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Command-line options (e.g., -l, -F, -R for ls) given to a command-line program can significantly alternate the behaviors of

the program. Thus, fuzzing not only file input but also program options can improve test coverage and bug detection. In this

paper, we propose ZigZagFuzz which achieves higher test coverage and detects more bugs than the state-of-the-art fuzzers by

separately mutating program options and file inputs in an iterative/interleaving manner. ZigZagFuzz applies the following

three core ideas. First, to utilize different characteristics of the program option domain and the file input domain, ZigZagFuzz

separates phases of mutating program options from ones of mutating file inputs and performs two distinct mutation strategies

on the two different domains. Second, to reach deep segments of a target program that are accessed through an interleaving

sequence of program option checks and file inputs checks, ZigZagFuzz continuously interleaves phases of mutating program

options with phases of mutating file inputs. Finally, to improve fuzzing performance further, ZigZagFuzz periodically shrinks

input corpus by removing similar test inputs based on their function coverage.

The experiment results on the 20 real-world programs show that ZigZagFuzz improves test coverage and detects 1.9 to

10.6 times more bugs than the state-of-the-art fuzzers that mutate program options such as AFL++-argv, AFL++-all, Eclipser,

CarpetFuzz, ConfigFuzz, and POWER. We have reported the new bugs detected by ZigZagFuzz, and the original developers

confirmed our bug reports.

Additional Key Words and Phrases: Automated test generation, fuzzing, command-line program options, bug detection,

dynamic analysis

ACM Reference Format:
Ahcheong Lee, Youngseok Choi, Shin Hong, Yunho Kim, Kyutae Cho, and Moonzoo Kim. 2024. ZigZagFuzz: Interleaved

Fuzzing of Program Options and Files . 1, 1 (August 2024), 31 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Most programs can be configured for various purposes and the configuration of a program can largely affect the

behaviors of it. For example, programs with command-line interface have dozens of command-line options to

alternate the operations of programs (e.g., ls has more than 50 program options including -a, -F, -l, -n, and
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-R 1
). In other words, program options play a crucial role in determining a target program’s execution paths. Thus,

when we fuzz a program with command-line interface, our bug detection results can vary significantly depending

on which program options are applied during fuzzing. For example, 36 functions of xmllint (an xml file parsing

tool) in libxml2 cannot be reached at all unless one of –xinclude, –noxincludenode, and –nofixup-base-uris
options is given.

Although a program option configuration (i.e., a list of program options given to a target program such as “-a
-l -R” for ls) is important for fuzzing, most fuzzing papers utilized only a single program option configuration in

their fuzzing experiments. According to the survey of the recently published 102 fuzzing papers (see Section 2.1

for the details), 73.5% of the fuzzing papers did not provide information on the program option configurations in

the papers. Thus, there exists large room to improve fuzzing effectiveness by systematically utilizing various

program option configurations.

In this paper, we propose a novel fuzzing technique ZigZagFuzz that detects more bugs than the state-of-the-art

fuzzers by separately fuzzing file input (FI) and program option input (POI) in an iterative/interleaving manner.

Three core ideas of ZigZagFuzz are as follows (the motivations for the ideas are illustrated through a concrete

example in Section 2):

• Different mutation strategies for different input domains (i.e., POIs and FIs):
To utilize different characteristics of the POI domain and the FI domain, ZigZagFuzz separates phases of

mutating POIs from ones of mutating FIs. In other words, in contrast to the fuzzers that mutate only file

inputs of a target program, ZigZagFuzz considers that a target program has two different input domains to
explore (i.e., POI domain and FI domain), and it applies two distinct mutation strategies to them for high bug

detection ability (see Section 3.4 and Section 3.5).

• Iterative/interleaving phases of mutating POI with ones of mutating FI:
To penetrate the deeper segments of a target program, which are accessed via a methodical sequence of

alternating checks between Program Options Inputs (POI) and File Inputs (FI), ZigZagFuzz employs a

strategy of seamlessly interleaving two distinct mutation phases. This iterative and interleaved approach

ensures thorough exploration and testing of the program’s functionalities, optimizing the fuzzing process

for efficacy and depth. We discuss the importance of this nature with a motivating example in Section 2.

• Domain-wise corpus shrinking by reducing redundant POIs and FIs
To enhance fuzzing performance further, ZigZagFuzz periodically reduces redundant POI corpus and FI

corpus separately. Unlike conventional corpus shrinking methods, the proposed approach independently

reduces POIs and FIs, and then retains only a small set of seed inputs containing unique POIs and FIs

according to their function coverage achievements (see Section 3.6).

The experiment results on the 20 real-world programs show that ZigZagFuzz improves test coverage and

detects significantly more (1.9 to 10.6 times more) bugs than the state-of-the-art fuzzers that fuzz program options

such as AFL++-argv, ConfigFuzz, Eclipser, CarpetFuzz, and POWER (see Section 5.1). Furthermore, we have

reported the new bugs detected by ZigZagFuzz and the original developers confirmed most of our bug reports.

The main contributions of this paper are as follows:

• ZigZagFuzz is the first fuzzer that can detect significantly more bugs than the state-of-the-art fuzzers by

separately mutating program options and file inputs in an iterative/interleaving manner (see Section 3).

• We have performed a series of experiments where we have empirically evaluated ZigZagFuzz and the other

cutting-edge fuzzers that mutate program options (i.e., AFL++-argv, Eclipser, CarpetFuzz, ConfigFuzz, and

1
See http://linuxcommand.org/lc3_man_pages/ls1.html
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POWER) and demonstrated that ZigZagFuzz detects significantly more (1.9 to 10.6 times more) unique

bugs than the cutting-edge fuzzers (Section 5).

• We have reported 61 new bugs detected by ZigZagFuzz to the original developers of the target subject

programs to improve the quality of the open source subject programs.
2

The remaining sections of this paper are as follows. Section 2 shows a motivating example for the design of

ZigZagFuzz. Section 3 explains the details of ZigZagFuzz. Section 4 describes the experiment setup and Section 5

shows the experiment results and answers our research questions. Section 6 discusses our survey of POI use in

fuzzing research and the benefits of ZigZagFuzz through concrete case studies. Section 7 compares ZigZagFuzz

with related work. Section 8 concludes this paper and proposes future work.

2 MOTIVATION

2.1 Survey of Program Option Input (POI) Use in Fuzzing Research
Although POI can largely affect program behaviors, fuzzing researchers do not pay enough attention to fuzz POI.

To find out how fuzzing papers explicitly utilize POI in their experiments, we have surveyed 102 fuzzing papers

that (1) were published from 2015 to 2023 at top conferences and journals in software engineering and security,

and (2) targeted command-line interface programs.

From the survey, we have observed that

(1) Only six papers [3, 7, 15, 38, 42, 48] directly mutate option configurations in their experiments.

(2) Only 21 papers specify the program option configurations used in their experiments (e.g., [4, 10, 22, 25, 33,

37, 45, 46]).

(3) 11 papers [1, 6, 9, 16, 23, 26, 29, 30, 41, 43, 50] do not specify the program option configurations (but

implicitly expose their program option configurations through publicly available experiment data)

(4) 64 papers do not specify the program option configurations used (e.g., [8, 12, 13, 20, 24, 40, 49]).

In summary, 73.5% (=(11+64)/102) of the recently published fuzzing papers do not provide information on

the program option configurations used. Moreover, most of the above papers use only one program option

configuration for their experiments. We share the complete list of the surveyed papers on our paper web page

(https://sites.google.com/view/zigzagfuzz).

2.2 Motivating Crash Example
Figure 1-(a) shows a buggy code example of dwarfdump ver.0.5.0. To trigger a use-after-free crash at Line 12 in the

buggy code, a program execution must satisfy the seven branch conditions in a row (i.e., the branch conditions in

Lines 2, 3, 4, 5, 7, 9, and 10). These branch conditions can be classified into Program Option Input (POI)-dependent

ones (marked as P○ at the end of the line) or File Input (FI)-dependent ones (marked as F○) depending on whether

variables involved in the branch conditions have data-dependency on POI or FI.

In this example, argv and glflags at Line 2, glflags.gf_1 and glflags.gf_2 at Line 5, and glflags.
gf_eh_frame_flag at Line 9 (colored in blue) are POI-dependent because these are data-dependent to argv. On
the other hand, ftype at Lines 3 and 4 and dobj at Lines 7 and 10 (colored in green) are FI-dependent because

their values are defined by file read operations (e.g., open_detect_dwarf_obj at Line 3).

