ICST2024 Most Influential Paper Award

Seokhyeon Moon Yunho Kim Moonzoo Kim and Shin Yoo

SAMSUNG SDS

KAIST

Our Journey Over the Past 10 Years

Birth of MUSE Application of MUSE What came after

Test Method Source Method Mutated Mutation

Name Name Line Before After Operator
' - - | | | | |
PRI NCE USIng MaChIne Learnlng Word Embedding Word Embedding
| . > E;}directional GR‘U E‘Bridirectionerll GRUr
Static | | |
Featu re O Comparison Comparison
Features P
EXt ra CtO r Concatenate (—II-)‘
I > Lin‘ear Linear
|]
DynamIC MaCh|ne Concatenate t—?
Features Learning
g Li
P (buggy) P’ (mutated)
Softmax
}

Killed or Not Killed

Back in 2012...

Fault localization (FL) emerged as an active research topic after | joined SWTV group

You are here: Home

Welcome to Software Testing and Verification Group

Wheel Allgnment

Steering Systom

Interior Systems Allgnment

Lighting System

FL in 2012: The Era of SBFL

SBFL and its improvements (and we did that too)

Visualization of Test Information to Assist
Fault Localization

James A. Jones, Mary Jean Harrold, John Stasko
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA

ABSTRACT

One of the most expensive and time-consuming components
of the debugging process is locating the errors or faults. To
locate faults, developers must identify statements involved
in failures and select suspicions statements that might con-
tain faults. This paper presents a new technique that uses
visualization to assist with these tasks. The technique nses
color to visually map the participation of cach program
statement in the outcome of the execution of the program
with a test suite, consisting of both passed and failed test
cases. Based on this visnal mapping, a user can inspect
the statements in the program, identity statements involved
in failures, and locate potentially faulty statements. The
paper also describes a prototvpe tool that implements onr
technique along with a set of empirical studies that use the
tool for evaluation of the technique. The empirical studies
show that, for the subject we studied, the technique can be
effective in helping a user locate faults in a program.

Keywords

Software visualization, fault localization, debugging, testing

1. INTRODUCTION

Attempts to reduce the number of delivered faults' in soft-
ware are estimated to consume 50% to 80% of the develop-
ment and maintenance effort [4). Among the tasks required
to reduce the number of delivered faults, debugging is one
of the most time-consuming [3, 15], and locating the errors

{Jjones,harrold,stasko}@cc.gatech.edu

Pan and Spafford analvzed the debugging process and ob-
served that developers consistently perform four tasks when
attempting to locate the errors in a program: (1) identify
statements involved in failures; (2) select suspicious state-
ments that might contain fanlts; (3) hypothesize about sus-
picious faults; and (4) restore program variables to a spectfic
state [10, page 2]. Our work addresses the second task
selecting suspicions statements that may contain the fault.
To identify suspicious statements, programmers typically
use debugging tools to mannally trace the program, with
a particular input, encounter a point of failure, and then
backtrack to find related entities and potential causes.

There are a number of ways, however, that this approach
can be improved. First, the mannal process of identifving
the locations of the faults can be very time consuming. A
technique that can antomate, or partially antomate, the pro-
cess can provide significant savings. Second, tools based on
this approach lead developers to concentrate their attention
locally instead of providing a global view of the software.
An approach that provides a developer with a global view
of the software, while still giving access to the local view,
can provide more useful information. Third, the tools use
results of onlv one exeention of the program instead of using
information provided by many executions of the program. A
tool that provides information about many executions of the
program can help the developer understand more complex
relationships in the svstem. However, with large programs

FIESTA: Effective Fault Localization to Mitigate the

Negative Effect of Coincidentally Correct Tests

Seokhyeon Mun, Yunho Kim, Moonzoo Kim*
'S Dept. KAIST, South Korea

such an approach, if reported
difficult to interpret.

and large test suites, the huge 2002

Abstract

One of the obstacles for precise coverage-based fault loealization (CFL) is th
existence of Coincidentally Correct Test cases (CCT's), which are the test case
that pass despite executing a faulty statement. To mitigate the negative effect
of CCTs, we have proposed Fault-welght and atomizEd condition baSed local
izaTion Algorithm (FIESTA) that transforms a target program with compouny
conditional statements to a semantically equivalent one with atomic condition
to reduce the number of CCTs. In addition, FIESTA utilizes a fault weight o
a test case t that indicates “likelihood” of t to execute a faulty statement. W
have evaluated the effectiveness of the transformation technique and the faul
weight metrie through a series of experiments on 12 programs including five non
trivial real-world programs. Through the experiments, we have demonstrate
that FIESTA is more precise than Tarantula, Ochiai, and Op2 for the targe
programs on average. Furthermore, the transformation techniq 201 2

