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As  multi-core  hardware  has  become  more  popular,  concurrent  programming  is being  more  widely
adopted  in  software.  In  particular,  operating  systems  such  as  Linux  utilize  multi-threaded  techniques
heavily  to enhance  performance.  However,  current  analysis  techniques  and  tools  for  validating  concur-
rent programs  often  fail to detect  concurrency  bugs  in  operating  systems  (OSes)  due  to the  complex
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characteristics  of  OSes.  To  detect  concurrency  bugs  in  OSes  in  a practical  manner,  we have developed  the
COncurrency  Bug  dETector  (COBET)  framework  based  on composite  bug patterns  augmented  with  seman-
tic conditions.  The  effectiveness,  efficiency,  and  applicability  of  COBET  were  demonstrated  by  detecting
10  new  bugs  in file  systems,  device  drivers,  and  network  modules  of Linux  2.6.30.4  as  confirmed  by  the
Linux maintainers.
inux

. Introduction

As multi-core hardware becomes increasingly powerful and
opular, operating systems (OSes) such as Linux utilize the cutting-
dge multi-threaded techniques heavily to enhance performance.
owever, current analysis techniques and tools for concurrent pro-
rams have limitations when they are applied to operating systems
ue to the complex characteristics of OSes. In particular, the follow-

ng three characteristics of OSes make concurrency bug detection
n OSes difficult.

Various synchronization mechanisms utilized
Most concurrency bug detection techniques (Choi et al., 2002;

Engler and Ashcraft, 2003; Naik et al., 2009; Raza and Vogel, 2008;
Savage et al., 1997; Voung et al., 2007) focus on lock usage, since a
majority of user-level applications utilize simple mutexes/critical
sections to enforce synchronization. However, OSes exploit var-
ious synchronization mechanisms (see Table 1) for performance
enhancement.
Customized synchronization primitives

OS developers sometimes implement their own synchro-
nization primitives. Thus, concurrency bug detection tools for

standard synchronization mechanisms do not recognize these
customized synchronization primitives and produce imprecise
results (Xiong et al., 2010).
High complexity of operating systems
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A dynamic analysis (i.e., testing) often fails to uncover hid-
den concurrency bugs due to the exponential number of possible
interleaving scenarios between threads in OSes. In addition,
replaying bugs is difficult, since it is hard to manipulate thread
schedulers in OSes directly. A static analysis, on the other hand,
has limited scalability to analyze OS code due to its high complex-
ity and complicated data structures. Furthermore, the monolithic
structure (i.e., tightly coupled large global data structure) of OSes
severely hinder modular analyses.

For these reasons, in spite of much research on concurrent bug
detection (see Section 6), such techniques have seldom been
applied to OS development in practice.

To alleviate the above difficulties, we have developed the
COncurrency Bug dETector (COBET) framework, which utilizes
composite bug patterns augmented with semantic conditions.  Note
that concurrency errors are caused by unintended interference
between multiple threads. A salient contribution of COBET is that
it utilizes multiple sub-patterns, each of which represents a buggy
pattern in one thread, and checks semantic information that deter-
mines possible interferences between multiple threads in a precise
and scalable manner (see Section 3). In addition, since engineers
who use COBET can define various concurrency bug patterns in
a flexible manner, COBET can detect concurrency bugs that are
due to customized synchronization mechanisms or not targeted
by lock-based concurrency bug detection tools.

One drawback of COBET is that a user has to identify and define

bug patterns. To identify effective (i.e., detecting many bugs) and
precise (i.e., raising few false alarm) bug pattern requires user’s
domain knowledge on target code. In addition, it takes time to
concretely define bug patterns for identified bugs in a machine

dx.doi.org/10.1016/j.jss.2012.08.063
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
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Table 1
Statistics on the synchronization statements in the Linux kernel 2.6.30.4.

Atomic inst. Cond. var. Memory barrier Mutex rw sema-phore rw spin lock Sema-phore Spin lock Thread operation Total
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# of Stmt 8926 949 1926 14,902 2471 

Ratio 11.3%  1.2% 2.4% 18.9% 3.1%

rocessable form. Without such effort, it is easy to define imprecise
ug patterns, which increases the burden to filter out false alarms
anually and, thus, decreases practical usefulness of the COBET

ramework.1

However, once such bug patterns are well-defined, correspond-
ng pattern detectors can be implemented to detect concurrency
ugs in (1) subsequent releases of the target program, and/or (2)
ther modules in a similar domain. It has been frequently observed
hat although a given bug had been fixed previously, similar bugs
ften appeared in the subsequent releases or in the different mod-
les of the target program (see Sections 5.1 and 5.3). Thus, initial
fforts to define bug patterns could be sufficiently rewarded by
etecting concurrency bugs in rapidly evolving large software sys-
ems such as Linux. Furthermore, to lessen the effort to define bug
atterns and construct corresponding bug pattern detectors, the
OBET framework provides a pattern description language (PDL)
see Section 3.2).

Currently, COBET provides four concurrency bug patterns that
re identified based on a review of Linux kernel ChangeLog docu-
ents. The effectiveness of COBET was demonstrated by detecting

0 new bugs in file systems, network modules, and device drivers
f Linux 2.6.30.4 (the latest Linux release at the moment of the
xperiments), which were confirmed by Linux maintainers.

The contributions of this research are as follows:

We have derived interesting observations on the Linux concur-
rency bugs from a review of the Linux ChangeLog documents on
Linux 2.6.x releases (Section 2).
We have developed a pattern-based concurrency bug detection
framework, which can define and match various bug patterns. To
improve bug detection precision, our framework utilizes com-
posite patterns with semantic conditions in a scalable manner
(Section 3).
Based on previous bug reports, we have defined four concurrency
bug patterns with various synchronization mechanisms, which
are effective to detect new bugs in Linux that are not targeted by
lock-based analysis techniques. (Sections 4 and 5).

The remainder of this paper is organized as follows. Section 2
escribes the characteristics of Linux to show the advantages
f pattern-based bug detection approach on Linux. Section 3
verviews the COBET framework. Section 4 explains composite bug
atterns with semantic conditions upon the COBET framework.
ection 5 reports the evaluation of the COBET framework through
he empirical results on Linux kernel. Section 6 discusses related
ork. Finally, Section 7 concludes the paper.

. Characteristics of Linux operating system
In this section, we describe the characteristics of concurrent
rogramming practices used in Linux.

1 We  have defined only four bug patterns (Section 4), since we had to learn domain
nowledge on Linux kernel from scratch in limited research time. However, if Linux
evelopers define bug patterns, they could build a database containing many effec-
ive  and precise bug patterns in modest time. Since COBET is very fast to apply bug
atterns to large program code (see Tables 3–5), a large number of bug patterns may
ot  cause much overhead to detect concurrency bugs.
4248 759 44,205 460 78,846
5.4% 1.0% 56.1% 0.6% 100.0%

2.1. Synchronization mechanisms in Linux

Linux utilizes various synchronization mechanisms for
enhanced performance. We  gathered statistics on the nine
standard synchronization mechanisms in the entire kernel code
of Linux 2.6.30.4, which consists of around 11.6 million lines of
C code. These nine synchronization mechanisms include atomic
instructions, conditional variables, memory barriers, mutexes,
read/write sema-phores, read/write spin locks, semaphores, spin
locks, and thread operations (e.g., thread creation and join). Those
synchronization mechanisms are identified in target code by the
name of the corresponding library function calls.