2
We reported 61 out of the 85 bugs detected by ZigZagFuzz. To reduce the original developer’s burden to review many bug reports, we

reported the bugs that can be replicated on the latest development version.
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Fig. 1. (a) Simplified crashing buggy code in dwarfdump ver.0.5.0 that contains combination of POI dependent branches
(marked as P○) and FI dependent branches (marked as F○). (b) An example diagram that shows interleaving behavior of
ZigZagFuzz.

To trigger a crash at Line 12, a test input must satisfy the following POI-dependent and FI-dependent branch

conditions in Lines 1-10 in the following order:

(1) POI-dependent branch P1○ (Line 2): The given POI should be valid (i.e., process_args should be able to

parse the given POI). For example, each word in the POI should start with ‘-’; the program terminates

otherwise. process_args sets global flag values (glflags) based on the given POI.

(2) FI-dependent branches F1○ and F2○ (Lines 3 and 4): The FI should contain the magic bytes to satisfy

complicated checks in open_detect_dwarf_obj at Line 3. For example, the function has eight bytes long

magic byte checks with multiple nested if/switch statements. Also, open_detect_dwarf_obj assigns a

value to ftype based on the FI content. To satisfy the branch condition on ftype at Line 4, the FI should
have proper data.

(3) POI-dependent branch P2○ (Line 5): The value of glflags (which is dependent on the POI) should be set

properly, so that it can satisfy the branch condition at Line 5.

(4) FI-dependent branch F3○ (Line 7): The program reads the FI content and converts it to an internal data

object (dobj). The FI content should be valid to satisfy complicated conditions in dwarf_init_path_dl.
The internal data object represents complex debug information for an ELF object file. It is 9,664 bytes long

and contains 83 different fields. During the conversion process, the function performs several sanity checks

on the fields of the converted data object. For example, it checks if the number of the ELF sections written

in the FI matches the actual number of the ELF sections converted into the object.

, Vol. 1, No. 1, Article . Publication date: August 2024.
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(5) POI-dependent branch P3○ (Line 9): The branch condition is dependent on gflags.gf_eh_fram_flag
which is dependent on the POI.

(6) FI-dependent branch F4○ (Line 10): The program reads and checks the object dobj which is dependent on

the FI.

As we have seen in the code example, the POI-dependent branches (i.e., Lines 2, 5, and 9) are interleaved

with FI-dependent branches (i.e., Lines 3, 4, 7, and 10) to the crashing line (Line 12). To satisfy this interleaving

sequence of the POI-dependent branches with the FI-dependent branch conditions, a fuzzer should solve several

challenges described in Section 2.3.

2.3 Challenges and Solutions
The buggy code example of dwarfdump shown in Figure 1 illustrates why ZigZagFuzz alternates the POI and

FI mutation phases to satisfy complex path conditions. The buggy code example shows three challenges of a

mutation-based evolutionary fuzzer to trigger the crash at Line 12 (Section 2.2 explains the example in detail):

(1) Both POI-dependent and FI-dependent branches can be included in a path to a crash location. Thus, a

fuzzer should mutate not only FI, but also POI effectively and efficiently.

(2) Since a pre-condition of a POI-dependent branch may rely on FI-dependent variables (and vice versa) like

the interleaved sequence of the POI-dependent branches with the FI-dependent branches in Figure 1-(a),

mutating both POI and FI at the same time may easily break the pre-condition and become ineffective.

(3) A branch condition often involves a complicated condition check which can be satisfied only after a fuzzer

spends a long time generating a test input that satisfies multiple sub-conditions (e.g., to satisfy a branch

condition at Line 3 in Figure 1-(a), a fuzzer should generate a test input that satisfies the complicated

condition checks in open_detect_dwarf_obj).

Thus, a fuzzer should provide the following solutions to overcome the above challenges as shown in Figure 1-(b):

(1) A fuzzer should perform not only FI mutations, but also POI mutations to satisfy POI-dependent and

FI-dependent branch conditions (see Section 3.1).

(2) A fuzzer should separate POI mutations from FI mutations. In other words, to satisfy a POI-dependent

branch condition, it should first satisfy a FI-dependent pre-condition of the POI-dependent branch by

mutating FI. Then, it should mutate POI without mutating FI to avoid violating the pre-condition of the

POI-dependent branch (and vice versa for FI-dependent branches) (see Section 3.3).

(3) A fuzzer should assign enough time and resource budget to each POI mutation and FI mutation to generate

a test input that satisfies complicated branch conditions (e.g., ones in open_and_detect_dwarf_obj and
dwarf_init_path_dl) (see Section 3.3).

(4) A fuzzer should manage the seed corpus to maintain a high diversity of POIs and FIs separately, in order to

prevent specific POIs or FIs from dominating the seed corpus and limiting exploration of different program

execution scenarios (see Section 3.6).

To address the aforementioned challenges, ZigZagFuzz alternatively repeats POI mutations and FI mutations in

an iterative/interleaving manner and periodically performs corpus shrinking, as suggested in the above solutions.

, Vol. 1, No. 1, Article . Publication date: August 2024.
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Fig. 2. Overall process of ZigZagFuzz

3 ZIGZAGFUZZ
Figure 2 shows the process of ZigZagFuzz. ZigZagFuzz considers a test input (𝑜, 𝑓 ) as a pair of a program option
input 𝑜 and a file input 𝑓 . ZigZagFuzz starts with a set of initial test inputs (e.g., (𝑜1, 𝑓1), (𝑜2, 𝑓2) in the Figure 2).

ZigZagFuzz repeats the following three tasks as shown in Figure 2:

(1) Phase of mutating program option input (POI) (Section 3.4):

ZigZagFuzz mutates POIs (e.g., 𝑜1, 𝑜2) by applying both structural mutation [31] and random byte-level
3

mutation. Structural mutation aims to generate valid/meaningful POIs while byte-level mutation targets to

generate diverse exceptional POIs.

(2) Phase of mutating file input (FI) (Section 3.5):

ZigZagFuzz mutates FIs through random byte-level mutation (e.g., bitflip, byteflip, arithmetic, havoc, splice,

etc.) as other fuzzers like AFL++ do.

(3) Domain-wise corpus shrinking (Section 3.6):

To further improve fuzzing performance, ZigZagFuzz periodically decreases the redundancy in both the

POI corpus and the FI corpus separately. Unlike traditional methods of corpus reduction, this approach

individually shrinks POIs and FIs, subsequently preserving a compact set of test inputs that contains distinct

POIs and FIs based on their functional coverage.

3.1 Overall Process of ZigZagFuzz
Algorithm 1 explains the overall process of ZigZagFuzz. First, ZigZagFuzz receives the following items to start

fuzzing (see the inputs of Algorithm 1):

• A target program 𝑃 .

• A set of initial test inputs 𝑇0, each of which consists of an initial POI and an initial FI.

• A set of program option keywords (i.e., keyword dictionary) 𝑂𝑃𝑇𝑃 that are semi-automatically extracted

from manual pages and usage messages of a target program 𝑃 (see Section 3.2).

Next, ZigZagFuzz initializes the following data (Lines 1-4 of Algorithm 1):

• 𝑇 ′ is a set of all generated test inputs (i.e., output of fuzzing).

3
More precisely, bit-byte-word-dword level
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Algorithm 1: Overall process of ZigZagFuzz
Input: 𝑃 : a test subject program

𝑇0 : a set of initial test inputs for 𝑃

𝑂𝑃𝑇𝑃 : a set of program option keywords of 𝑃

Output: 𝑇 ′ : a set of all generated test inputs

1 𝑇 ′ ← ∅
2 𝑆𝑒𝑒𝑑𝑠 ← ∅
3 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ← ∅
4 𝐸𝑛𝑒𝑟𝑔𝑦 ← 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑝

5 foreach (𝑜, 𝑓 ) ∈ 𝑇0 do
6 RunTest(𝑃 , 𝑜 , 𝑓 , 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)
7 end
8 while GlobalTimeout() do
9 while POI_Phase(𝜏𝑡) do
10 (𝑜, 𝑓 ) ← SelectSeed(𝑆𝑒𝑒𝑑𝑠, 𝐸𝑛𝑒𝑟𝑔𝑦)

11 𝑜 ′ ←MutatePOI(𝑜 , 𝑂𝑃𝑇𝑃)
12 RunTest(𝑃 , 𝑜 ′, 𝑓 , 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)
13 end
14 while FI_Phase(𝜏𝑡) do
15 (𝑜, 𝑓 ) ← SelectSeed(𝑆𝑒𝑒𝑑𝑠, 𝐸𝑛𝑒𝑟𝑔𝑦)

16 𝑓 ′ ← MutateFI(𝑓 )

17 RunTest(𝑃 , 𝑜 , 𝑓 ′, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)
18 end
19 𝑆𝑒𝑒𝑑𝑠 ← ShrinkCorpus(𝑆𝑒𝑒𝑑𝑠 , 𝐸𝑛𝑒𝑟𝑔𝑦)

20 end
21 return T’

22 Function RunTest(𝑃 , 𝑜 , 𝑓 , 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒):
23 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ← Execute(𝑃 , 𝑜 , 𝑓 )
24 if 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ⊈ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 then
25 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ← 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∪𝐶𝑜𝑣𝑒𝑟𝑒𝑑
26 𝑆𝑒𝑒𝑑𝑠 ← 𝑆𝑒𝑒𝑑𝑠 ∪ {(𝑜, 𝑓 )}
27 𝑇 ′ ← 𝑇 ′ ∪ {(𝑜, 𝑓 )}
28 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑜, 𝑓 ) ← CalEnergy(𝑜, 𝑓 )

29 end
30 End Function

• 𝑆𝑒𝑒𝑑𝑠 is the test input corpus that will be mutated to generate diverse test inputs.