'I"n'l"'i"lu"l-'iﬂ'iﬁ'l"l ﬁ'F. lIli_q-l—_f'-r TF‘IJ"I-I"I'I'I'ii"'I'I'I.I"I-U 'i'l"l -I'I'!"I'I"H"l'l"'l'_"n] I'r'i i '.I'I"Iﬂ'l"i"lﬂU'i'I"lfT T]'Iu""- | T

Inaccurate FL, unrealistic scenario

®"Not accurate enough
*Top 1%: 1,000 / 100,000 lines

®"Unrealistic FL assumption

*Developers follow the ranked list
(They will only if the list is very short)

FL in 2012: Criticism on FL

Are Automated Debugging Techniques
Actually Helping Programmers?

Chris Parnin and Alessandro Orso
Georgia Institute of Technology
College of Computing

{chris.parnin|orso}@gatech.edu

ABSTRACT

Debugging is notoriously difficult and extremely time con-
suming. Researchers have therefore invested a considerable
amount of effort in developing automated techniques and
tools for supporting various debugging tasks. Although po-
tentially useful, most of these techniques have vet to demon-

of existing approaches, for instance, is their reliance on a
set of strong assumptions on how developers behave when
debugging (e.g., the fact that examining a faulty statement
in isolation is enough for a developer to understand and fix
the corresponding bug). In more general terms, most exist-
ing techniques just focus on selecting subsets of potentially
faulty statements and ranking them according to some cri-
terion. By doing so, they ignore the fact that understanding
the root cause of a failure typically involves complex activ-
ities, such as navigating program dependencies and rerun-
ning the program with different inputs. The overall goal of
this research is to investigate how developers use and bene-
fit from automated debugging tools through a set of human
studies. As a first step in this direction, we perform a pre-
liminary study on a set of developers by providing them with
an automated debugging tool and two tasks to be performed
with and without the tool. Our results provide initial evi-
dence that several assumptions made by automated debug-
ging techniques do not hold in practice. Through an analysis
of the results, we also provide insights on potential directions
for future work in the area of automated debugging.

second activity, fault understanding, involves understanding
the root cause of the failure. Finally, fault eorrection is
determining how to modify the code to remove such root
cause. Fault localization, understanding. and correction are
referred to collectively with the term debugging.

Debugging is often a frustrating and time-consuming ex-
perience that can be responsible for a significant part of the
cost of software maintenance |25, This is especially true for
today’s software, whose complexity, configurability, porta-
bility, and dynamism exacerbate debugging challenges. For
this reason, the idea of reducing the costs of debugging tasks
through techniques that can improve efficiency and effective-
ness of such tasks is ever compelling. In fact, in the last few
years, there has been a great number of research techniques
that support automating or semi-automating several debug-
ging activities (e.g., [1)3}[8}/11,21}29-31]). Collectively, these
techniques have pushed forward the state of the art in de-
bugging. However, there are several challenges in scaling
and transitioning these techniques that must be addressed
before the techniques are placed in the hands of developers.

In particular, one common issue with most existing ap-
proaches is that they tend to assume perfect bug understand-
ing, that is, they assume that simply examining a faulty
statement in isolation is always enough for a developer to
detect, understand, and correct the corresponding bug. This
simplistic view of the debugging process can be compelling,
as it allows for collecting some obje]
effectiveness of a debugging tf:chni-:] 20 1 1

mon eronnd for comnarine alternati

FL in 2012: Focused on Passively Observable Results

Execute a program and utilize the execution results

IOOI\
a

Test I .
manipulations E % Slicing

Program

MUSE Main Idea

Mutating programs can give us hints

* (1) if mdestroys P
» passed tests - failed tests?
» ‘destroy’ likely at correct statements

* (2) If m (partially) fixes P
» failed tests = passed tests?
» fix likely at faulty statements

P’ (mutated)

MUSE Result

Ouperforms Op2 which is theoretically proven to be optimal

Faulty stmt
ranking 4

259 | (Tarantula

HybridMUSE: Combine MUSE with SBFL

SBFL assists MUSE for programs with few mutants

Hybrid-MUSE: Mutating Faulty Programs For
Precise Fault Localization

Seokhyeon Moon, Yunho Kim, Moonzoo Kim

CS Dept. KAIST, South Korea

{seokhyeon.moon, kimyunho} @kaist.ac.kr, moonzoo@cs.kaist.ac.kr

Abstract—This paper presents Hybrid-MUSE, a new fault
localization technique that combines MUtation-baSEd fault local-
ization (MUSE) and Spectrum-Based Fault Localization (SBFL)
technique. The core component of Hybrid-MUSE, MUSE, iden-
tifies a faulty statement by utilizing different characteristics of
two groups of mutants — one that mutates a faulty statement
and the other that mutates a correct statement. This paper also
proposes a new evaluation metric for fault localization techniques
based on information theory, called Locality Information Loss
(LIL): it can measure the aptitude of a localization technique
for automated fault repair systems as well as human debuggers.