Table 1 shows the numbers of statements for the nine
synchronization mechanisms. Locks, the most popular synchro-
nization mechanism, can be implemented by using spin locks,
mutexes, and binary semaphores. Thus, locks take 75–76%
(=56.1% + 18.9% + 0–1.0%) of all synchronization statements in the
Linux kernel code. Consequently, 24–25% of synchronization state-
ments cannot be examined by lock-based bug detection techniques.

2.2. Survey of the Linux bug reports

We  reviewed 324 ChangeLogs on Linux 2.6.0–2.6.30.3 to under-
stand the nature of real concurrency bugs (as Lu et al., 2008 did on
large application programs) and identified concurrency bug pat-
terns accordingly. We  concentrated on the bug reports related to
Linux file systems for the following three reasons. First, file sys-
tems utilize heavy concurrency to handle multiple I/O transactions
simultaneously. Thus, we  expected that file systems had many
concurrency issues. Second, there are relatively rich reference doc-
uments on the Linux file systems, so that it is easy to understand
the bug reports and define bug patterns. Third, as Linux file system
consists of multiple naive file systems such as nfs and ext4 whose
overall functionalities are similar, we expected that we could find
a concurrency bug that occurred commonly in multiple naive file
systems, which can be a good candidate for a bug pattern to define.

We collected the concurrency bug reports on the Linux file sys-
tems by searching related keywords (i.e., ‘lock’, ‘concurrency’, ‘data
races’, ‘deadlock’, etc.) as well as manual inspection. Finally, we
found 50 concurrency bug reports on the Linux file systems and 27
of them were selected for in-depth review (the remaining 23 bugs
were discarded, since these bugs were caused by domain-specific
requirement violations or could not be understood concretely).
Through the review, we made the following observations:

Observation 1: Half of the concurrency bugs are involved with
synchronization mechanisms other than locks. 12 of the 27 bugs were
associated with synchronization mechanisms other than locks (i.e.,
atomic instructions, memory barriers, thread operations, etc.). In
addition, locks were sometimes used in a non-standard manner
(e.g., recursive locking and releasing on blocking). This observa-
tion indicates that we  need customizable/flexible concurrency bug
detection tools that can analyze various synchronization mecha-
nisms, not only standard lock usages.

Observation 2: Code review was more effective to detect concur-
rency bugs than runtime testing was. Linux ChangeLogs reported

that, among the 27 concurrency bugs, nine were detected by actual
testing and 13 bugs detected by manual code review (the sources
of the remaining five bugs were not clear). In general, code review
does not reason with concrete input data and scheduling, but by
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eading code statically. Note that pattern-based concurrency bug
etection also has this characteristics of the code review.

Observation 3: Linux kernel code was updated frequently. For
ix years, 324 Linux releases (including major releases and minor
eleases) have been made. This means that a new Linux kernel
as been released on average every week. In addition, on average,
.83 patches have been applied to Linux 2.6.x releases per hour
Kroah-Hartman et al., 2009). Furthermore, the Linux kernel has
een constantly growing up from 2.6.11 release (6.6 million lines
f code in 17,090 files) to 2.6.30 release (11.6 million lines of code
n 27,911 files) (Kroah-Hartman et al., 2009). Thus, we  need a light-

eight bug detection framework that can analyze a large program
uickly and conveniently.

.3. Complexities of Linux file systems

To estimate the complexities of the Linux file systems, we
ounted the number of different call sequences by traversing the
nter-procedural control flow graphs (CFGs) starting from thread-
tarting functions such as system calls for the seven Linux file
ystem codes, including btrfs,  ext4, nfs, proc, reiserfs,  sysfs,
nd udf. The number of call sequences can serve as a measure for
he complexity of the file system, since each call sequence rep-
esents a unique execution scenario. Each file system is analyzed
ogether with virtual file system (VFS) code.

Table 2 describes the statistics on call sequences of the seven
inux file systems. To analyze all of these file systems (145KL, i.e.,
45 thousand lines of C codes), we had to analyze 20 billion differ-
nt execution scenarios whose average call depth is around 38 (see
he last column of Table 2). Furthermore, due to non-deterministic
cheduling, the total number of concurrent execution scenarios is
xponential in the number of sequential execution scenarios in
able 2. Thus, it is clear that, due to the huge number of execu-
ion scenarios, achieving high coverage by testing and/or model
hecking is infeasible. Therefore, light-weight analysis techniques
hould be developed for complex operating systems like Linux.

. COBET framework

The observations in Section 2 suggest that a pattern-based con-
urrency bug detection framework can be a practical solution for
inux. Thus, we have developed the COncurrency Bug dETector
COBET) framework for concurrent C programs based on a pattern

atching approach.

.1. Overview of the COBET framework

The overall structure of the COBET framework is depicted in
ig. 1. Since concurrency errors are caused by unintended inter-
erences among multiple concurrent threads, a concurrency bug
attern should be specified as multiple sub-patterns each of which
aptures a specific code running on each thread. For this purpose,
OBET provides a pattern description language (PDL) to describe
he syntactic structure of a bug pattern (see Section 3.2). The COBET
ynthesizer generates a bug pattern detector from a user-specified
ug pattern description in PDL. A synthesized bug pattern detector
ontains the following four components:

syntactic pattern matcher,
semantic condition checker,
semantic analysis engine, and

abstract syntax tree (AST) generator.

A syntactic pattern matcher in a generated bug pattern detector
etects segments of a target program code that match sub-patterns
Fig. 1. Overview of the COBET framework.

in the given PDL description. Then, a semantic condition checker
checks whether or not these code segments can run concurrently
and interfere with each other through a semantic analysis engine.
For this purpose, the semantic analysis engine performs path anal-
ysis, lock analysis, and alias analysis (see Section 3.3). For these
analyses, a user should provide configurations of a target program,
which include names of thread starting functions, specifications
of lock/unlock operations (e.g., spin lock() and spin unlock()),
and specification of memory allocation operations (e.g., kmalloc()
and kmem cache alloc()). Different target domains may  have dif-
ferent configurations. At the lowest layer, the AST generator parses
and creates the AST of a target program using the EDG parser (E.D.
Group, 2011). The AST of a target program is used by the syntactic
pattern matcher to detect code segments that match bug patterns
syntactically.

The COBET framework consists of 4500 lines of C code in 96
functions. The COBET framework uses GCC 4.3.0 to preprocess a
target code and EDG C/C++Front-End 3.1 to parse the preprocessed
code.

3.2. Bug pattern detectors

The COBET synthesizer constructs bug pattern detector code
from a user-given bug pattern specification. A pattern description
language (PDL) is designed to help engineers define bug patterns in
a correct and convenient manner. Fig. 2 shows the brief grammar of
PDL. In PDL, a concurrency bug pattern is described as a set of sub-
patterns (line 1 of Fig. 2), each of which specifies target code running
on one thread. A sub-pattern contains one or more function descrip-
tions (line 2). A function description consists of abstract statement
descriptions (line 3). An abstract statement description (lines 4–10)
is specified with a keyword (e.g., if,  loop, lock, and read) which
indicates a type of target code statement to match. A bug pattern

detector based on PDL searches target code to find matched code
statements while ignoring irrelevant code statements. In addition,
PDL can describe a bug pattern by using \{Stmt+} (exclusion), which
specifies statements that should not appear in pattern matching
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Table 2
Statistics on the call sequences of the seven Linux file systems.

btrfs ext4 nfs proc reiserfs sysfs udf Total/avg.