• 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 contains coverage achieved by generated test inputs.

• 𝐸𝑛𝑒𝑟𝑔𝑦 is a map that records assigned energy for each test input (including both FI and POI), which is the

same to that of AFL++ [11]. It is used to prioritize test inputs through the power scheduling algorithm and

to select test inputs at the corpus shrinking stage.
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01: $ ./ffmpeg -help

02: ffmpeg version N-109669-g9a180f60a9

03: Hyper fast Audio and Video encoder

04: usage: ffmpeg [options] [[infile options] -i infile]... [outfile options] outfile...

05: ...

06: mpeg1video encoder AVOptions:

07: -drop_frame_timecode <boolean> Timecode is in drop frame format. (default false)

08: -b_strategy <int> I/P/B-frames (from 0 to 2) (default 0)

09: -b_sensitivity <int> Adjust sensitivity (from 1 to INT_MAX) (default 40)

Fig. 3. A simplified usage message example of ffmpeg

Then, ZigZagFuzz executes and evaluates all given initial test inputs in 𝑇0 (Lines 5-7). When it executes each

test input (𝑜, 𝑓 ), it records the coverage of the execution in 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 . If an execution of a test input (𝑜, 𝑓 ) covers
a new element, ZigZagFuzz updates 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (Line 25) and adds (𝑜, 𝑓 ) to 𝑆𝑒𝑒𝑑𝑠 so that it can be mutated later

(Line 26). It also puts (𝑜, 𝑓 ) into the output corpus 𝑇 ′ (Line 27) and calculates the energy score of (𝑜, 𝑓 ) (Line 28).
After executing and evaluating 𝑇0, ZigZagFuzz repeats the three tasks (POI mutation phase, FI mutation

phase, and domain-wise corpus shrinking) in an iterative/interleaving manner until the global timeout is reached

(Lines 8-20) (see Section 3.3).

3.2 Construction of Option Keyword Dictionary
A program with a command-line interface (CLI) usually has an option (e.g., –help) to print usage messages

and guide how to execute the program. We create an option keyword dictionary (i.e., 𝑂𝑃𝑇𝑃 in Algorithm 1) by

extracting option keywords from these messages. As an example, Figure 3 shows a simplified usage message of

ffmpeg, from which we can extract option keywords by parsing each line starting with ‘-’ (Lines 7-9). In this

example, we extract -drop_frame_timecode, -b_strategy, and -b_sensitivity as option keywords by using

a python script that creates an option keyword dictionary as follows:

(1) From the lines starting with ‘-’ in the help (or usage) messages (e.g., “-drop_frame_timecode" in Figure 3),

the script extracts and adds the first word of each line of the help message to the option keyword dictionary.

(2) If the first word (i.e., an option keyword) is followed by a parameter type (e.g., <boolean>, <int>), pre-
defined values of the type are attached with the option keyword (e.g., false or true for <boolean> and 0,
1, or 100 for <int>) in the dictionary such as “-drop_frame_timecode false“, “-drop_frame_timecode
true“, “-b_strategy 0”, “-b_strategy 1”, and “-b_strategy 100”. 4

3.3 Iterative/Interleaving Phases of POI Mutations with FI Mutations
ZigZagFuzz repeats the POI mutation phase, the FI mutation phase, and domain-wise corpus shrinking in an

iterative/interleaving manner to resolve the challenges described in Section 2.3. As described in Algorithm 1 in

Section 3.1, POI mutation and FI mutation are strictly separated in the timeline (Lines 9-18).

First, ZigZagFuzz starts with the POI mutation phase (Lines 9-13) (see Section 3.4). It repeats the following

tasks until a given time 𝜏𝑡 is reached:

• selecting a test input (based on the power scheduling algorithm (Line 10)

4
We slightly modified the script for a program whose help message structure is different from the above example (e.g., a program which uses

INT instead of <int> in its help message).
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• mutating the POI of the test input (Line 11)

• evaluating the new test input with the new POI by measuring coverage of the input (Line 12).

Next, ZigZagFuzz changes the phase to the FI mutation phase (see Section 3.5). ZigZagFuzz mutates FIs similar

to the POI mutation phase (Lines 14-18). After the FI mutation phase is completed, the domain-wise corpus

shrinking (see Section 3.6) selects test inputs to pass to the POI mutation phase (Line 19).

Thus, POI mutation focuses on generating test inputs that satisfy a POI-dependent branch condition without

breaking any pre-condition of the POI-dependent branch which may be dependent on FI (and vice versa for FI

mutation).

For example, as shown in the example of Figure 1, ZigZagFuzz repeats POI mutation phases and FI mutation

phases to penetrate to complex interleaved pre-conditions of deep segments of programs. Suppose that we have a

test input that can reach Line 10, but the test input can not satisfy the condition F4○ in the Line 10. To trigger

a crash in Line 12, a fuzzer should mutate only the FI of the test input but not the POI of the test input. This

is because mutating the POI of the test input will break the pre-condition of the branch condition and a new

test input obtained by mutating the POI might not even reach Line 12. (i.e. mutating the POI may break the

POI-dependant pre-conditions P1○, P2○, and P3○). This is why ZigZagFuzz uses iterative and interleaved fuzzing of

POI mutations and FI mutations for high bug detection effectiveness.

3.4 Program Option Input Mutation Phase
Algorithm 2 explains how it mutates a given POI 𝑜 . ZigZagFuzz mutates POI in two ways: structural mutation

and byte-level mutation. Structural mutation considers a POI as a list of words and mutates the list by randomly

inserting, removing, or replacing a word in the list. (e.g., the structural mutation mutates “-a 100 -d” to “-a 100

-d -f” by adding one word “-f”). Byte-level mutation considers a POI (including option arguments) as a string

and mutates the string randomly (e.g., the byte-level mutation mutates “-a 100 -d” to “-ab 21a -de”). ZigZagFuzz

randomly applies mutations of both types to POI (See Section 5.4) with probability 50% each (Line 2). We select

this probability value (i.e., 50%) based on our exploratory study.

The left part of Figure 2 shows how POI mutation phase operates. In this example, it receives an initial corpus

𝑇0 (={(𝑜1, 𝑓1), (𝑜2, 𝑓2)}) and generates two test inputs ((𝑜11, 𝑓1) and (𝑜21, 𝑓2)) from 𝑇0; (𝑜11, 𝑓1) is generated by

mutating 𝑜1 of (𝑜1, 𝑓1), and(𝑜21, 𝑓2) is generated by mutating 𝑜2 of (𝑜2, 𝑓2).

3.4.1 Structural Mutation on POI. Structural mutation considers a POI as a list of words and focuses on generating

valid/meaningful POIs. The else branch of the Algorithm 2 (Lines 6-26) shows how ZigZagFuzz applies structural

mutation to POI. First, ZigZagFuzz splits a given POI 𝑜 into a list of optionwords opt_list (Line 7). Then, ZigZagFuzz
applies a random number (e.g. between one and 32) of structural mutations on 𝑜𝑝𝑡_𝑙𝑖𝑠𝑡 . There are three structural

mutation operators: insertion, deletion, and replacement. The insertion operator inserts a random option keyword

in a dictionary 𝑂𝑃𝑇𝑃 at a random location of the list (Lines 10-14). The deletion operator removes a random

word in the list (Lines 15-18). The replacement operator replaces a random word in the list with a random option

keyword in 𝑂𝑃𝑇𝑃 (Lines 19-23). Lastly, ZigZagFuzz concatenates the option words in the list to generate a new

POI 𝑜 ′ (Line 26).
For an example of POI "-a 100 -d -e", the three structural mutation operators work as follows:

(1) The insertion operator inserts a random word from the dictionary in a random place. One example output

is “-a 100 -d -f -e”, which has added an option ‘-f’.