Shin Yoo
CS Dept. University College London, UK
shin.yoo@ucl.ac.uk

the same ranking. This often inflates the number of statements
needed to be inspected before encountering the fault.

This paper presents a novel fault localization technique
called Hybrid-MUSE, a combination of MUtation-baSEd fault
localization and Spectrum-Based Fault Localization (SBFL),
to overcome this problem. The core component of Hybrid-
MUSE. MUSE [35], uses mutation analysis to uniquely cap-

ture the relationship between individu 20 1 4

and the observed failures for fault

Uses both MUSE and SBFL

Evaluating and improving fault localization

Spencer Pearson? José Campos*? René Just! Gordon Fraser™ Rui Abreut Michael D. Ernst? Deric Pang? Benjamin Keller*

*U. of Washington, USA **U. of Sheffield, UK 7U. of Massachusetts, USA

TPalo Alto Research Center, USA
U. of Porto/HASLab, Portugal

suspense @ cs.washington.edu, jose.campos@sheffield.ac.uk, rjust@cs.umass.edu, gordon.fraser@sheffield.ac.uk,
rui @computer.org, mernst@cs.washington.edu, dericp@cs.washington.edu, bjkeller@cs.washington.edu

Abstract—Nlost fault localization techniques take as input
a faulty program, and produce as output a ranked list of
suspicious code locations at which the program may be defective.
When researchers propose a new fault localization technique,
they typically evaluate it on programs with known faults. The
technique is scored based on where in its output list the defective
code appears. This enables the comparison of multiple fault
localization techniques to determine which one is better.

Previous research has evaluated fault localization techniques
using artificial faults, generated either by mutation tools or man-
ually. In other words, previous research has determined which
fault localization techniques are best at finding artificial faults.
However, it is not known which fault localization techniques are
best at finding real faults. It is not obvious that the answer is
the same. given previous work showing that artificial faults have
both similarities to and differences from real faults.

We nerformed a rvenlication sitndv to evaluate 10 _claims in

A fault localization technique is valuable if it works on
real faults. Although some real faults (mostly 35 faults in the
single small numerical program space [41]) have been used in
previous comparisons [45] of fault localization techniques, the
vast majority of faults used in such comparisons are fake faults,
mostly mutants. The artificial faults were mutants automatically
created by a tool [26], [27], [49], or mutant-like manually-
seeded faults created by students [44], [46] or researchers [16].

Artificial faults such as mutants differ from real faults
in many respects, including their size, their distribution in
code, and their difficulty of being detected by tests [22].
It is possible that an evaluation o i
faults would yield different outcome 2 O 1 7
on mutants. If so, previous rc}:nmn

— Susprypria Mmuse(s) = norm_susp(MUSE, sHnorm_susp(sbfl, s)

where

norm_susp(flt,s)

_ Susprit(s)—min(flt)

max(flt)—min(flt)

10

HybridMUSE Result

HybridMUSE outperforms MUSE and SBFL

Subject | % of Executed Stmts Examined Mutant % of Executed Rank of a
program | MUSE Hybrid-MUSE Sampling Rate | Stmts Examined Faulty Stmt
flex 17.72 4.38

grep 1.62 0.91 123.50
gzip 7.58 0.84 95.53
sed 1.16 0.45 61.21
space 5.63 1.67 45 59
Average 6.74 1.65 41.60

" Op2: 9.64%

11

Practical FL for the Industry

Auto FL techniques have been studied for decades, but few tools are employed in the industry

"FL is closely related to other processes ;)

|dentif
*Test, correct, update, deploy, etc. bugsy Correct

"Numerous de
[ack of tests, pr
*Various usages (by developers)

12

An Approach for the Entire Debugging Process

Test Generation < Fault Localization < Fix candidates

Sapienz: Multi-objective Automated Testing
for Android Applications

Ke Mao

Mark Harman

Yue Jia

CREST Centre, University College London, Malet Place, London, WC1E 6BT, UK
k.mao@cs.ucl.ac.uk, mark.harman@ucl.ac.uk, yue.jia@ucl.ac.uk

