

Our Journey Over the Past 10 Years

Birth of MUSE Application of MUSE What came after

P (buggy) P’ (mutated)
m

Feature
Extractor

PRINCE using Machine Learning

Static
Features

Dynamic
Features

Machine
Learning

2

Back in 2012…
Fault localization (FL) emerged as an active research topic after I joined SWTV group

4

FL in 2012: The Era of SBFL
SBFL and its improvements (and we did that too)

2002 2012
5

FL in 2012: Criticism on FL
Inaccurate FL, unrealistic scenario

2011

Not accurate enough
•Top 1%: 1,000 / 100,000 lines

Unrealistic FL assumption
•Developers follow the ranked list
(They will only if the list is very short)

6

FL in 2012: Focused on Passively Observable Results
Execute a program and utilize the execution results

Program

Result

Tests

Test
manipulations

SBFL

Slicing

Few approaches directly manipulate
a program itself and utilize its results

7

MUSE Main Idea
Mutating programs can give us hints

• (1) if m destroys P
• passed tests  failed tests↑
• ‘destroy’ likely at correct statements

• (2) if m (partially) fixes P
• failed tests  passed tests↑
• ‘fix’ likely at faulty statements

P (buggy) P’ (mutated)
m

8

MUSE Result
Ouperforms Op2 which is theoretically proven to be optimal

Tarantula
[ICSE 2002]

Ochiai
[PRDC 06] Wong

[JSS 10]

MUSE
2014

Faulty stmt
ranking

Op2
[TOSEM 11]

25%

1%
2002

9%

Year

How to deal with
programs with few mutants?

9

HybridMUSE: Combine MUSE with SBFL
SBFL assists MUSE for programs with few mutants

2014 2017

• Uses both MUSE and SBFL

where

10

HybridMUSE Result
HybridMUSE outperforms MUSE and SBFL

11

 Op2: 9.64%

Practical FL for the Industry
Auto FL techniques have been studied for decades, but few tools are employed in the industry

FL is closely related to other processes
•Test, correct, update, deploy, etc.

Numerous debugging scenarios
•Lack of tests, programs
•Various usages (by developers)

Correct

Update
SW

Deploy

Test

Identify
bugs

Needs an integrated approach
for the entire debugging process

12

An Approach for the Entire Debugging Process
Test Generation ↔ Fault Localization ↔ Fix candidates

2016 2019
13

EvoFuzz: Improving and extending EvoSuite
Moon and Jhi, SBFT’24 [Java Testing Tool Competition Winner, 1st place]
Goal: supporting the entire debugging
•Currently in improving test generation

Built on top of EvoSuite
•Readily available features for FL
(test generation, execution, mutation, etc)

•Won of 10 / 11 SBFT (=SBST) competitions
(2013 ~ 2023, except 2015)

Improving and extending EvoSuite
•Support JDK8~17 and Spring6.0.x+
•SBFT’24 competition 1st place (2nd EvoSuite)
•NEXT: FL and repair

2024

14

Remarks
MUSE and HybridMUSE have added new dimensions for FL

MUSE and HybridMUSE
(1) Mutation-based FL*
(2) Combination of MUSE with SBFL
* (independent MBFL studies: Metallaxis-FL, FIFL, etc.)

An integrated approach is essential for the practical FL
•FL usage scenarios are not perfectly working frequently
•Contribute to this for both industry and academia

15

Yunho Kim | Assistant Professor @ Hanyang University, Korea

Applications of MUSE

16

Fault Localization for Multi-lingual Programs
Hong et al., ASE 15 and IST 17

• MUSEUM extends MUSE to localize faults caused by language interface
specification violation

Mutant Execution

Mutation
Operator

TCs

Susp.
scoring

m1 m4m3m2

m5 m8m7m6...
Target code

Test cases
• 15 new mutation operators for Java/C interface
• 75 C mutation operators from Proteum
• 14 Java mutation operators from PIT

Java code

C code
Interface

17

• MUSEUM can find a root cause of a complex real-world bug
• Eclipse Bug 322222 had survived more than 1 year with 14 duplicate bug reports and

more than 100 comments

What Do We Need for Effective FL?
Pre-requisite: Generation of TCs w/ High Coverage

• The accuracy of FL highly depends on the quality of passing/failing
testcases.
• How to generate test inputs w/ high coverage is a critical pre-requite to successful FL.

• Thus, we developed a novel test input generation technique DeMiner
through code mutation
• For a target program P, we utilize mutants of P as syntactic shortcuts to quickly reach

deep execution states of P.

18

Invasive Software Testing
Kim et al., ICST 18 [Distinguished Paper Award], Kim and Hong., STVR 19

Non-invasive analysis Invasive analysis

19

• Use mutation to quickly generate diverse likely-test executions
• Discover pre-conditions for reaching corner-cases
• Guide symbolic execution with the discovered pre-conditions

20

tc1
s1

s2
s3
s4

s5

tc1
s1

s2'
s3'

s4'

s5'

tc2
s1”

s3”
s4”

s5”

1. Original program execution 2. Mutant execution 3. Generated execution w/ guide

v = x

↓

v = c

(v == c)

Invasive Software Testing
Kim et al., ICST 18 [Distinguished Paper Award], Kim and Hong., STVR 19

Truly Real-world Industrial Application
Yunho and Moonzoo founded VPlusLab Inc. in 2019 (https://vpluslab.kr)

• VPlusLab provides an automated
test input generation solution

for safety critical sys.

