then
35 Send a request for test cases to n′′

36 Receive (tc, neg limit)s from n′′

37 Add (tc, neg limit)s to qtc
38 else
39 Halt; // no test cases exist in all nodes
40 end
41 end
42 }

Algorithm 2: Distributed concolic algorithm8