ABSTRACT

We introduce SAPIENZ, an approach to Android testing
that uses multi-objective search-based testing to automati-
cally explore and optimise test sequences, minimising length,
while simultaneously maximising coverage and fault revela-
tion. SAPIENZ combines random fuzzing, systematic and
search-based exploration, exploiting seeding and multi-level
instrumentation. SAPIENZ significantly outperforms (with
large effect size) both the state-of-the-art technique Dyno-
droid and the widely-used tool, Android Monkey, in 7/10
experiments for coverage, 7/10 for fault detection and 10/10
for fanlt-revealing sequence length. When applied to the top
1.000 Google Play apps, SAPIENZ found 558 unique, previ-
ously unknown crashes. So far we have managed to make
contact with the developers of 27 crashing apps. Of these,
14 have confirmed that the crashes are caused by real faults.
Of those 14, six already have developer-confirmed fixes.

CCS Concepts

eSoftware and its engineering — Software testing
and debugging: Search-based software engineering;

Keywords

Android; Test generation; Search-based software testing

1. INTRODUCTION

There are over 1.8 million apps available from the Google

Where test automation does occur, it typically uses
Google’s Android Monkey tool [36], which is currently inte-
grated with the Android system. Since this tool is so widely
available and distributed, it is regarded as the current state-
of-practice for antomated software testing [53]. Although
Monkey automates testing, it does so in a relatively unintel-
ligent manner: generating sequences of events at random in
the hope of exploring the app under test and revealing fail-
ures. It uses a standard, simple-but-effective, default test
oracle [22] that regards any input that reveals a crash to be
a fault-revealing test sequence.

Automated testing clearly needs to find such fanlts, but
it is no good if it does so with exceptionally long test se-
quences. Developers may reject longer sequences as being
impractical for debugging and also unlikely to occur in prac-
tice; the longer the generated test sequence, the less likely
it is to occur in practice. Therefore, a critical goal for auto-
mated testing is to find faults with the shortest possible test
sequences, thereby making fault revelation more actionable
to developers.

Exploratory testing is “simultaneous learning, test design,
and test execution” [11], that can be cost-effective and is
widely used by industrial practitioners [21, 43, 46] for test-
ing in general. However, it is particularly underdeveloped
for mobile app testing [41,42]. Although there exist several
test automation frameworks such as Robotium [10] and Ap-

inhibiting full automation.
We introduce SAPIENZ, the first

pium [3], they require human-imp 2 O 1 6

SapFix: Automated End-to-End Repair at Scale

A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, A. Scott
Facebook Inc.

Abstract—We report our experience with SAPFIX: the first
deployment of automated end-to-end fault fixing, from test case
design through to deployed repairs in production code'!. We have
used SAPFIX at Facebook to repair 6 production systems, each
consisting of tens of millions of lines of code, and which are
collectively used by hundreds of millions of people worldwide.

INTRODUCTION

Automated program repair seeks to find small changes to
software systems that patch known bugs [!], [Z]. One widely
studied approach uses software testing to guide the repair
process, as typified by the GenProg approach to search-based
program repair [°].

Recently, the automated test case design system, Sapienz
[], has been deployed at scale [5], [0]. The deployment of
Sapienz allows us to find hundreds of crashes per month,
before they even reach our internal human testers. Our software
engineers have found fixes for approximately 75% of Sapienz-
reported crashes [0], indicating a high signal-to-noise ratio [5]
for Sapienz bug reports. Nevertheless, developers’ time and
expertise could undoubtedly be better spent on more creative
programming tasks if we could automate some or all of the
comparatively tedious and time-consuming repair process.

The deployment of Sapienz automated test design means that
automated repair can now also take advantage of automated
software test design to automatically re-test candidate patches.
Therefore, we have started to deploy automated repair, in a
tool called SAPFIX. to tackle some of these crashes. SAPFIX

In order to deploy such a fully automated end-to-end detect-
and-fix process we naturally needed to combine a number of
different techniques. Nevertheless the SAPFIX core algorithm
1s a simple one. Specifically, it combines straightforward
approaches to mutation testing [#], [V], search-based software
testing [0], [10], [11], and fault localisation [17] as well as
existing developer-designed test cases. We also needed to
deploy many practical engineering techniques and develop
new engineering solutions in order to ensure scalability.