Lines of code 41KL 28KL 29KL 8KL 27KL 3KL 9KL Total 145KL
12M 13413M 1M 51M Total 20488M
33 55 26 43 Avg. 51
25 38 23 35 Avg. 38
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f1() f2()
#  of call sequences 2100M 1501M 3394M
Max.  length of call seq. 88 54 57 

Avg.  length of call seq. 60 43 39 

nstances. In PDL, $<name> is an untyped free variable that binds a
orresponding code element in a target C statement.

First, a bug pattern detector matches a PDL description to a tar-
et code in a syntactic manner using the tree pattern matching
lgorithm (Dubiner et al., 1994); the syntactic pattern matcher in
he pattern detector maps each abstract pattern statement to a C
tatement and each free variable to a C expression. For example,

 pattern description if $cond { write $var;}  can match if
x<0) { x=f(x); y= x*x; } and generates the following two
attern matching instances. For the first matching instance, $cond
nd $var are bound to x<0 and x in a target code, respectively.
or the second instance, $cond and $var are bound to x<0 and
, respectively. Free variables of PDL are used to describe subtle
onditions in a bug pattern.

Second, to check semantic conditions on a pattern matching
nstance, pattern detector code invokes sem cond checking()
t every syntactic matching/binding step. As a default,
em cond checking() checks feasibility of interference among
ode segments that match sub-patterns and run on multiple
hreads (e.g., checks whether or not the sets of held locks at
ifferent sub-patterns are disjoint (see Section 3.3)). In addition, a
ser can add sophisticated semantic condition checking routines
o this function, since synthesized pattern detector code is human-
eadable. For this purpose, COBET provides library functions to
heck the semantic conditions in a bug pattern matching instance.
ig. 6 shows one example of sem cond checking() for ‘misused
est and test-and-set’ bug pattern (see Section 4.1).

.3. Semantic analysis engine

The COBET semantic analysis engine checks whether or not mul-
iple code segments that match specified sub-patterns can run
oncurrently and interfere with each other through path analy-
is, lock analysis, and alias analysis. The semantic analysis engine
erforms the path analysis first to explore inter-procedural exe-

ution paths reaching functions that match at least one syntactic

Bug-pattern ::= Sub-pattern+

Sub-pattern ::= pattern constant {Function+}
Function ::= fun Identifier {Stmt+}

Stmt ::= if $cond {Stmt∗}
| if $cond {Stmt∗} else {Stmt∗}
| loop $cond {Stmt∗ |} break;

| lock Identifier ; | unlock Identifier ;

| read Identifier ; | write Identifier ;

| call Identifier $args ; \| {Stmt+}
| ...

Identifier ::= constant | $ name

Fig. 2. Brief grammar of the COBET pattern description language.
Fig. 3. Interference between two  sub-patterns causing a concurrency error.

sub-pattern. Then, lock analysis and alias analysis are performed
on these execution paths.2

For example (see Fig. 3), suppose that a bug pattern b consists of
two sub-patterns, b.1 and b.2. Also, assume that, through syn-
tactic pattern matching, COBET detects that the target program
has functions f1() and f2(), which contain statements sb.1 and
sb.2 matching b.1 and b.2, respectively. Then, the COBET seman-
tic analysis engine statically explores execution paths starting from
thread-starting functions to the target functions f1() or f2() (path
analysis). Suppose that the COBET analysis engine finds that there
is a lock to prohibit concurrent executions of f1() and f2() in all
possible paths (lock analysis). Then, COBET concludes that b does
not occur, since sb.1 and sb.2 cannot be interleaved and, thus, cannot
interfere with each other. If there is no such lock to prevent inter-
ference between sb.1 and sb.2, then COBET checks whether or not
sb.1 and sb.2 can access the same variable causing interference (alias
analysis). If the alias analysis result indicates that sb.1 and sb.2 can
access the same shared variable, COBET reports that b is detected
in the target program.

Path analysis: COBET’s path analysis generates an inter-
procedural CFG from the AST of a target program. Then, the path
analysis generates inter-procedural execution paths starting from
thread starting functions to the functions that match specified sub-
patterns by exploring the interprocedural CFG. Since exploration
of all inter-procedural execution paths in the OS consumes a huge
amount of time (see Section 2.3), COBET conducts syntactic pattern
matching first to prune irrelevant execution paths.
If a target program has many function pointers, which are
frequently used to link lower-layer modules to upper-layer mod-
ules in layered OS architecture, it is hard to generate an accurate

2 The path analysis, lock analysis, and alias analysis of COBET are similar to the
techniques used in RacerX (Engler and Ashcraft, 2003).
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during manual code optimization.
We define the ‘misused test and test-and-set’ bug pattern3 as

two sub-patterns, pattern 1 and pattern 2, in Fig. 5. This bug
Fig. 4. Caching in the lock analysis.

nter-procedural CFG, since we do not know which functions will
e called via function pointers. COBET solves this problem using
he following heuristics. COBET constructs a function pointer table
onsisting of pairs of a function pointer and candidate functions
hich can be invoked through the function pointer, by analyzing

ssignment statements on global variables of function pointer type.
he path analysis refers to the table when it reaches a function call
ia a function pointer. If there exist multiple candidate functions
or a function pointer, the path analysis generates multiple paths
o all these candidate functions in a conservative manner.

Lock analysis: COBET’s lock analysis formulates locksets  (i.e., a
et of held locks) at a code location. The lockset information is used
o check whether or not two code locations are guarded by the
ame lock. The lock analysis obtains a lockset of a code location by
xploring inter-procedural execution paths while recording lock
cquiring operations and lock releasing operations. The lock analy-
is recognizes lock/unlock operations in a target program based on
he lock operation function names specified in an input configura-
ion to COBET. The technique concludes that two lock operations
ith parameters acquire the same lock if their parameters may  alias

ach other. COBET performs path-insensitive lock analysis due to
he high computational cost of path-sensitive lock analysis. For a
ranching statement, the lock analysis explores both branches and
akes the union of the two locksets obtained from both branches as

 result of the branching statement. For a loop statement, COBET
nalyzes only one iteration.

COBET uses an inter-procedural lock analysis. In other words,
he technique transfers the lockset of a call site in a caller function
o the analysis on the callee function. However, to prevent propaga-
ion of incorrect lock analysis results from a callee function, COBET
oes not reflect the locksets of exit statements in the callee function
o the caller function (Engler and Ashcraft, 2003).