(2) The removal operator deletes a random word from the POI. One example output is “-a 100 -d”, which has

removed an option ‘-e’.

(3) The replacement operator replaces a random word in the POI with another random word in the dictionary.

One example output is “-a 100 -g -e”, which has replaced the option ‘-d’ with ‘-g’. Another example output

is “-a -e -d -e”, which has replaced the option argument ‘100’ with ‘-e’.
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Algorithm 2: Mutation of Program Option Input

Input: 𝑜 : a given POI to mutate

𝑂𝑃𝑇𝑃 : command-line keywords of the subject program 𝑃

Output: 𝑜 ′ : a new generated POI.

1 Function MutatePOI(𝑜 , 𝑂𝑃𝑇𝑃 ):
2 if Rand({0, 1})== 0 then
3 // Byte-level mutation on POI

4 𝑜 ′ ← ByteLevelMut(𝑜)

5 else
6 // Structural mutation on POI

7 𝑜𝑝𝑡_𝑙𝑖𝑠𝑡 ← Split(𝑜)

8 for 𝑖 ← 0 to Rand({1, 2, 3, · · · , 32}) do
9 switch GetRandMutOp() do
10 case 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 do
11 𝑜𝑝𝑡𝑛𝑒𝑤 ← Rand(𝑂𝑃𝑇𝑃)

12 𝑝𝑜𝑠 ← Rand({0, 1, 2, ..., |𝑜𝑝𝑡_𝑙𝑖𝑠𝑡 | + 1})
13 InsertAt(𝑜𝑝𝑡_𝑙𝑖𝑠𝑡 , 𝑝𝑜𝑠 , 𝑜𝑝𝑡𝑛𝑒𝑤)
14 end
15 case 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 do
16 𝑝𝑜𝑠 ← Rand({0, 1, 2, ..., |𝑜𝑝𝑡_𝑙𝑖𝑠𝑡 |})
17 RemoveAt(𝑜𝑝𝑡_𝑙𝑖𝑠𝑡 , 𝑝𝑜𝑠)
18 end
19 case 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 do
20 𝑜𝑝𝑡𝑛𝑒𝑤 ← Rand(𝑂𝑃𝑇𝑃)

21 𝑝𝑜𝑠 ← Rand({0, 1, 2, ..., |𝑜𝑝𝑡_𝑙𝑖𝑠𝑡 |})
22 Replace(𝑜𝑝𝑡_𝑙𝑖𝑠𝑡 , 𝑝𝑜𝑠 , 𝑜𝑝𝑡𝑛𝑒𝑤)
23 end
24 end
25 end
26 𝑜 ′ ← Concat(𝑜𝑝𝑡_𝑙𝑖𝑠𝑡)
27 end
28 return 𝑜 ′

29 End Function

3.4.2 Byte-level Mutation on POI. Byte-level mutation considers a POI as a string and mutates the string randomly

(Line 3-4 in Algorithm 2). Thus, it is likely to generate broken POIs that violate the constraints of POI. These

invalid POIs can detect crashes that occur only in exceptional executions caused by invalid POIs.

Also, this byte-level mutation can contribute to generating diverse option arguments with infinite domains.

Some options in POIs take an integer or a string value as an argument. For example, in Figure 3, -b_sensitivity
option in Line 9 takes a string that represents a positive integer value as an argument. While structural mutation

can insert only pre-defined strings in the dictionary, byte-level mutation has more chances to generate strings
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that represent diverse integers including exceptional ones such as negative numbers or a huge number larger

than INT_MAX.

3.5 File Input Mutation Phase
After generating diverse POIs in the POI mutation phase, ZigZagFuzz generates diverse FIs through random

mutation like other fuzzers (e.g., AFL++).

The center part of Figure 2 shows a process of the FI mutation phase. It receives the test inputs generated

by the preceding POI mutation phase (e.g., (𝑜1, 𝑓1), (𝑜11, 𝑓1), (𝑜2, 𝑓2), (𝑜21, 𝑓2)). Then, it generates more test inputs

(e.g., (𝑜1, 𝑓11), (𝑜11, 𝑓12), (𝑜2, 𝑓21) and (𝑜21, 𝑓22)) by mutating the FIs of the given test inputs.

3.6 Domain-wise Corpus Shrinking
After each FI mutation phase, ZigZagFuzz removes test inputs with redundant POI and FI combinations from the

seed corpus. ZigZagFuzz tries to retain a test input only if both of its components are unique. To this end, the
domain-wise corpus shrinking algorithm performs POI reduction and FI reduction independently, and selects a

test input whose both components are unique. ZigZagFuzz determines two POIs 𝑜1 and 𝑜2 are similar to each

other if two test inputs with the two POIs (e.g., (𝑜1, 𝑓1) and (𝑜2, 𝑓2)) cover almost same set of functions. For each

POI, ZigZagFuzz measures the function coverage of the POI (i.e., the set of functions covered by the test inputs

containing the POI). Likewise, ZigZagFuzz determines which FIs are similar.

Algorithm 3 shows how the domain-wise corpus shrinking works. The inputs of the algorithm are a test input

corpus𝑇 , 𝐸𝑛𝑒𝑟𝑔𝑦, and𝐶𝑜𝑣 .𝑇 contains test inputs generated in the mutation phases. 𝐸𝑛𝑒𝑟𝑔𝑦 is a map that records

assigned energy score for each test input.𝐶𝑜𝑣 is a map that records function coverage of each test input (𝑜, 𝑓 ) ∈ 𝑇 .
The domain-wise corpus shrinking operates as follows:

(1) Initialization (Lines 2-5)

𝑂 is a set of POIs in 𝑇 . 𝐹 is a set of FIs in 𝑇 . 𝐶𝑜𝑣𝑃𝑂𝐼 is a map that records the set of covered functions of

each POI in 𝑂 . Similarly, 𝐶𝑜𝑣𝐹𝐼 is a map that saves the set of covered functions of each FI in 𝐹 .

(2) Coverage processing (Lines 6-10)

ZigZagFuzz calculates function coverage of each POI and each FI. A POI’s function coverage is defined

as the set of functions covered by the test inputs consisting of the POI and all associated FIs, as specified

in Definition 1 (similarly for the function coverage of FIs as specified in Definition 2). While iterating

each test input (𝑜, 𝑓 ) in 𝑇 , ZigZagFuzz takes a list of covered functions 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 that are covered by (𝑜, 𝑓 )
(Line 7). 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 is aggregated to the function coverage of each POI (Line 8) and each FI (Line 9).

Definition 1. For a POI 𝑜 in a test input (𝑜, 𝑓 ) ∈ 𝑇 , the function coverage 𝐶𝑜𝑣𝑃𝑂𝐼 of 𝑜 is defined as:

𝐶𝑜𝑣𝑃𝑂𝐼 [𝑜] = {𝑓 𝑢𝑛𝑐 | 𝑓 𝑢𝑛𝑐 ∈ 𝐶𝑜𝑣 [(𝑜, 𝑓 )] for all 𝑓 such that (𝑜, 𝑓 ) ∈ 𝑇 }

Definition 2. For a FI 𝑓 in a test input (𝑜, 𝑓 ) ∈ 𝑇 , the function coverage 𝐶𝑜𝑣𝐹𝐼 of 𝑓 is defined as:

𝐶𝑜𝑣𝐹𝐼 [𝑓 ] = {𝑓 𝑢𝑛𝑐 | 𝑓 𝑢𝑛𝑐 ∈ 𝐶𝑜𝑣 [(𝑜, 𝑓 )] for all 𝑜 such that (𝑜, 𝑓 ) ∈ 𝑇 }

(3) Clustering (Lines 11-12)

ZigZagFuzz clusters POIs (and similarly FIs) based on Jaccard distance metric 𝐷𝑖𝑠𝑡 𝐽 [36] which is defined

in Definition 3.

Definition 3. For two lists of functions 𝐹1 and 𝐹2, the Jaccard distance between 𝐹1 and 𝐹2 is defined as:

𝐷𝑖𝑠𝑡 𝐽 (𝐹1, 𝐹2) = 1 − |𝐹1 ∩ 𝐹2 ||𝐹1 ∪ 𝐹2 |
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ZigZagFuzz performs K-Means clustering on POIs (and similarly on FIs) where the distance between

elements 𝑜1 and 𝑜2 is measured by the Jaccard distance metric on their function coverage (𝐶𝑜𝑣𝑃𝑂𝐼 (𝑜1) and
𝐶𝑜𝑣𝑃𝑂𝐼 (𝑜2)). Two POIs with similar function coverage will have a short distance between them and will be

clustered together. The number of clusters is set from predefined configuration values 𝑘𝑜𝑝𝑡 (and similarly

𝑘𝑓 𝑖𝑙𝑒 ).