SAPFIX combines a mutation-based technique, augmented by
patterns inferred from previous human fixes, with a reversion-as-
last resort strategy for high-firing crashes (that would otherwise
block further testing, if not fixed or removed). This core fixing
technology is combined with Sapienz automated test design,
Infer’s static analysis and the localisation infrastructure built
specifically for Sapienz [0]. SAPFIX is deployed on top of
the Facebook FBLearner Machine Learning infrastructure [! 7]
into the Phabricator code review system, which supports the
interactions with developers.

Because of its focus on deployment in a continuous in-
tegration environment, SAPFIX makes deliberate choices to
sidestep some of the difficulties pointed out in the existing
literature on automated program repair (see Related Work
section). Since SAPFIX focuses on null-dereference faults
revealed by Sapienz test cases as code is submitted for review

it can re-use the Sapienz fault localisati 20 1 9

on null-dereference errors also means th

13

EvoFuzz: Improving and extending EvoSuite

Moon and Jhi, SBFT’24 [Java Testing Tool Competition Winner, 15t place]

®"(Goal: supporting the entire debugging
*Currently in improving test generation

"Built on top of EvoSuite

*Readily available features for FL
(test generation, execution, mutation, etc)

‘Won of 10 / 11 SBFT (=SBST) competitions
(2013 ~ 2023, except 2015)

"Improving and extending EvoSuite
*Support JDK8~17 and Spring6.0.x+
SBFT’24 competition 15t place (2" EvoSuite)
‘NEXT: FL and repair

14

EvoFuzz at the SBFT 2024 Tool Competition

Seokhyeon Moon
shyeon.mun@samsung.com
Technology Research, Samsung SDS
Seoul, Republic of Korea

ABSTRACT

EvoFuzz is an automated fuzzing tool that integrates fuzzing tech-
niques into EvoSuite to improve code coverage. It first uses EvoSuite
to generate a test suite, which is then utilized for fuzzing. During
this process, EvoFuzz ensures the generated test suite is executable
by performing strict code validity checks. Additionally, EvoFuzz ac-
tively explores new variables/values to achieve more code coverage.
Our experimental results on the SBFT2024 benchmark demonstrate

that EvoFuzz outperforms EvoSuite in both code coverage and
mutation kill ratio.

KEYWORDS

Software testing, Fuzzing, Test case generation, Code validity

ACM Reference Format:

Seokhyeon Moon and Yoon-Chan Jhi. 2024. EvoFuzz at the SBFT 2024 Tool
Competition . In 2024 ACM/IEEE International Workshop on Search-Based
and Fuzz Testing (SBFT "24), April 14, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 2 pages. https://doLorg/10.1145/3643659.3648556

1 INTRODUCTION

Despite EvoSuite’s success in achieving high code coverage and bug
detection over several years, our investigation revealed opportuni-
ties for improvement, particularly in the comprehensive exploration
of the expansive search space inherent in program variables.

®

Yoon-Chan Jhi I
yoonchan.jhi@samsung.com
Technology Research, Samsung SDS
Seoul, Republic of Korea

cases. Out of the 9007 test cases generated for the 210 target sub-
jects (we conducted 3 repetitions of the experiment for all 70 classes
within the benchmark), only 7994 were compiling. Given that the
fuzzing procedures are initiated from the test drivers derived from
the generated test suite, fuzzing with non-compiling test drivers
can result in test cases that achieve no coverage at all.
Recognizing that the efficacy of fuzzing efforts is contingent
upon the executable nature of the test suite, EvoFuzz integrates
both fuzzing techniques [3] and a robust mechanism for ensur-
ing test suite executability. This integration enables EvoFuzz to
address the identified shortcomings of EvoSuite, improving the
overall effectiveness of the fuzzing process and the code coverage.

2 EVOFUZZ

EvoFuzz is a prototype research tool that consists of two key steps.
In the initial step, EvoFuzz employs EvoSuite’s test suite generation
algorithm to create a set of test cases. During this process, EvoFuzz
identifies mutable variables/values within each test case, establish-
ing a foundation for fuzzing. In the subsequent the step, EvoFuzz
systematically iterates over the generated test suite, strategically
mutating the values of the identified mutable variables

2024

Remarks
MUSE and HybridMUSE have added new dimensions for FL

"MUSE and HybridMUSE
(1) Mutation-based FL~
(2) Combination of MUSE with SBFL

* (independent MBFL studies: Metallaxis-FL, FIFL, etc.)