To avoid redundant inter-procedural lock analysis, COBET
emantic analysis engine uses a cache that records the lock analy-
is result for functions. When the analysis reaches a call site of f()
ith a lockset LS,  COBET tries to find 〈f(), LS〉  in the cache. If the

ache does not contain such an entry, the analysis continues to the
allee function f(). Otherwise, the analysis does not go into f().
ig. 4 illustrates the cache operations. The lock analysis on the first
xecution path records 〈f1(),∅〉, 〈f2(), {L1}〉 in the cache. The lock

nalysis on the second execution path skips f2(), since the cache
lready contains 〈f2(), {L1}〉. This cache technique saves a large
mount of lock analysis time in our experiments, achieving 2–20
imes speedup compared to non-caching lock analysis.
 and Software 86 (2013) 377– 388 381

Alias analysis: COBET’s alias analysis statically examines
whether or not two expressions may  access the same shared vari-
able. COBET utilizes the extended type information on variables
(i.e., type of a variable and the type of a structure containing the
variable as a field) for the analysis and considers two  heap variables
of the same type to be aliased.

COBET assumes that the following variables are non-shared:
(1) local variables, and (2) dynamically allocated variables through
function calls such as kmalloc() and kmem cache alloc() that
are not assigned to global variables yet (i.e., performing ‘unique-
ness analysis’; Pratikakis et al., 2011). The technique traces pointer
assignments and considers a variable that is assigned with a non-
shared variable to be a non-shared variable, too. At a function call
site, if actual parameters of the function are non-shared variables,
the analysis utilizes this information during the analysis of the
callee function.

4. Composite bug patterns with semantic conditions

After reviewing the bug reports on Linux file systems (see Sec-
tion 2.2), we  defined the following four bug patterns:

1. misused test and test-and-set,
2. unsynchronized communication at thread creation,
3. incorrect usage of atomic operations, and
4. waiting for an already terminated thread.

For each bug pattern, it takes approximately 3 h for one gradu-
ate student with the knowledge on the Linux file systems and the
bug pattern to define a corresponding syntactic bug pattern in PDL
and implement a bug pattern detector based on the generated tem-
plate code upon the COBET framework. The following subsections
explain these four patterns in detail.

4.1. Misused test and test-and-set

Test and test-and-set programming idioms are used to reduce the
number of expensive lock operations required to protect a shared
variable.
1:if(c) { // Test and test-and-set idiom

2: lock l v;

3: if(c) {
4: update v;}
5: unlock l v;}

Suppose that c indicates whether or not a current thread can
update a shared variable v. Before performing an expensive lock
operation (line 2) to update v safely (line 4), this idiom checks
whether or not c is satisfied (line 1). Thus, the lock operation is
executed only when c is true. If c is true (line 1), the above code
performs a lock operation (line 2) and checks c again (line 3), since
c might be changed by other threads between lines 1 and 3.

Unfortunately, programmers often omit this second
check (line 3), which results in a race condition. For exam-
ple, Linux ChangeLog 2.6.11.1 reported a data race bug in
ext3 discard reservation() in the ext3 file system, which
was caused by misused test and test-and-set idiom. We  suspect
that similar bugs existed in the subsequent releases or other
modules of Linux as this bug pattern could be easily introduced
3 This pattern is different from ‘double-checked locking’ (Hovemeyer and Pugh,
2004),  which consider test and test-and-set idioms as bugs due to the Java memory
model. Our bug pattern checks whether or not test and test-and-set idioms are
correctly used in general.



382 S. Hong, M. Kim / The Journal of Systems and Software 86 (2013) 377– 388

1a:pattern {1 1b:pattern {2
2a: fun $f1 { 2b: fun $f2 {
3a: if $cond { 3b: write $w;
4a: lock $l; 4b: }}
5a: \{if $cond }{ }
6a: unlock $l;
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// Matching with pattern 1
1c:int proc_get_sb(file_syst em_type *fs_type...){
2c: ...
3c: ei = PROC_I(sb->s_root->d_inode);
4c: if(!ei->pid) {
5c: rcu_read_lock();
6c: ei->pid = get_pid(...;

// Matching with pattern 2
1d:int proc_get_sb(file_syst em_type *fs_type...){
2d: ...
3d: if(!ei->pid)
4d: ei->pid = find_get_pid(1);

// Matching with pattern 2
1e:inode *proc_alloc_inode(super_block *sb){
2e: ...
3e: ei = kmem_cache_alloc(...);
4e: if (!ei) return NULL ;
5e: ei->pid = NULL ;

The Linux kernel creates a new thread by using kthread run().
7a: }}}

Fig. 5. Misused test and test-and-set bug pattern.

attern has the following semantic conditions to check in all pattern
atching instances:

. A lockset at target code that matches 3a must be disjoint with
the lockset at target code that matches 3b.  Otherwise, target code
that matches pattern 1 and pattern 2 do not interfere with
each other.

. $w should be a shared variable.

. $cond should contain a variable that is equal to or alias to $w.

sem cond checking(bug instance bi) in Fig. 6 checks
hese semantic conditions. Through the pattern matching,
ach field of bug instance contains a target code element
hat matches a corresponding PDL element of a bug pattern.
or each binding of bug instance to a target code entity,
em cond checking(bug instance bi) is invoked to check if the
urrent pattern matching instance bi satisfies the semantic con-
itions. Line 2 in Fig. 6 checks whether or not target code that
atches pattern 1 and pattern 2 is protected by a common

ock. bi. 3a and bi. 3b represent target code that matches the
bstract statements 3a and 3b in the PDL description (see Fig. 5).
s lockset disjoint (bi. 3a,bi. 3b) obtains the lock analy-
is results for the code statements that match abstract statements
a and 3b of the PDL description. Lines 4 and 6 utilize alias analysis
o check whether or not matched code statements may  access the
ame shared variable and cause a data race. bi. w and bi. cond
epresent the code elements that match $w and $cond in the PDL
escription, respectively.

We  now illustrate how COBET detects this bug pattern in the
xample shown in Fig. 7. In this example, suppose that COBET
etects two syntactically matching instances:

Matching instance 1: proc get sb() (lines 1c–6c) and
proc get sb() (lines 1d–4d) matched pattern 1 and pattern
2, respectively.
Matching instance 2: proc get sb() (lines 1c–6c) and
proc alloc inode() (lines 1e–5e) matched pattern 1 and
pattern 2, respectively.

For matching instance 1, to check semantic condition 1 (the lock-

et at target code that matches 3a must be disjoint to the lockset at

 target code that matches 3b), COBET checks whether or not there
xists a lock to synchronize the target codes that match pattern

 and pattern 2. COBET finds that the lockset at line 3c and the

1: BOOL sem_cond_checking(bug_instance bi) {
2: if (is_lock_disjoint(bi._ 3a, bi._3b) == FALSE)
3: return FALSE;
4: if (is_shared_var(bi._w) == FALSE)
5: return FALSE;
6: if (may_alias(bi._cond,bi._w) == FALSE)
7: return FALSE;
8: return TRUE; }

Fig. 6. Semantic condition checking function.
Fig. 7. proc get sb() (in fs/proc/root.c) and proc alloc inode() (in
fs/proc/inode.c)  of Linux kernel 2.6.30.4.

lockset on line 3d always contained lock kernel. This indicates
that line 3c and line 3d cannot run concurrently, thus cannot inter-
fere each other. Thus, COBET ignores this matching instance.

For matching instance 2, COBET finds that there is an execution
path that has no lock to synchronize the target code that match
pattern 1 and pattern 2. However, by checking semantic con-
dition 2 ($w should be a shared variable), the alias analysis finds
that ei->pid at line 5e is not a shared variable, since ei was allo-
cated (line 3e) and had not yet become shared. Therefore, COBET
concludes that the matching instance 2 should be rejected as well.