(4) Selection of POIs (Lines 13-16)

ZigZagFuzz selects a small set of POIs 𝑂 ′ to represent clusters of POIs. From each cluster, SelTopN selects

top-N POIs that have high score. The score of POI is calculated by averaging AFL++ scores of the test inputs

that contain the POI. SelTopN utilizes AFL++ score of each test input recorded in 𝐸𝑛𝑒𝑟𝑔𝑦 5
. ZigZagFuzz

selects a predefined number of elements from each cluster as specified by 𝑁𝑜𝑝𝑡 .

(5) Selection of FIs (Lines 17-20)

ZigZagFuzz does the similar process on FIs; it selects a small set of FIs 𝐹 ′ from each cluster by calculating

the averaged AFL++ score of test inputs that contain each FI. ZigZagFuzz picks a predefined number of

elements from each cluster, as indicated by 𝑁𝑓 𝑖𝑙𝑒 .

(6) Selection of test inputs (Lines 21-26)

ZigZagFuzz selects only test inputs in 𝑇 , each of which contains both selected POI in 𝑂 ′ and selected FI in

𝐹 ′.

The right part of the Figure 2 shows a process of the domain-wise corpus shrinking. In this example, it receives

eight test inputs (𝑜1, 𝑓1), ..., (𝑜21, 𝑓22) passed from the preceding mutation phases and shrinks the test input corpus

to contain only three test inputs (𝑜1, 𝑓1), (𝑜11, 𝑓1), (𝑜21, 𝑓22) as follows. First, ZigZagFuzz generates three POI

clusters {o1}, {o21}, {o11, 𝑜2} (and two FI clusters {f1, 𝑓11, 𝑓21}, {𝑓2, 𝑓12, f22}). Then, ZigZagFuzz selects 𝑜1, 𝑜21, and
𝑜11 (shown in a bold font) from each POI cluster (similarly 𝑓1 and 𝑓22 from each FI cluster). Lastly, ZigZagFuzz

selects three test inputs (𝑜1, 𝑓1), (𝑜11, 𝑓1), and (𝑜21, 𝑓22) each of which consists of selected POI and selected FI. This

shrunken corpus will be delivered to the next POI mutation phase.

By clustering POIs and FIs separately, ZigZagFuzz preserves a high diversity of input components (both POIs

and FIs) in a shrunken corpus, preventing the potential bloating of specific input components. This dominance of

specific POIs or FIs reduces the chances of other POIs being mutated, limiting exploration of various program

option scenarios (similarly, this problem can occur to FIs, too).

For example, suppose that we perform corpus shrinking on a corpus𝑇 = {(𝑜1, 𝑓1), (𝑜1, 𝑓2), ..., (𝑜1, 𝑓100), (𝑜2, 𝑓101),
(𝑜3, 𝑓102), (𝑜4, 𝑓103), (𝑜5, 𝑓104)}. In this corpus, a POI 𝑜1 is associated with many FIs while the other POIs 𝑜2,

𝑜3, 𝑜4, and 𝑜5 are not.
6
Also, suppose that, by separately clustering POIs and FIs, ZigZagFuzz generates POI

clusters {𝑜1, 𝑜5}, {𝑜2}, {𝑜3}, and {𝑜4} and selects test inputs containing four POIs 𝑜1, 𝑜2, 𝑜3, and 𝑜4, respec-

tively. In contrast, if we cluster test inputs in 𝑇 without separating POIs and FIs, we might end up with four

clusters like {(𝑜1, 𝑓1), ...(𝑜1, 𝑓25), (𝑜2, 𝑓101), }, {(𝑜1, 𝑓26), ..., (𝑜1, 𝑓50), (𝑜3, 𝑓102)}, {(𝑜1, 𝑓51), ..., (𝑜1, 𝑓75), (𝑜4, 𝑓103)}, and
{(𝑜1, 𝑓76), ..., (𝑜1, 𝑓100), (𝑜5, 𝑓104)} where each cluster contains a high number of test inputs with the dominant POI

𝑜1. This could result in selecting only test inputs with 𝑜1 from each cluster, thereby excluding 𝑜2, 𝑜3, and 𝑜4 which

were selected by ZigZagFuzz. ZigZagFuzz’s domain-wise clustering strategy can prevent this problem and ensure

a more balanced clustering of POIs and FIs.

This domain-wise corpus shrinking algorithm incurs run-time overhead to measure function coverage and

calculating distances between seeds. However, this run-time overhead is negligible because measuring function

coverage incurs much less run-time overhead than path coverage and the distance calculation is simple (the time

5
AFL++ calculates each test input’s score based on its execution statistics such as execution speed and the number of covered branches.

6
This scenario can occasionally occur due to the domain-wise mutation strategy of ZigZagFuzz. Suppose that a FI mutation phase starts with

a corpus𝑇0 = { (𝑜1, 𝑓1 ), (𝑜2, 𝑓2 ), (𝑜3, 𝑓3 ), (𝑜4, 𝑓4 ), (𝑜5, 𝑓5 ) }} and mutates only (𝑜1, 𝑓1 ) due to the limited time budget of the phase. Then, the

resulting corpus𝑇 will have many test inputs containing 𝑜1.
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Algorithm 3: Domain-wise corpus shrinking

Input: 𝑇 : a set of the test inputs given to the domain-wise corpus shrinking stage

𝐸𝑛𝑒𝑟𝑔𝑦 : a map that records assigned energy score for each test input

𝐶𝑜𝑣 : a map that records function coverage of each test input (𝑜, 𝑓 ) ∈ 𝑇
Output: 𝑇 ′ : a reduced set of test inputs.

1 Function ShrinkCorpus(𝑇 , 𝐸𝑛𝑒𝑟𝑔𝑦):
2 𝑂 ← {𝑜 : (𝑜, 𝑓 ) ∈ 𝑇 }
3 𝐹 ← {𝑓 : (𝑜, 𝑓 ) ∈ 𝑇 }
4 𝐶𝑜𝑣𝑃𝑂𝐼 ← map {(𝑜, ∅) : 𝑜 ∈ 𝑂}
5 𝐶𝑜𝑣𝐹𝐼 ← map {(𝑓 , ∅) : 𝑓 ∈ 𝐹 }
6 foreach (𝑜, 𝑓 ) ∈ 𝑇 do
7 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ← 𝐶𝑜𝑣 [(𝑜, 𝑓 )]
8 𝐶𝑜𝑣𝑃𝑂𝐼 [𝑜] ← 𝐶𝑜𝑣𝑃𝑂𝐼 [𝑜] ∪𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒
9 𝐶𝑜𝑣𝐹𝐼 [𝑓 ] ← 𝐶𝑜𝑣𝐹𝐼 [𝑓 ] ∪𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒

10 end
11 𝐶𝑙𝑂 ← KMeans(𝑂,𝐶𝑜𝑣𝑃𝑂𝐼 , 𝑘𝑜𝑝𝑡 , 𝐷𝑖𝑠𝑡 𝐽 )

12 𝐶𝑙𝐹 ← KMeans(𝐹,𝐶𝑜𝑣𝐹𝐼 , 𝑘𝑓 𝑖𝑙𝑒 , 𝐷𝑖𝑠𝑡 𝐽 )

13 𝑂 ′ ← ∅
14 foreach 𝑐𝑙 ∈ 𝐶𝑙𝑂 do
15 𝑂 ′ ← 𝑂 ′∪ SelTopN(𝑐𝑙 , 𝐸𝑛𝑒𝑟𝑔𝑦, 𝑁𝑜𝑝𝑡)

16 end
17 𝐹 ′ ← ∅
18 foreach 𝑐𝑙 ∈ 𝐶𝑙𝐹 do
19 𝐹 ′ ← 𝐹 ′∪ SelTopN(𝑐𝑙 , 𝐸𝑛𝑒𝑟𝑔𝑦, 𝑁𝑓 𝑖𝑙𝑒)

20 end
21 𝑇 ′ ← ∅
22 foreach (𝑜, 𝑓 ) ∈ 𝑇 do
23 if 𝑜 ∈ 𝑂 ′ and 𝑓 ∈ 𝐹 ′ then
24 𝑇 ′ ← 𝑇 ′ ∪ {(𝑜, 𝑓 )}
25 end
26 end
27 return 𝑇 ′

28 End Function

consumed for the domain-wise corpus shrinking is 633.8 seconds on average over 12 hours run in the experiments

in Section 4).