" An integrated approach is essential for the practical FL
*FL usage scenarios are not perfectly working frequently
*Contribute to this for both industry and academia

15

Applications of MUSE

Yunho Kim | Assistant Professor @ Hanyang University, Korea

16

Fault Localization for Multi-lingual Programs
Hong et al., ASE 15 and IST 17

* MUSEUM extends MUSE to localize faults caused by language interface
specification violation

Javacode| [_ A My || My || M3 || My
Mutation

Interface ——» 0 ¢ e
C code perator ms || mg || m, || mg A
\ e Susp.

. . - scoring

Target code

— N ‘
"~ A]

TCs ~ + 15 new mutation operators for Java/C interface
N— -

Test cases » 75 C mutation operators from Proteum
* 14 Java mutation operators from PIT

)

- I

* MUSEUM can find a root cause of a complex real-world bug

* Eclipse Bug 322222 had survived more than 1 year with 14 duplicate bug reports and
more than 100 comments 7

What Do We Need for Effective FL?

Pre-requisite: Generation of TCs w/ High Coverage

* The accuracy of FL highly depends on the quality of passing/failing
testcases.

* How to generate test inputs w/ high coverage is a critical pre-requite to successful FL.

* Thus, we developed a novel test input generation technique DeMiner
through code mutation

* For atarget program P, we utilize mutants of P as syntactic shortcuts to quickly reach
deep execution states of P.

18

Invasive Software Testing
Kim et al., ICST 18 [Distinguished Paper Award], Kim and Hong., STVR 19

Non-invasive analysis Invasive analysis

19

Invasive Software Testing
Kim et al., ICST 18 [Distinguished Paper Award], Kim and Hong., STVR 19

* Use mutation to quickly generate diverse likely-test executions
* Discover pre-conditions for reaching corner-cases
* Guide symbolic execution with the discovered pre-conditions

1. Original program execution 2. Mutant execution 3. Generated execution w/ guide
20

Truly Real-world Industrial Application
Yunho and Moonzoo founded VPlusLab Inc. in 2019 (https://vpluslab.kr)

VPlusLab provides an automated
test input generation solution
for safety critical sys.

* For Hyundai Mobis Automotive S/W, 1 W1 EAE 2121 444 ARE

[ICSE SEIP '19]

—~NInnovative utdmated SW Testing Solution

Our customers: £ CROWN 2.0 autématically generates various test inputs

tga check all possible sceharios of a target SW program.
ETRI |4

= MOBIS e#zzxsuzzes
HYun Dnl Electronics and Telecommunications Research Institute

LIG Nex1 POSTECH NSR®

i T

tttttttttttttttttttttttttttttttttt

21

https://vpluslab.kr/

Can We Do Things Better?

How can we improve mutation with machine learning?

* So far, mutation can give great answers to testing and debugging problems
from various mutant executions

* Various mutant executions provide valuable data to learn the behaviors of software-under-
analysis mutant analysis

* We can apply machine learning to learn a model from various mutant
executions and apply it to testing and debugging

22

ML-based Mutant Selection

Phan et al.,

Mutation 18, Kim and Hong, STVR 21

* With great power comes great cost
* We need to select representative fine-grained mutation operators

* We develop MUSIC to support fine-grained mutation operators for C/C++

(https://github.com/swtv-kaist/MUSIC)

Rule: Arithmetic Operator = Shift Operator

Coarse-grained Operator 10 Fine-grained Operators

Domain

OASN

>>

/ <<

reflned from OASN

—————————————

—————————————

—————————————

.z%ﬁx

Machine Learning

23

>

OASN, ...

%

<<

OASN., .

ORRN. ..

Selected Fine-grained

Operators

https://github.com/swtv-kaist/MUSIC

ML-based Fault Localization
Kim et al., TOSEM 19

* A single fixed susp. formula cannot rule them all

* PRINCE learns a FL model from dynamic FL features and static code complexity.

Unknown Faults Rank | Stmt
PRINCE using Machine Learning i Info. 1 | a=b@
| P 2 ++
};23\;::2 $ Feature FStftIC a Fault Ranking j> X
Extractor catres Model
Info. |
— n |If(a>b
— Dynamic Machine (8>D)
Features Learning

24

What came after MUSE

Shin Yoo | Associate Professor @ KAIST

What happened?

* "Wow, I'm old...”