As another example, the following matching instance was  found
in the netfilter network module (see Section 5.3) as shown in
Fig. 8.

• Matching instance 3: htable put() (lines 1f–5f) and
htable find get() (lines 1g–3g) matched pattern 1 and
pattern 2, respectively.

Matching instance 3 was  not filtered out by the semantic analy-
ses, so we  reported this result as a suspected bug to a corresponding
Linux maintainer. The Linux maintainer in charge of netfilter
confirmed this bug report and fixed htable put() in Linux 2.6.34
(Linux, 2010).

4.2. Unsynchronized communication at thread creation
For instance, kthread run(func, arg, “daemon”) creates a
new kernel thread whose name is ”daemon” and then executes

// Matching with pattern 1
1f: void htable_put(xt_hashlimit_htable *hinfo){
2f: if (atomic_dec_and_test(&hinfo->use) {)
3f: spin_lock_bh(&hashlimit_lock) ;
4f: hlist_del(&hinfo->node) ;
5f: spin_lock_bh(&hashlimit_lock) ;

// Matching with pattern 2
1g: xt_hashlimit_htable *htable_find_get(net *net, u_int8_t family) {
2g: ...
3g: atomic_inc(&hinfo->use);

Fig. 8. htable put() and htable find get() in
net/netfilter/xt hashlimit.c of Linux kernel 2.6.30.4.
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1h:pattern {1 1i:pattern {2
2h: fun $f1 { 2i: fun $f2 {
3h: call "kthread_run" $a1; 3i: read $a3;
4h: write $a2 ; 4i: }}
5h: }}

Fig. 9. Unsynchronized communication at thread creation bug pattern.

// Matching with pattern 1
1j:int btrfs_start_workers(btrfs_workers *workers,

int num_workers) {
2j: ...
3j: worker->task = kthread_run(worker_loop,worker ,

"btrfs-%s-%d",worker->name,worker->num_workers+i);
4j: worker->workers = workers;

// Matching with pattern 2
1k:int worker_loop(void *arg) {
2k: btrfs_worker_thread *worker = arg ;
3k: ...
4k: work->worker = worker;
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1: unsigned int ip_vs_in(unsigned int hooknum,
2: sk_buff *skb, net_device *in, net_vice *out,
3: int(*okfn)(sk_buff *)) {
4: ...
5: atomic_inc(&cp->in_pkts);
6: if (af == AF_INET
7: && (ip_vs_sync_stat &e IP_VS_STATE_MASTER)
8: && ((cp->protocol != IPPROTO_TCP ||
9: cp->state == IP_VS_TCP_S_ESTABLIS HED)
10: && (atomic_read(&cp->in _pkts ) ...
ig. 10. btrfs start workers() and worker loop() at fs/btrfs/async-

hread.c of Linux 2.6.30.4.

unc(arg) on the thread. arg is a single variable used as a func-
ion parameter. Through this variable, a parent thread transfers
ata used for the initialization of a new thread. In many cases, a
arent thread passes a shared memory address through which the
arent thread communicates with the child thread. For this type
f communication, a parent thread and the child thread should be
ynchronized. However, programmers often omit synchronization
o that concurrent execution of a parent thread and its child thread
an exhibit data race errors. Linux ChangeLog 2.6.24 reported such

 bug in GFS2 file system.
We  defined this ‘unsynchronized communication at thread cre-

tion’ bug pattern as the two sub-patterns pattern 1 and pattern
 shown in Fig. 9. pattern 1 indicates a parent thread that calls
thread run() and then assigns some value to the shared mem-
ry (line 4h). pattern 2 describes a function executed by a child
hread. $f2 reads data passed from its parent thread through a
ointer of the function parameter (line 3i). Since PDL does not
pecify expression-level conditions, a user needs to add additional
ondition checking code to the synthesized bug detector code (i.e.,
he first element of $a1 should be same to $f2). This bug pattern
as the following semantic conditions:

. The lockset at 4h must be disjoint with the lockset at 3i.

. $a2 should be a shared variable.

. $a3 should contain a variable which is equal to or alias to $a2.

The ‘unsynchronized communication at thread creation’ bug
etector found a new bug in btrfs,  as shown in Fig. 10.  The child
hread (worker loop()) can access worker and read an invalid

alue (line 4k), since the parent thread (btrfs start workers())
ay  not have assigned a proper value to worker (line 4j) yet. We

eported this bug to the kernel developers and they made the patch
mmediately (see Linux ChangeLog 2.6.31).

1l:pattern 1 {
2l: fun $f1 { 
3l: call $atomic1 $a1 ; 
4l: if ($a2) { }
5l: }}

Fig. 11. Incorrect usage of atom
Fig. 12. Incorrect usage of atomic operations bug detected at
net/netfilter/ipvs/ip vs core.c of Linux 2.6.30.4.

4.3. Incorrect usage of atomic operations

CPU architectures often provide atomic instructions for syn-
chronization operations, which guarantee the atomic execution
of read and consequent update on operands. ‘test-and-set’ and
‘compare-and-swap’ are examples of these instructions. Linux ker-
nel provides a special variable type atomic t and library functions
for atomic operations (e.g., atomic read() and atomic set())  to
utilize these atomic instructions. When a programmer develops
synchronization code, he/she should use a proper library function
to handle two subsequent read and update atomically. However,
a programmer often mistakenly uses two separate atomic opera-
tions instead of one combined atomic operation, and this can lead
to data races.

We characterize this incorrect atomic operation usage as a bug
pattern shown in Fig. 11.  pattern 1 represents two consecutive
atomic operations whose executions are intended to be atomic.
pattern 2 expresses another thread which can be scheduled
between these two  atomic operations in pattern 1 and interfere
their executions.

The semantic condition checking examines the following con-
ditions:

1. The set of held locks at 3l must be exclusive to the set of held
locks at 3m.  Otherwise, pattern 1 and pattern 2 do not inter-
fere with each other.

2. $a1 and $a3 should be shared variables and may be alias to each
other.

3. $a2 should contain a variable which is equal to or alias to $a1.
4. $atomic1 is an atomic operation that updates $a1. Similarly,

$atomic2 is an atomic operation that updates $a3.
5. $a2 should contain a function call to an atomic operation which

reads $a1 (e.g., atomic read()).

In addition, we modified the generated bug pattern detector code
to check whether the type of associated variables is atomic t or
not. Also, we  provide a list of library function names for atomic
operations. The bug pattern detector utilizes these information to
check the fourth and the fifth semantic conditions.

We found new bugs in the Linux kernel using this bug pat-

tern detector. One example is shown in Fig. 12.  This code updates
&cp->in pkts through atomic inc() at line 5 and then examines
its value through atomic read() at line 10 separately, although
these two operations should be executed together atomically. We

1m:pattern 2 {
2m: fun $f2 {
3m: call $atomic2 $a3 ;
4m: }}

ic operations bug pattern.
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1n:pattern {1 1p:pattern {2
2n: fun $f1 { 2p: fun $f2 {
3n: call "kthread_run" $a1 ; 3p: loop $c1 {
4n: call "kthread_stop" $a2 ; 4p: if $c2 {
5n: }} 5p: break };
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6p: }}}

Fig. 13. Waiting for an already finished thread bug pattern.

eported this bug to corresponding Linux maintainers and the
aintainers immediately patched the code that these two sep-

rate atomic operations were replaced by one combined atomic
peration atomic add return().