3.7 Implementation
We have implemented ZigZagFuzz based on AFL++-4.05a [11]. The core components of ZigZagFuzz (e.g., auto-

mated program option keyword extraction, program instrumentation for POI mutation, POI mutation strategies,

interleaving scheme, and corpus shrinking) are implemented in an additional 7,000 lines of C and C++ code. The

implementation is publicly available on our paper web page (https://sites.google.com/view/zigzagfuzz).
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4 EXPERIMENT SETUP
To evaluate ZigZagFuzz, we set four research questions with six state-of-the-art fuzzing techniques and four

variants of ZigZagFuzz. The following sections explain the research questions with the experiment setup details

such as target subject programs and measurement. We share all detailed experiment setups on our paper web

page.

4.1 ResearchQuestions
RQ1. How much does ZigZagFuzz outperform the other state-of-the-art program option fuzzers?

To what extent does ZigZagFuzz achieve bug detection and branch coverage, compared to the state-of-the-art

program option fuzzers? Since the previous studies already showed that mutating POI can significantly improve

test coverage and bug detection ability (see Section 7.1), we focus on comparing ZigZagFuzz with the following

six state-of-the-art fuzzers that mutate POI (i.e., not comparing to the fuzzers that do not mutate POI).

• AFL++-argv: AFL++ [11] has a feature called argv-fuzzing which inserts a test driver at the entry point of

the subject program to randomly mutate POI bytes without mutating FI.

• AFL++-all: We implemented a new variant of AFL++-argv (calling it AFL++-all) that mutates both POI and

FI at the same time. After AFL++-all mutates an input byte sequence to generate new byte sequences, it

interprets the first 256 bytes of a generated byte sequence as POI and the remaining bytes as FI.

• Eclipser [7]: We selected Eclipser because it supports mutating both POI and FI (we used ‘v1.x’ branch

of Eclipser that can utilize both initial POI and FI).

• CarpetFuzz [38]: CarpetFuzz employs natural language processing (NLP) and pairwise testing techniques to

identify effective POIs. It then mutates only FI with the selected POIs. CarpetFuzz introduces an NLP-based

tool that extracts relationships between program options. It begins by filtering out invalid program option

combinations using the extracted relationships. Subsequently, it prunes out further by applying N-wise

testing technique. In our study, we utilized the POIs previously identified by the authors of CarpetFuzz in

their research paper.

• ConfigFuzz [48]: ConfigFuzz mutates both POI and FI. Based on a manually written program option

grammar, it automatically generates a test driver that can generate a program option configuration from a

generated byte sequence. Instead of manually writing program option grammars for all 20 target subjects,

which would cost significant human effort, we converted the dictionaries of program option keywords for

the 20 target subjects (originally made for ZigZagFuzz) to json files that ConfigFuzz can accept as program

option grammars.

• POWER [19]: It is a predecessor of ZigZagFuzz. Unlike ZigZagFuzz, POWER does not interleave POI

mutation phases with FI mutation phases. Also, unlike ZigZagFuzz which applies both structural mutation

and byte-level mutation to POI, POWER applies only structural mutation to POI. Another difference is that

POWER selects useful POIs based on the expensive function relevance [18] while ZigZagFuzz selects both

POIs and FIs based on their function coverage. These differences between POWER and ZigZagFuzz are

described in Section 7.1.1.

RQ2. How much does the interleaving of POI mutation phases with FI mutation phases affect the
performance of ZigZagFuzz?

To what extent does the interleaving feature of ZigZagFuzz contribute to achieving high bug detection ability

and branch coverage? For RQ3, we developed ZZF
𝑛𝑜-𝑖𝑛𝑡

that runs a POI mutation phase for one hour, and then a

FI mutation phase for another hour, and terminates without domain-wise corpus shrinking (which is meaningless

without repeated mutation phases). To focus on the effect of the interleaving in ZigZagFuzz, we compared the
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Table 1. Target subjects

Programs Package name Size #Prog. opt. Programs Package name Size #Prog. opt.

and version (LoC) keywords and version (LoC) keywords

avconv libav-12.3 600,955 761 nasm nasm-2.16.01 105,260 218

bison bison-3.8 82,075 51 objdump binutils-2.40 1,255,876 84

cjpeg libjpeg-turbo-

2.1.4

18,594 33 pdftohtml poppler-22.12.0 127,859 26

dwarfdump libdwarf-0.5.0 104,578 103 pdftopng xpdf-4.04 104,472 18

exiv2 exiv2-0.27.6 112,168 76 pspp pspp-1.6.2 209,790 20

ffmpeg ffmpeg-N-109669-

g9a180f60a9

1,087,592 1817 readelf binutils-2.40 154,470 98

gm GraphicsMagick-

1.3.40

287,198 757 tiff2pdf libtiff-4.5.0 51,294 30

gs ghostscript-10.0.0 1,517,673 350 tiff2ps libtiff-4.5.0 42,839 34

jasper jasper-4.0.0 46,331 20 xmllint libxml2-2.10.3 186,900 66

mpg123 mpg123-1.31.2 44,675 122 xmlwf expat-2.5.0 16,721 15

Average 307,866 235.0

performance of ZZF
𝑛𝑜-𝑖𝑛𝑡

with ZZF
𝑛𝑜-𝑠ℎ𝑟

for two hours (i.e., ZZF
𝑛𝑜-𝑠ℎ𝑟

performs POI mutation (30 mins)→ FI

mutation (30 mins)→ POI mutation (30 mins)→ FI mutation (30 mins)).

• ZZF𝑛𝑜-𝑖𝑛𝑡
: ZZF

𝑛𝑜-𝑖𝑛𝑡
does not repeat mutation phases; it performs a POI mutation phase for the first one

hour and an FI mutation phase for the next one hour without the domain-wise corpus shrinking.

• ZZF𝑛𝑜-𝑠ℎ𝑟
: It is the same as ZigZagFuzz except that it skips the corpus shrinking (i.e., ZZF

𝑛𝑜-𝑠ℎ𝑟
uses the

entire test input corpus generated from the preceding mutation phases).

RQ3. Howmuch does domain-wise corpus shrinking technique affect the performance of ZigZagFuzz?
To what extent does ZigZagFuzz achieve bug detection ability and branch coverage, compared to the variant

of ZigZagFuzz that does not perform the input corpus shrinking? For RQ3, we compare the performance results

of ZigZagFuzz with ZZF
𝑛𝑜-𝑠ℎ𝑟

.

RQ4. How much do different mutation schemes to POI affect the performance of ZigZagFuzz?
To what extent does ZigZagFuzz achieve bug detection and branch coverage, compared to the variants of

ZigZagFuzz that perform only one mutation scheme on POI? We would like to evaluate the effectiveness of

applying both structural mutation and byte-level mutation to POI in ZigZagFuzz. For that purpose, we compare

ZigZagFuzz with the following two variants of ZigZagFuzz:

• ZZF 𝑠𝑡𝑟𝑢𝑐𝑡
: It applies only structural mutation [31] to POI, not byte-level random mutation. Based on

a dictionary of program option keywords for a target program, it makes random combination of the

keywords by randomly inserting one keyword, removing one keyword, or replacing one keyword with

another random keyword.

• ZZF𝑏𝑦𝑡𝑒
: It applies only byte-level mutation to POI (similar to random mutation of FI).

4.2 Fuzzing Subjects
As ConfigFuzz [48] stated, we could not utilize common fuzzing benchmarks such as Google’s FuzzBench [28]

because they are not developed to mutate POI along with FI.
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Instead, we employ the latest versions of the 20 C/C++ open-source real programs which were frequently

tested by other fuzzing papers. The subject details are listed in Table 1. The size of the subjects ranges from

16,721 LoC (i.e., xmlwf) to 1,517,673 LoC (i.e., gs) and the average size is 307,866 LoC. The number of the program

option keywords extracted from the documents including usage messages ranges from 15 (i.e., xmlwf) to 1,817

(i.e., ffmpeg).

4.3 Fuzzing Setup
We execute each studied fuzzing technique for 12 hours (except ZZF

𝑛𝑜-𝑖𝑛𝑡
and ZZF

𝑛𝑜-𝑠ℎ𝑟
in RQ2), since our

preliminary study has shown that most fuzzing campaigns in the experiments show consistent results within 12

hours. Also, we repeated each experiment run five times to mitigate the random variance of fuzzing experiments.