* | could not attend ICST 2014
because of a certain toddler

Locality Information Loss (LIL)

A new way to evaluate FL results

* Ranking-based evaluation assumes linear consur; sdlts by humans;
what if machines (=APR) want the probabili peing at location Y?
NG

S entropy between the

* FL performance should be measuLs Y~
=S¥ ground truth!

suspiciousness score distribut 'y

‘\d(\

Op2 (LIL=7.34) Ochiai (LIL=5.96) Jaccard (LIL=4.92) MUSE (LIL=0.40)

w | ‘ - Faulty Stdtefnent o | Faulty Stdtefnent o | Faulty Statement
2o e o : 2o ' 2o
7] _ 7] _ ; 7] _ 2] —]
o ' I 1 | 'Il 5 < | 5 <+ : 5 <
oY e oY oY _| : S |
g - .Waulty Statement a - @ - a
@ o _| E Do] a o | .a.nL.Lu.._J-L.I. —ad a o _

o o _ S _ S

Executed Statements Executed Statements Executed Statements Executed Statements

Cost of MUSE

MBFL may be accurate but is also very expensive!

* |In fact, the more expensive it is, the more accurate it can be

Unified Debugging

Lou et al., ISSTA 2020

* |teratively refine FL by running APR based on the intermediate FL results!

* APR = applying changes to code = mutation

Ahead-of-Time MBFL

Kim et al., ISSRE 2021, IST 2023

V. o

Prof. Robert Feldt Dr. Jinhan Kim Gabin An
(PhD Candidate)

* How can we do MBFL, without having to generate/compile/test all the mutants
at the time of test failure?

* Can we do the expensive step in advance??

Training

Real Fault

o HE EE

1. Do mutation analysis 2. Reverse relation and 3. Given a real failure, pretend if
learn to predict mutation it is a mutant and ask the model

location from test results where it is

Predictive Mutation Analysis
Kim et al., TOSEM 2021

Prof. Robert Feldt Dr. Jinhan Kim Prof. Shin Hong

* What if a new test case fails, and you do not have any ahead-of-time mutation results?

* We try to predict the mutation analysis results by exploiting natural language channel.

Test Method Source Method Mutated Mutation La ng
. 1.00
Name Name Line Before After Operator Trained Ver.
1 1 1 1 1 ® 60 -® 30
50 ~@- 20
Word Embedding Word Embedding 09571 .9 20 -@ 10
Bidirectional GRU Bidirectional GRU 0.90 A
Comparison Comparison g 0.85 o _ & - __ .'--..._~_H
B o. ~<
2 & T~ o=—=—==9
Concatenate § 0.80 T, o -——-0
D_ ‘.'h-.__-‘
Linear Linear Tt~ g----0
I 0.75 -
Concatenate q—j
0.70 -
Linear
SOﬂ:maX 065 __<365 day5>l | | | | |
1 60 50 40 30 20 10 1
Killed or Not Killed Target Ver.

...And Many Other Mutation/FL Work

(that stemmed from my experience of ICST 2014 collaboration)

An Offer that | could not turn down...
(despite it being full of maths)

Statement Ranking

Prof. T. Y. Chen

« Formula RA dominates formula R, (R, — R,)
if S} C SR A S € S

X, i « Formula RA is equivalent to formula R, (R, < R,)
if Sp =SR2 A SR = SR A ST =5
Prof. Xiaoyuan Xie Formula R, Formula R,

* “Do you want to see where the evolved formulas
are ranked in the hierarchy?” (i.e., the offer)

12

Quantitative Diagnosability of Tests
An & Yoo, ISSTA 2022

Gabin An
(PhD Candidate)

Regression Test Prioritisation 0.275 A
Tests /-\ i
Faulty , Unlabel\ed 0.250 1 1 Sgness
Program | Test Generation ’ . — Prox
Iterative . Y 0.225 1
Process Human Labelling O { — TD
<A’ " 0.2004 —— RAPTER
Test [* o —— Additional
Suite ﬂLabe”ed E 0.175 1 —— DDU
~—— Total,EntBug
L 0.150 - —— FLINT
Fault Localisation
0.125 A Category
. —— Result-agnostic
If we have to augment the test suite for FL as we go ¢.1004 ~—- Result-aware
along, we want to involve the human oracle for the
smallest number of time. For this, we want to choose %% S e e P S s sy et
the test case with the most information about fault teration

diagnosis as the next test.