.4. Waiting already finished thread

Linux kernel can create and execute a child thread by call-
ng kthread run() and terminate the child thread by calling
thread stop(). kthread stop() sends a special message to a
hild thread and waits until the child thread is terminated. A child
hread should regularly call kthread should stop() that returns
rue if the message is received, and terminate accordingly. Other-
ise, the parent thread waits indefinitely at kthread stop().

A child thread contains a loop whose condition checks
thread should stop(); the child thread operates until
thread should stop() returns true. The child thread should
ot terminate even when the task is completed or the task may
ot proceed due to errors. Otherwise, the parent thread may

nvoke kthread stop() after the child thread terminates and it
aits indefinitely at kthread stop(). Therefore, if a child thread

erminates earlier than the parent thread calls kthread stop(),
eadlock will occur. Linux ChangeLog 2.6.28 reported this bug,
here the loop was escaped by break statement for an error

ondition.
We specified this bug into a PDL pattern as shown in Fig. 13.

attern 1 represents a parent thread which creates a child thread
nd invokes kthread stop() for the child thread. pattern 2
pecifies the function for a child thread which has a loop with
thread should stop(). Line 5p escapes the loop and terminates
he child thread.

We  detected related bugs in Linux 2.6.30.4 btrfs file system.
ne example is shown in Fig. 14.  The child thread terminates
hen the error handling branch is taken (lines 5q–6q). The btrfs
evelopers confirmed these bugs. Furthermore, the Linux kernel
evelopers modified the semantics of kthread stop() to prevent

ndefinite waiting if the child thread is already finished since Linux
.6.32.
. Empirical results

To investigate the effectiveness, efficiency, and applicability of
he COBET framework, we performed the following three empirical

1q: static int cleaner_kthread(void *arg) {
2q: btrfs_root *root = arg;
3q: do {
4q: smp_mb() ;
5q: if (root->fs_info->closing)
6q: break ;
7q: ...
8q: } while(!kthread_should_stop()) ;
9q: return 0; }

ig. 14. Waiting for an already finished thread bug detected at fs/btrfs/async-

hread.c of Linux 2.6.30.4.
 and Software 86 (2013) 377– 388

evaluations on Linux 2.6.30.4, the latest version at the time of this
empirical study.

• To determine whether pattern-driven bug detectors based on the
old bug reports can detect new concurrency bugs in subsequent
releases, we  applied the four bug pattern detectors (based on the
bug reports on the file systems in Linux 2.6.0–2.6.30.3) to the file
systems in Linux 2.6.30.4. We  reported our bug detection results
to Linux maintainers and validated the bug detection results by
their feedback (Section 5.1).

• We  evaluated the effectiveness and efficiency of the three seman-
tic analyses (path analysis, lock analysis, and alias analysis) of the
COBET semantic analysis engine. We  measured the improvement
in bug detection precision and the additional time cost associated
with each semantic analysis (Section 5.2).

• To investigate the applicability of the COBET framework, we
applied the four bug pattern detectors not only to file systems,
but also to other modules. We  applied the four bug pattern detec-
tors to the device drivers and the network modules, and then
evaluated the bug detection capability (Section 5.3).

In addition, we applied Coverity Prevent (Coverity, 2011) to
the same Linux targets to evaluate the advantages of COBET over
conventional concurrency bug detectors (Section 5.5). Prevent is a
static bug detector and demonstrated its effectiveness successfully
through many real-world software projects (Bessey et al., 2010)
including Linux kernels. We selected Prevent as a representative
static concurrency bug detection tool to compare with COBET, since
most other static concurrency bug detection tools are not available
to analyze Linux kernel.

All empirical studies in this section were performed on 64-bit
Fedora Linux 9 equipped with a 3.6 GHz Core2Duo processor and
16 GB memory.

5.1. Bug detection result on file systems

We applied the four bug pattern detectors (Section 4) to the
seven Linux file systems (btrfs,  ext4, nfs, proc, reiserfs,  sysfs
and udf). Since Linux file systems are tightly coupled with virtual
file system layer (VFS), we analyzed each file system together with
VFS. We  specified all system call handling functions in VFS as the
thread starting points.

Table 3 describes the number of detected bugs for each bug pat-
tern and for each file system. The first row shows the sizes of the file
systems before pre-processing (for example, btrfs is 41,000 lines
long (the second column)). The first number in a cell of Table 3
indicates the number of new bugs detected by COBET. The second
number indicates the number of real bugs among the detected bugs
that were confirmed by the Linux maintainers. For example, COBET
detected two  ‘unsynchronized communication at thread creation’
bugs in btrfs file system (third row, second column). We  reported
these two  suspected bugs to a btrfs maintainer, who confirmed
that one was a real bug, but the other was  a false alarm. COBET took
only 9 s to apply these four bug pattern detectors to the seven file
systems (see the last row and the last column of Table 4).

Another observation is that relatively new file systems such
as btrfs have several concurrency bugs. For example, btrfs was
introduced in the Linux 2.6.29 release in March 2009. It has three
‘waiting already terminated thread’ bugs and one ‘unsynchronized
communication at thread creation’ bug, which were confirmed by
the Linux maintainers. If we can generalize this result, COBET can

detect bugs in recently revised modules more effectively. Consid-
ering that Linux evolves rapidly (see Section 2.2), a light-weight
bug detection tool such as COBET can be a practical aid to detect
concurrency bugs in the OS.
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Table 3
Bug detection results on Linux file systems.

btrfs (41KL) ext4 (28KL) nfs (29KL) proc (8KL) reiserfs (27KL) sysfs (3KL) udf (9KL) vfs (48KL) Total (193KL)

Misused test and test-and-set 3/0 3/0 4/0 2/0 3/0 1/0 2/0 10/0 28/0
Unsync. comm.  at thread creation 2/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2/1
Incorrect usage of atomic operations 5/0 2/0 1/0 0/0 7/0 0/0 0/0 3/0 18/0
Waiting already terminated thread 3/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/3

Total  13/4 5/0 5/0 2/0 10/0 1/0 2/0 13/0 51/4
Time  (s) 1.72 1.90 1.20 0.81 1.26 0.66 0.80 8.35

Table 4
Effectiveness and efficiency of the semantic analyses for the Linux file systems.

Syn. matching
(single sub-pattern

Syn. matching
(multiple sub-patterns

Syn. matching + path
analysis + lock analysis

Syn. matching + path
analysis + lock
analysis + alias analysis

Bug Time (s) Bug Time (s) Bug Time (s) Bug Time (s)

Misused test and test-and-set 51 1.38 36 2.55 32 4.21 28 4.23
Unsync. comm.  at thread creation 2 0.86 2 1.00 2 1.28 2 1.30
Incorrect usage of atomic operations 21 0.90 18 1.06 18 1.55 18 1.59
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To investigate the practical effectiveness of COBET, after we
removed obvious false alarms through code review, we reported
Waiting already terminated thread 3 0.64 

Total  77 3.78 5

.2. Evaluation of semantic analysis techniques

To investigate the effectiveness and efficiency of the COBET
emantic analyses, we measured the false alarm reduction rate
hrough the semantic analyses and additional time cost for the
nalyses. For this purpose, we performed four series of studies for
ach bug pattern detector with different combinations of semantic
nalyses (see Section 3.3).