• For Hyundai Mobis Automotive S/W,
CROWN achieved >80% MC/DC cov.
[ICSE SEIP ’19]

• Our customers:

21

https://vpluslab.kr/

Can We Do Things Better?
How can we improve mutation with machine learning?

• So far, mutation can give great answers to testing and debugging problems
from various mutant executions
• Various mutant executions provide valuable data to learn the behaviors of software-under-

analysis mutant analysis

• We can apply machine learning to learn a model from various mutant
executions and apply it to testing and debugging

22

ML-based Mutant Selection
Phan et al., Mutation 18, Kim and Hong, STVR 21

• With great power comes great cost
• We need to select representative fine-grained mutation operators

• We develop MUSIC to support fine-grained mutation operators for C/C++
(https://github.com/swtv-kaist/MUSIC)

23

Coarse-grained Operator
OASN

+

-

*

/

%

>>

<<

10 Fine-grained Operators
refined from OASN

+

*

%

<<

>>

<<

>>

+

>>

%

OASN+ >>

OASN+ <<

OASN* >>

OASN% <<

OASN% >>

Domain Range

Rule: Arithmetic Operator  Shift Operator

Machine Learning

>>

<<

+

%

OASN+ <<

OASN% <<

>< ORRN< >

Selected Fine-grained
Operators

https://github.com/swtv-kaist/MUSIC

ML-based Fault Localization
Kim et al., TOSEM 19

• A single fixed susp. formula cannot rule them all

• PRINCE learns a FL model from dynamic FL features and static code complexity.

24

Rank Stmt

1 a=b
2 x++
… …
n If(a>b)

Fault Ranking
Model

Known
Faults
Info.

Feature
Extractor

PRINCE using Machine Learning

Unknown Faults
Info.

Static
Features

Dynamic
Features

Machine
Learning

Shin Yoo | Associate Professor @ KAIST

What came after MUSE

25

What happened?

• “Wow, I’m old…”

• I could not attend ICST 2014
because of a certain toddler

Locality Information Loss (LIL)
A new way to evaluate FL results

• Ranking-based evaluation assumes linear consumption of results by humans;
what if machines (=APR) want the probability of bug X being at location Y?

• FL performance should be measured by cross-entropy between the
suspiciousness score distribution and the ground truth!

Cost of MUSE
MBFL may be accurate but is also very expensive!

• In fact, the more expensive it is, the more accurate it can be

Unified Debugging
Lou et al., ISSTA 2020

• Iteratively refine FL by running APR based on the intermediate FL results!

• APR = applying changes to code = mutation

Ahead-of-Time MBFL
Kim et al., ISSRE 2021, IST 2023

• How can we do MBFL, without having to generate/compile/test all the mutants
at the time of test failure?

• Can we do the expensive step in advance??

Dr. Jinhan KimProf. Robert Feldt Gabin An
(PhD Candidate)

Mutation

1. Do mutation analysis

Training

ML

2. Reverse relation and
learn to predict mutation
location from test results

Real Fault

ML

3. Given a real failure, pretend if
it is a mutant and ask the model

where it is

Predictive Mutation Analysis
Kim et al., TOSEM 2021

• What if a new test case fails, and you do not have any ahead-of-time mutation results?

• We try to predict the mutation analysis results by exploiting natural language channel.

Dr. Jinhan KimProf. Robert Feldt Prof. Shin Hong

…And Many Other Mutation/FL Work
(that stemmed from my experience of ICST 2014 collaboration)

Summary

• Mutation is a fundamentally strong tool!

• Sticking to a single problem can be fun, if the problem is important

ICST 2026

Daejeon, Republic of Korea

	슬라이드 번호 1
	Our Journey Over the Past 10 Years
	Back in 2012…
	FL in 2012: The Era of SBFL
	FL in 2012: Criticism on FL
	FL in 2012: Focused on Passively Observable Results
	MUSE Main Idea
	MUSE Result
	HybridMUSE: Combine MUSE with SBFL
	HybridMUSE Result
	Practical FL for the Industry
	An Approach for the Entire Debugging Process
	EvoFuzz: Improving and extending EvoSuite
	Remarks
	슬라이드 번호 16
	Fault Localization for Multi-lingual Programs
	What Do We Need for Effective FL?
	Invasive Software Testing
	Invasive Software Testing
	Truly Real-world Industrial Application
	Can We Do Things Better?
	ML-based Mutant Selection
	ML-based Fault Localization
	슬라이드 번호 25
	10 Years!
	Locality Information Loss (LIL)
	Cost of MUSE
	Unified Debugging
	Ahead-of-Time MBFL
	Predictive Mutation Analysis
	…And Many Other Mutation/FL Work
	Summary
	슬라이드 번호 34