27

wEl - Triaging with FL ¢ Q @
Isn’t FL just DP but happening later? Sohn ot al. IST 2021 ndustry ¥ '

SOhn & Yoo’ ISSTA 201 7 Dr. Jeongju Sohn Gabin An Jingun Hong Dongwon Hwang

(PhD Candidate) ~ SAP Labs Korea SAP Labs Korea

Still using GP but this time to aggregate multiple scores,
inspired by Xuan & Monperrus (ICSME 2014) as well as Le et al. (ISSTA 2016) > 3,000 tost cases per run 20 test breakages perran By« m
folled?, e Breakoge2 pug Ticket2 By Test Components By SBFL (top 10)
Developers Commits Post-submit Testing Identifying Test Breakages Bﬂh.” \ﬂ —
Traditional Defect Prediction (DP) features added:
age, churn, and complexity
FL applied for bug triage: it can complement
the static test-component relationship.
Format: min, average, max
N As an automated technique, this can aid the Fie. 10: .)
h T X K ig. 10: Comparison between the component mapping and
decision maker so that issues are assigned SBFL with voting Vp within the top 10: Vp located 9 more
3 faster faults compared to the baseline. Among 57 faults localised by
) Vb, 36 of them are newly localised.
Multiple SBFL formulas are terminal nodes Dr. Jeongju Sohn
) 29
18
- - - - -~ . -
Finding the Origins of Bugs h AutoFL: LLM based FL
—
An et al., ICSE 2023 ‘1} Kang, An & Yoo (FSE 2024, to appear) _
Gabin An Sungmin Kang

Gabin An Jingun Hong (PhD Candideta)
(PhD Candidate) ~ SAP Labs Korea (PhD Candidate)

Function Call Distribution at Each Step

Candidate Commits (Caic)
Ei - Older — Stage 1 Stage 2
3,000 test cases 30 tost breakages per run L R @ @ @ @ @ it 7 w
B (- |
= . Al ” N . 700 1! 100 1! ; i)] @ @|®]
’% | Bh e B - (3] . wl 1 5 F . E Y 1 4 | I
o Flaky Tests ﬁ n ‘,é% _| 030 _| 0.30 030 Model A Stepg e~
Developers Commits Post-submit Testing Identifying Test Breakages . hed g é 03 J i 0.9 |G i 09 w09 [: o x | st . Sten 7 __ mmh;d -
reskaged Bug Ticket 3 85 . : . max. N = . =
a8 ?6-1:" i —| '0\'}.190‘ |_ -| "t.‘:? times | M get_method_covered : EEEPS . M. snippet
Coverage St EP-IO - comments
| = get_code_snippet 5 €p
1100] ‘ : . : - . : : :
commitscores | [o5 20 030 0243 os | B got_coments i 0 200 400 600 800 1000 1200 1400 1600
Codebase
» We can project the FL results back to the commits to find BICs Fig. 3. Example of computing the commit scores when A = 0.1 . .
proj Figure 1: Diagram of AUTOFL. Each arrow represents a Figure 5: Function call frequency by step over all five runs of
« Filtering out stylistic changes | e | ‘Accuracy prompt / response between components, with the circled AuToFL. The total length at each step decreases as AuToFL
| | @@ @ @3 @5 el numbers indicating the order of interactions. Function invo- can stop calling functions at any step; e.g. about 400 AutoFL
* Applying time-dependent deca 47 66 85 98 110 cations are made at most N times, where N is a predetermined rocesses stopped calling functions after the first step.
pplying p y FONTE | 0528 ‘ G6%) (1% (65%) (5% (85%) parameter of AuToFL. P PP & b
» Keep the information source minimall! Other Techniques (on ©)
Bug2Commit 0155 | 11 18 22 25 39
FBL-BERT | 0.037 ‘ 1 3 s 710

31

Summary

* Mutation is a fundamentally strong tool!

* Sticking to a single problem can be fun, if the problem is important

K
]

B
|

ICST 2026

Daejeon, Republic of Korea

	슬라이드 번호 1
	Our Journey Over the Past 10 Years
	Back in 2012…
	FL in 2012: The Era of SBFL
	FL in 2012: Criticism on FL
	FL in 2012: Focused on Passively Observable Results
	MUSE Main Idea
	MUSE Result
	HybridMUSE: Combine MUSE with SBFL
	HybridMUSE Result
	Practical FL for the Industry
	An Approach for the Entire Debugging Process
	EvoFuzz: Improving and extending EvoSuite
	Remarks
	슬라이드 번호 16
	Fault Localization for Multi-lingual Programs
	What Do We Need for Effective FL?
	Invasive Software Testing
	Invasive Software Testing
	Truly Real-world Industrial Application
	Can We Do Things Better?
	ML-based Mutant Selection
	ML-based Fault Localization
	슬라이드 번호 25
	10 Years!
	Locality Information Loss (LIL)
	Cost of MUSE
	Unified Debugging
	Ahead-of-Time MBFL
	Predictive Mutation Analysis
	…And Many Other Mutation/FL Work
	Summary
	슬라이드 번호 34