. The first series of studies detected one main sub-pattern without
semantic analysis (see the second column of Table 4). This series
of studies was similar to the studies with conventional pattern-
based bug detection tools (e.g., MetaL (Hallem et al., 2002) and
FindBugs (Hovemeyer and Pugh, 2004b)).

. The second series of experiments detected multiple sub-patterns
of a bug pattern, but still without semantic analyses.

. The third series extended the second series by performing path
analysis and lock analysis as well. Note that the lock analysis
depends on the path analysis and cannot be performed sepa-
rately.

. The fourth series extended the third by performing alias analysis
as well. This series utilizes all semantic analyses by the semantic
analysis engine.

Table 4 describes the numbers of bugs detected and correspond-
ng analysis time on the seven file systems in total. This table shows
hat the false alarms are reduced as additional analysis techniques
re employed. For example, ‘misused test and test-and-set’ bugs
second row of Table 4) are reduced from 51 to 36, 32, and 28 as

ultiple pattern matching, path/lock analyses, and path/lock/alias
nalyses are applied respectively; finally 45% (=(51 − 28)/51) of the

misused test and test-and-set’ bugs were filtered out through these
echniques.

The time costs for these analysis techniques were not burden-
ome. For example, the four bug pattern detectors spent 8.35 s
n total to analyze the seven file systems with vfs with multi-

le sub-pattern matching and all semantic analyses (last row and

ast column of Table 4) while they required 3.78 s with syntac-
ic analysis for a single sub-pattern only. The maximum memory
onsumption was less than 50 MB in the all experiments.
0.74 3 1.01 3 1.23

5.35 55 8.05 51 8.35

5.3. Bug detection results on device drivers and network modules

To investigate the general applicability of COBET, we  applied the
four pattern detectors for Linux file systems to other Linux modules.
We targeted the seven modules in total including three Linux device
drivers (bluetooth, ieee1494,  and mtd) and four network mod-
ules (atm, ax25, netfilter, and rds(ib)). These target programs
were implemented as loadable kernel module objects. Thus, the
thread starting points of these modules are the function pointers
registered at the module initializations.

Table 5 shows the bug detection results. The first number in
each cell indicates the number of new bugs detected by COBET. The
second number indicates the number of bugs that were confirmed
as “real” by Linux maintainers. The three bug pattern detectors
(‘misused test and test-and-set’, ‘unsynchronized communication
at thread creation’, and ‘incorrect usage of atomic operations’)
detected 13 bugs while ‘waiting for an already terminated thread’
detected no bug. Six bugs among these 13 bugs were confirmed as
real ones by Linux maintainers.

Although the scope of this empirical study is limited, these
results suggest that the bug patterns defined in one domain can
be applied effectively to other domains and can help OS developers
in practice. The following quotation is part of a response from a
Linux maintainer to our ‘misused test and test-and-set’ bug report
on netfilter.

Nice catch, this does indeed look like a bug. The entire locking
concept seems a bit strange, we neither need an atomic t for the
reference count nor two locks to protect the list . . .4

This bug report was  immediately followed by the corresponding
kernel patch. We  received similar positive responses from other
Linux maintainers regarding our bug reports and it indicates that
the COBET approach can help kernel developers to detect subtle
concurrency bugs in a practical manner.

5.4. Analysis on false alarms
4 This quotation is from an e-mail from Patrick McHardy on January 13, 2010. The
full text and patch information can be found at Linux (2010)
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Table 5
Bug detection result on Linux device drivers and network modules.

Device drivers Network modules Total (100KL)

bluetooth (11KL) ieee1394 (25KL) mtd (15KL) atm (8KL) ax25 (7KL) netfilter (27KL) rds(ib) (9KL)

Misused test and test-and-set 0/0 1/0 0/0 1/1 4/1 1/1 1/0 8/3
Unsync. comm.  at thread creation 0/0 0/0 1/1 0/0 0/0 0/0 0/0 1/1
Incorrect usage of atomic operations 0/0 0/0 0/0 0/0 0/0 1/1 3/1 4/2
Waiting already terminated thread 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

1 

5 

t
L
o
A
s
w

•

•

•

•

t
l
t
e

5

c
p

•

•

•

Total 0/0 1/0 1/
Time  (s) 5.90 7.29 7.8

he alarms raised by the COBET bug detectors to the corresponding
inux maintainers. We  received 16 feedbacks for our bug reports
n the file systems, the device drivers, and the network modules.
mong these 16 feedbacks, 10 feedbacks confirmed that the corre-
ponding alarms were real bugs. From the six negative feedbacks,
e could identify the following sources of false positives:

Imprecise semantic analysis:
Although concurrent accesses to a shared variable can be

carefully coordinated to prevent data race (i.e., by a lock-free algo-
rithm), the COBET bug detectors may  still report alarms on the
concurrent access code. This is because the semantic analysis of
COBET is not precise enough to recognize a lock-free algorithm
and suppress false positives.
Limited alias analysis:

Since COBET performs lightweight alias analysis, it may  fail to
reason alias constraints in a complex data structure precisely and
raise a false alarm. A bug pattern detector utilizes the alias anal-
ysis result to check if matched sub-patterns can interact with
each other through a shared variable. Thus, imprecise alias anal-
ysis result may  cause a bug pattern detector to conclude that two
sub-patterns can conflict each other, although they cannot.
Path insensitive analysis:

COBET may  report a false bug pattern matching for an infeasible
execution path due to path insensitive analysis. For example, a
bug pattern may  match two statements guarded by two  mutually
exclusive branch conditions respectively. In this case, a matching
for the bug pattern with these two statements should be ignored,
since the two statements cannot execute in a sequence.
Unrealistic operation:

Although it was confirmed that some alarms could cause a
problem in theory, Linux maintainers considered possibility for
those alarms to make serious problem (i.e., crash Linux kernel) is
very low in practice and ignored those alarms.

As we have described above, main causes of false alarms are due
o lack of detailed understanding of semantics of target code. Thus,
everaging domain knowledge of developers will be important for
he COBET approach to reduce false alarms and improve practical
ffectiveness of concurrency bug detection.

.5. Comparison with Coverity Prevent

We  applied Prevent to compare COBET with a conventional con-
urrency bug detection technique. Prevent has the following five
re-defined concurrency checkers (Coverity, 2011):

ATOMICITY checker reports a bug if a shared variable that was
updated while holding a lock is read after releasing the lock.

LOCK checker checks pairing of a lock operation and an unlock
operation within a function.
MISSING LOCK checker reports a data race bug for a shared vari-
able that is not consistently guarded by a lock.
1/1 4/1 2/2 4/1 13/6
0.46 1.06 24.65 1.64 48.85

• ORDER REVERSAL checker reports a deadlock bug when lock A is
acquired while holding lock B and lock B is acquired while holding
lock A in a program, since this program may result in deadlock
due to cyclic dependencies between lock A and lock B.