We used a 30-minute timeout (𝜏𝑡 ) for each POI mutation phase and FI mutation phase. All experiments were

performed on a cluster where each machine is equipped with AMD Ryzen 9 5950X (3.4GHz) and 32GB RAM,

running Ubuntu 18.04.6.

4.3.1 Initial Seed Setup. ZigZagFuzz requires both initial POIs and initial FIs. We collected and utilized commonly

used POIs and FIs from the recent fuzzing papers surveyed in Section 2.1. The initial seed setup is publicly available

at our paper web page.

4.3.2 Configuration of Input Corpus Clustering. For the domain-wise input corpus shrinking (Section 3.6), we set

the number of input clusters and the numbers of selected POIs and FIs as follows (obtained from our preliminary

study). We set ZigZagFuzz to make 20 POI clusters and 800 FI clusters and selected top-2 POIs and top-2 FIs from

each cluster (i.e., 𝑘𝑜𝑝𝑡 = 20, 𝑘𝑓 𝑖𝑙𝑒 = 800, and 𝑁𝑜𝑝𝑡 = 𝑁𝑓 𝑖𝑙𝑒 = 2 in Algorithm 3). We performed several exploratory

studies with different settings, and we selected the best values we observed.

4.4 Measurement
4.4.1 Branch Coverage. To measure the coverage achievement of each technique, we replayed all generated test

inputs and counted the number of covered branches using gcov. We report the average branch coverage over the

five experiment runs.

4.4.2 Unique Bug Detection. To measure bug detection ability of fuzzing techniques, we count the number of

unique bugs found by each technique. First, we applied LLVM AddressSanitizer [35] to collect crashes raised by

generated test inputs for each technique. After that, we identified unique crash bugs based on the collected alarm

messages. Following the most widely used practice [27], we first removed the crashes that show the identical

stack trace to each other. Then, we manually identified the crashes whose stack traces are different but are

suspected to share the same root cause, to the best of our ability. We reported the number of unique bugs detected

in any of the five fuzzing runs.

4.5 Threats to Validity
External. To our best knowledge, there exist no benchmark programs for the fuzzers that fuzz POI. By selecting

20 diverse popular open source programs that were used to evaluate other recent fuzzers, we believe that this

threat is limited (i.e., our experiment result can be applicable to various programs with program options). Also,

we compared the results obtained from each experiment for 12 hours and this time budget might not be enough

to compare the overall performance of each technique. However, we could observe that 12-hour timeout was

long enough to find the consistent results of the studied fuzzing techniques.

Internal. The implementation of ZigZagFuzz may contain bugs that can affect the experiment results. To control

this threat, we have tested our implementation extensively. Another threat may be that we gave ConfigFuzz a

program option grammar that was semi-automatically generated from manual pages/usage messages of a target
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Table 2. The total numbers of the unique bugs detected and the average numbers of branches covered by the state-of-the-art
program option fuzzers

Programs

AFL++-argv AFL++-all Eclipser CarpetFuzz ConfigFuzz POWER ZigZagFuzz

B Cov B Cov B Cov B Cov B Cov B Cov B Cov

avconv 0 4224.6 1 16454.0 0 6148.4 4 15543.2 1 9978.4 3 10201.4 13 18881.6
bison 0 1342.4 4 4218.4 1 3340.6 0 5213.4 2 5433.8 0 5212.2 4 6207.6
cjpeg 0 210.6 0 3239.8 0 2654.2 0 2841.2 0 4305.0 0 4376.6 0 4416.6
dwarfdump 1 853.6 2 2408.6 2 6128.4 2 8074.6 3 8097.8 5 9072.2 6 9320.4
exiv2 0 2042.0 0 4722.0 0 2944.4 2 3581.0 0 5846.0 0 6222.2 0 7967.0
ffmpeg 1 26321.6 1 33832.2 0 17641.6 1 37310.0 1 19967.8 3 39008.4 11 42761.0
gm 10 14711.8 0 5599.8 1 3875.8 0 6539.6 3 13162.6 8 14116.0 17 19298.0
gs 6 13384.0 0 19009.4 0 15880.2 0 19531.4 1 20789.0 1 29345.6 8 35604.6
jasper 0 641.0 0 1486.2 0 3389.0 1 3713.2 2 3740.4 1 3598.6 1 4073.0
mpg123 0 134.0 1 4292.0 0 2797.2 1 3115.8 2 3587.4 0 3802.4 1 4587.2
nasm 3 5200.8 9 6750.0 2 3141.8 1 5325.4 11 8536.6 13 8857.2 11 8448.2

objdump 0 6285.2 0 17036.2 0 5728.8 2 31429.4 0 23615.8 2 29538.0 2 27759.6

pdftohtml 1 662.4 0 4163.0 0 1967.8 0 4633.4 0 4973.6 0 5703.4 1 5029.4

pdftopng 0 1007.8 1 5496.8 0 5014.8 1 6700.2 1 6538.4 1 7199.6 2 8225.2
pspp 0 2577.4 2 4105.4 2 3003.4 8 6465.2 5 5727.6 6 7174.8 5 6690.2

readelf 0 894.8 0 5712.0 0 3796.4 2 10065.8 2 9843.8 2 9987.4 2 9600.0

tiff2pdf 0 147.0 0 2907.4 0 2435.2 0 4472.8 1 4404.2 0 4576.8 0 4384.8

tiff2ps 0 168.4 0 2015.0 0 1808.0 0 3864.2 0 3939.0 0 4212.6 0 4091.6

xmllint 1 13752.4 1 16045.2 0 5418.0 4 12886.0 0 15531.0 0 15663.0 1 17118.2
xmlwf 0 568.0 0 2086.2 0 2403.4 0 4019.2 0 3685.0 0 3087.0 0 3628.0

Total # of bugs 23 22 8 29 35 45 85

Avg. # of 4756.5 8079.0 4975.9 9766.3 9085.2 11047.8 12404.6
branches covered

* The B means the number of unique bugs detected, and the Cov means the average number of branches covered.

program, which might reduce performance of ConfigFuzz. We think that this threat is unavoidable for the fair

comparison of ConfigFuzz with the other fuzzers.

5 EXPERIMENT RESULTS
Tables 2, 3, 4, 5 and Figure 6 report the number of unique bugs detected and the number of branches covered by

each fuzzing technique on the 20 fuzzing subjects.

5.1 RQ1. Fuzzing Effectiveness of ZigZagFuzz Compared to the State-of-the-art Program Option
Fuzzers

5.1.1 Bug Detection Achieved. The experiment results show that ZigZagFuzz detects significantly more (1.9 to

10.6 times more) unique bugs than the other state-of-the-art POI fuzzing techniques. Table 2 shows the number

of unique bugs detected and the number of branches covered by AFL++-argv, AFL++-all, Eclipser, CarpetFuzz,

ConfigFuzz, POWER, and ZigZagFuzz (the best numbers are marked in a bold font).
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Fig. 4. The relative ratio of the unique bugs detected for each target subject program (the most effective fuzzer’s effectiveness
is normalized to one)

ZigZagFuzz detected 85 unique bugs on 15 subjects. ZigZagFuzz detected 3.7 (= 85/23), 3.9 (= 85/22), 10.6 (=

85/8), 2.9 (= 85/29), 2.4 (= 85/35), and 1.9 (= 85/45) times more unique bugs than AFL++-argv, AFL++-all, Eclipser,

CarpetFuzz, ConfigFuzz, and POWER, respectively. Also, note that, among the 17 target subjects from which

at least one of the fuzzers detected a bug, ZigZagFuzz is most effective for the 10 subjects (i.e., avconv, bison,
dwarfdump, ffmpeg, gm, gs, objdump, pdftohtml, pdftopng, and readelf) and the second most effective for the

four subjects (jasper, mpg123, nasm, and xmllint).
Figure 4 visually illustrates the relative fuzzing effectiveness in terms of the uniquely detected bugs of the

fuzzers for each target subject. For each target subject, the most effective fuzzer’s effectiveness is normalized

to one, and the relative effectiveness of the other fuzzers is computed in relation to the normalized value. As

shown in the figure, ZigZagFuzz is obviously the most effective fuzzer among the compared techniques (i.e.,

ZigZagFuzz’s bars are higher than the other techniques for most subjects).

In addition, the Venn diagram in Figure 5 shows how many unique bugs were found by each of the top four

fuzzing techniques (i.e. CarpetFuzz, ConfigFuzz, POWER, and ZigZagFuzz). It shows that ZigZagFuzz detected

the largest number of unique crashes that were not found by the other techniques (46). ZigZagFuzz also detected
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Fig. 5. The relation of the unique bugs found by the top four fuzzers

most of the unique bugs found by the other three fuzzers (i.e., 44.8% (=13/29), 68.9% (= 31/45), and 74.3% (=26/35)

of the bugs detected by CarpetFuzz, POWER, and ConfigFuzz, respectively).

