
36 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SAFETY-CRITI CAL SOFTWARE

generates random sample execution traces σi repeatedly until
the number of the traces is enough to calculate the probabil-
ity that Ci satisfies reqij (that is, P(reqij)). If not, SMC simu-
lates Ci again to generate more sample traces.

Validate the Reliability Goal
This step validates Ri by comparing it with the calculated re-
liability Ri′, obtained on the basis of P(reqij) and the corre-
sponding weight values for reqij.

Continue Validation or Reallocate
If Ri′ satisfies Ri (that is, Ri′ ≥ Ri), validation continues for the
next component Ci + 1 regarding Ri + 1. If the calculated reli-
abilities of all the components satisfy the allocated reliability
goals, software reliability assessment continues.

If Ri′ doesn’t satisfy Ri, this step reallocates all the com-
ponents’ reliability goals. If the reallocation continues to fail,

this could indicate that the target component was designed
incorrectly. If this is the case, after several trials of the reli-
ability reallocation, the component should be redesigned to
improve its reliability.

Employing the Framework: A Case Study
The top part of Figure 2 diagrams a fault-tolerant fuel con-
trol system (FFCS),5 a safety-critical component of an auto-
mobile’s engine controller. The FFCS receives input from sen-
sors for throttle angle, speed, exhaust gas oxygen (EGO), and
manifold absolute pressure (MAP). It then generates a proper
fuel injection rate and air-to-fuel ratio. It also detects sensor
faults and shuts down the engine for safety if necessary. It
has three components: a sensor failure detector and estima-
tor (SFDE), an airflow calculator, and a fuel calculator.

The SFDE consists of a sensor failure detector and a
sensor data estimator. The detector receives all the sensor

STATISTICAL MODEL CHECKING
Statistical model checking (SMC) uses randomly sampled simula-
tion traces to compute the probabilities that a target model will
satisfy given requirement properties.1 Figure A gives an overview
of SMC, which consists of a simulator, a bounded linear temporal
logic (BLTL) model checker, and a statistical analyzer. It receives

�t�� a stochastic target model M, which is an executable simula-
tion model;

�t�� a BLTL formula �n, which formally represents a functional-
safety requirement of the target system; and

�t�� precision parameters with which to determine a calculated
probability’s accuracy.

The simulator executes
M and generates a sample
execution trace �ki. The model
checker determines whether
�ki satis�es �n and sends the
result (success or failure) to
the statistical analyzer. The
statistical analyzer calculates
the probability p that M satis-
�es �n by checking whether
�ki satis�es �n. The statistical
analyzer then asks the simu-
lator to generate �ki repeatedly
until the number of success-
ful results of �ki over the total

number of �ki is distributed within a given precision boundary.
Unlike conventional formal veri�cation techniques such as

model checking, SMC doesn’t analyze a target system’s internal
logic. So, it can validate complex safety-critical systems without
the state explosion problems caused by those systems’ com-
plex hybrid (continuous dynamics plus discrete computation)
characteristics.

Reference
 1. P. Zuliani, A. Platzer, and E.M. Clarke, “Bayesian Statistical Model Checking

with Application to State�ow/Simulink Veri�cation,” Proc. 13th ACM Int’l
Conf. Hybrid Systems: Computation and Control (HSCC 10), ACM, 2010,
pp. 243–252.

SimulatorStochastic
target system M BLTL

model
checker

Statistical
analyzer

Precision
parameters

BLTL
property �

Probability p
for M to
satisfy �

To generate more trace �i

Staistical model checker

A sample
execution
trace �i

Success/
fail

FIGURE A . Statistical model checking uses randomly sampled simulation traces to compute the

probabilities that a target model satis�es given requirement properties.