• SLEEP checker reports a thread can invoke sleeping operations
while holding a lock. A thread should release every held lock
before sleeping; otherwise other threads can be blocked by
acquiring a lock held by the sleeping thread.

We applied these five bug checkers to the file systems, network
modules, and device drivers of Linux 2.6.30.4. For fair compari-
son with COBET, we  configured Prevent to (1) enable function call
via function pointers, (2) set bug sensitivity high so to report as
many bugs as possible, and (3) utilize the specification of the lock
operations in a target domain.

Tables 6 and 7 show the number of bugs reported by Prevent and
the execution time for each target module. When we checked the
file systems, we  examine each naive file system together with VFS
as we  did with COBET. For example, ATOMICITY checker reported
45 bugs in btrfs and it took 47.72 s to apply all five bug checkers
to btrfs (see Table 6). However, we did not validate these bug
reports (i.e., to check whether a reported bug report is real or false),
since communicating with developers to validate these bug reports
would require large efforts and time.

First, we  checked how many real bugs detected by COBET were
also detected by Prevent. We  found that Prevent did not detect any
of the 10 real bugs detected by COBET. This result is not surprising,
since Prevent handles only standard lock and recursive lock oper-
ations as synchronization operations and cannot analyze various
synchronization operations correctly (Coverity, 2011). Therefore,
this result confirms that COBET can detect concurrency bugs that
cannot be detected by other conventional bug detection tool and
serve as a complementary concurrency bug detection tool to sup-
port kernel developers.

Second, the analysis of Prevent was much slower than that of
COBET. For example, Prevent spent 252.86 s to analyze the seven
Linux file systems while COBET spent 8.35 s. Since bug checkers
of Prevent and those of COBET are different and the bug detec-
tion algorithm of Prevent is not publicly available, it is difficult to
identify the reasons for this performance difference precisely. Our
conjecture for the performance difference is due to the fact that
COBET performs path-insensitive analysis whereas Prevent does
path-sensitive analysis (Hallem et al., 2002). In addition, COBET per-
forms the syntactic pattern matching prior to semantic analysis and
avoids analysis of irrelevant code consequently (see Section 3.3),
which enables COBET to analyze a target code faster than Prevent.

6. Related work

Pattern based techniques (Engler et al., 2000; Hallem et al.,

2002; Hovemeyer and Pugh, 2004b; Otto and Moschny, 2008)
can analyze large programs quickly, since these techniques per-
form pattern matching on a target program without sophisticated
analyses. Engler et al. (Hallem et al., 2002) used a high-level
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Table 6
Bug detection result by Prevent on the Linux file systems.

btrfs (41KL) ext4 (28KL) nfs (29KL) proc (8KL) reiserfs (27KL) sysfs (3KL) udf (9KL) vfs (48KL) Total (103KL)

ATOMICITY 45 1 1 3 5 3 0 4 62
LOCK 7 5 0 0 0 0 0 1 13
MISSING LOCK 3 1 1 1 1 1 0 3 11
ORDER REVERSAL 0 0 0 0 0 0 0 0 0
SLEEP  0 0 0 0 0 0 0 0 0

Total  55 7 2 4 6 4 0 8 86
Time  (s) 47.72 51.37 75.80 14.56 11.53 14.58 27.93 9.37 252.86

Table 7
Bug detection result by Prevent on Linux device drivers and network modules.

Device drivers Network modules Total (100KL)

bluetooth (11KL) ieee1394 (25KL) mtd (15KL) atm (8KL) ax25 (7KL) netfilter (27KL) rds (9KL)

ATOMICITY 0 4 14 0 0 0 2 20
LOCK  0 1 0 4 4 1 1 11
MISSING LOCK 0 2 0 5 7 2 5 21
ORDER REVERSAL 0 0 0 0 0 0 0 0
SLEEP  0 0 0 0 0 0 0 0
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Total  0 7 14 

Time  (s) 9.12 29.78 17.27 

tate-machine language MetaL to specify system rules (i.e., pro-
ramming idioms) over linear execution paths. They applied
ystem rules such as a ‘holding lock’ rule (i.e., the acquired locks
hould be released before a function exits) to several operating
ystems and found bugs (Engler et al., 2000). However, they tar-
et sequential errors related to synchronization operations while
OBET targets complex concurrency errors caused by thread inter-
ctions. Hovemeyer et al. (Hovemeyer and Pugh, 2004b)  defined
requently observed Java concurrency bug patterns and analyzed
he bytecode of the target Java program through code pattern

atching. They found several concurrency bugs in Sun JDK 1.5
nd an open source J2SE library. The false alarm ratio of simple
ug patterns such as ‘double check’ that target sequential errors
elated to lock operations was less than 20%. However, the false
larm ratio of complex concurrency bug patterns (e.g., ‘wait not in
oop’) was high, since (Hovemeyer and Pugh, 2004b)  does not check
hread interactions or semantic conditions. COBET targets complex
oncurrency bugs by utilizing multiple sub-patterns and semantic
onditions. In addition, COBET helps engineers build bug detectors
n a semi-automatic manner using PDL.

Otto et al. (Otto and Moschny, 2008) propose a bug pattern
atching technique with semantic analyses on locks for finding

oncurrency bugs in Java programs. The idea of utilizing semantic
nformation for better accuracy is similar to COBET. However, they
o not provide a pattern description language, or support multiple
ub-patterns.

Lock based techniques concentrate on lock usages. Lock based
echniques effectively detect deadlocks (Engler and Ashcraft, 2003;
aik et al., 2009; Molnar and van de Ven, 2012; Agarwal et al., 2005)
nd low-level data races (Choi et al., 2002; Engler and Ashcraft,
003; Erickson et al., 2010; Savage et al., 1997; Voung et al., 2007)
hich occur only when no lock synchronizes multiple threads
hich read and update one shared variable. However, these tech-
iques share the limitation when they are applied to OS codes
hich utilize various synchronization mechanisms other than lock.

Concurrency bug detection techniques that analyze stateful
ehavior of a target program detect violations of user-specified
roperties (i.e., assertions, invariants, or temporal logic formulae)

y analyzing executions state by state, either by model check-

ng (Musuvathi and Qadeer, 2007; Post et al., 2009; Qadeer and
u,  2004) or by systematic testings (Farchi et al., 2003; Joshi

t al., 2009). Nonetheless, the scalability of these approaches is still
9 11 3 8 52
13.23 4.86 15.89 9.18 99.33

limited due to the state explosion problem. Thus, these approaches
are still not capable of analyzing OS kernels in practice.

7. Conclusion

We  have developed a pattern-based COncurrency Bug dETec-
tor (COBET) framework for operating systems. To target complex
concurrency bugs, COBET utilizes composite bug patterns and asso-
ciates semantic information with code structures in bug pattern
matching. While most concurrency bug detection techniques con-
centrate on lock usages, COBET targets various concurrency bug
patterns specified by a user, so as to detect complex bugs. The effec-
tiveness, efficiency, and applicability of COBET were illustrated by
detecting ten new bugs in the file systems, device drivers, and net-
work modules of Linux 2.6.30.4 with a modest cost. Although the
bug detection of COBET is neither sound nor complete, the empiri-
cal results indicate that the COBET approach can detect concurrency
bugs in large and complex programs practically.
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