We can make a few additional observations as follows:

• ZigZagFuzz has superior bug detection ability for large target programs than the other fuzzers:

For the top three largest subjects (ffmpeg, gs, and objdumpwhose sizes are larger than 1MLoC), ZigZagFuzz

detected the far larger number of bugs among the compared fuzzing techniques. For example, for ffmpeg,
ZigZagFuzz detected 11 bugs while the second most effective fuzzer (POWER) did only three.

• ZigZagFuzz has superior bug detection ability for hard-to-find bugs than the other fuzzers:

For the eight subjects with hard-to-find crashes (i.e., the subjects with eight or fewer bugs detected by all

seven fuzzers such as jasper, mpg123, objdump, pdftohtml, pdftopng, readelf, tiff2pdf, and xmllint),
ZigZagFuzz detected the largest number of bugs for the four subjects (objdump, pdftohtml, pdftopng,
readelf) and the second largest number of bugs for the three subjects (jasper, mpg123, and xmllint).

5.1.2 Branch Coverage Achieved. ZigZagFuzz covered significantly more branches than the other techniques.

For example, on average, ZigZagFuzz covered 2.6 (=12404.6/4756.5) times more branches than AFL++-argv and

1.4 (=12404.6/9085.2) times more branches than ConfigFuzz. Figure 6 shows the branch coverage increase over

time. X-axis and y-axis represent execution time in hours and the number of covered branches, respectively.

ZigZagFuzz achieved the highest branch coverage for the 12 subjects (avconv, bison, cjpeg, dwarfdump,
exiv2, ffmpeg, gm, gs, jasper, mpg123, pdftopng, and xmllint) and the second highest branch coverage for the

three subjects (pdftohtml, pspp, and tiff2ps). Even for the remaining five subjects (nasm, objdump, readelf,
tiff2pdf, and xmlwf), ZigZagFuzz’s coverage is almost same to the most effective fuzzer per subject (i.e.,

ZigZagFuzz covered 88.3% (=27759.6/31429.4 on objdump) to 95.8% (=4384.8/4576.8 on tiff2pdf) of the branches
covered by the most effective fuzzer per subject).

5.2 RQ2. Fuzzing Effectiveness of the Interleaving of POI Mutation Phases with FI Mutation Phases
The experiment results in two hours show that the interleaving scheme improves the performance of ZigZagFuzz.

Table 3 shows that, by interleaving POI mutation phases with FI mutation phases, ZZF
𝑛𝑜-𝑠ℎ𝑟

detected 25.0%

(=(40-32)/32) more unique bugs and covered 21.7% (=(9114.7- 7487.0)/7487.0) more branches than ZZF
𝑛𝑜-𝑖𝑛𝑡

. For

example, on objdump, pdftopng, and xmllint, ZZF𝑛𝑜-𝑠ℎ𝑟
detected a bug while ZZF

𝑛𝑜-𝑖𝑛𝑡
did not. Moreover,
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Fig. 6. The branch coverage results for the state-of-the-art fuzzing techniques over time
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Table 3. The total number of the unique bugs detected and the average numbers of the branches covered in two hours by the
variants of ZigZagFuzz with/without interleaving

Programs

ZZF
𝑛𝑜-𝑖𝑛𝑡

ZZF
𝑛𝑜-𝑠ℎ𝑟

Programs

ZZF
𝑛𝑜-𝑖𝑛𝑡

ZZF
𝑛𝑜-𝑠ℎ𝑟

(two hours run) (two hours run) (two hours run) (two hours run)

#uniq. #branch #uniq. #branch #uniq. #branch #uniq. #branch

bugs covered bugs covered bugs covered bugs covered

avconv 4 7966.2 3 10784.0 nasm 5 5934.4 8 7084.6
bison 1 4970.0 2 5676.8 objdump 0 13844.8 1 18544.2
cjpeg 0 1537.2 0 4206.6 pdftohtml 0 3968.6 0 4442.2
dwarfdump 5 8069.0 4 8593.2 pdftopng 0 6211.8 1 6774.0
exiv2 0 5098.4 0 6361.2 pspp 1 3219.2 2 3419.6
ffmpeg 2 13175.0 2 20895.8 readelf 1 4875.2 1 7893.4
gm 9 12118.2 10 14591.6 tiff2pdf 0 2920.6 0 3739.2
gs 3 31288.2 5 30680.8 tiff2ps 0 2418.6 0 3496.8
jasper 1 3706.2 0 3724.0 xmllint 0 14228.6 1 14978.0
mpg123 0 2647.8 0 3752.2 xmlwf 0 1541.4 0 2656.4

Total # of bugs 32 40

Avg. # of branches covered 7487.0 9114.7

ZZF
𝑛𝑜-𝑠ℎ𝑟

covered more branches than ZZF
𝑛𝑜-𝑖𝑛𝑡

for 19 out of the 20 subject programs (except gs). For example,

ZZF
𝑛𝑜-𝑠ℎ𝑟

covered 18544.2 branches while ZZF
𝑛𝑜-𝑖𝑛𝑡

did only 13844.8 branches of objdump on average.

Also, to see the effectiveness of the iterative/interleaving POI mutation phases with FI mutation phases to

reach deep code segments through complex condition checks, we counted the number of the test inputs that

satisfied all branch conditions to reach the crashing line (Line 12) in the dwarfdump crash example in Figure 1.

On average, ConfigFuzz made only 409.6 test inputs while ZigZagFuzz made 3754.4 test inputs that satisfied all

branch conditions and detected bug in Figure 1. This observation shows that the interleaving of POI mutation

phases with FI mutation phases of ZigZagFuzz can successfully generate effective test inputs (pairs of POIs and

FIs) to reach hard-to-reach deep code segments, which leads to significantly higher bug detection and higher

branch coverage than the other fuzzers.

5.3 RQ3. Fuzzing Effectiveness of Corpus Shrinking of ZigZagFuzz
The experiment results show that the domain-wise corpus shrinking improves the performance of ZigZagFuzz.

Table 4 shows that ZigZagFuzz detected 1.15 (=85/74) times more unique bugs and covered 5.4% (= (12404.6-

11743.3)/11743.3) more branches than ZZF
𝑛𝑜-𝑠ℎ𝑟

. For example, on bison, ZigZagFuzz detected four bugs while

ZZF
𝑛𝑜-𝑠ℎ𝑟

did only two bugs. For another example, on ffmpeg, ZigZagFuzz covered 42761.0 branches while

ZZF
𝑛𝑜-𝑠ℎ𝑟

did only 34122.2 branches on average.

In addition, the Venn diagram in Figure 7 shows how many unique bugs were detected by ZigZagFuzz and

ZZF
𝑛𝑜-𝑠ℎ𝑟

. ZigZagFuzz utilizes function coverage information (instead of fine-grained branch or path coverage

which incurs heavy run-time overhead) for efficient domain-wise corpus shrinking. The Venn diagram clearly

shows that ZigZagFuzz detected most bugs detected by ZZF
𝑛𝑜-𝑠ℎ𝑟

(62/74), and also it detected a large number (23)

of the unique bugs that were not detected by ZZF
𝑛𝑜-𝑠ℎ𝑟

.
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Table 4. The total number of unique bugs detected and the average numbers of branches covered by the variants of
ZigZagFuzz with/without corpus shrinking

Programs

ZZF
𝑛𝑜-𝑠ℎ𝑟

ZigZagFuzz

Programs

ZZF
𝑛𝑜-𝑠ℎ𝑟

ZigZagFuzz

#uniq. #branch #uniq. #branch #uniq. #branch #uniq. #branch

bugs covered bugs covered bugs covered bugs covered

avconv 10 15653.2 13 18881.6 nasm 8 8420.6 11 8448.2
bison 2 6092.8 4 6207.6 objdump 2 27591.2 2 27759.6
cjpeg 0 4398.2 0 4416.6 pdftohtml 1 4858.4 1 5029.4
dwarfdump 5 9139.0 6 9320.4 pdftopng 2 7359.4 2 8225.2
exiv2 0 7638.8 0 7967.0 pspp 5 5656.8 5 6690.2
ffmpeg 7 34122.2 11 42761.0 readelf 2 10032.8 2 9600.0

gm 16 18846.6 17 19298.0 tiff2pdf 0 4484.8 0 4384.8

gs 11 37919.6 8 35604.6 tiff2ps 0 3969.0 0 4091.6
jasper 1 4025.4 1 4073.0 xmllint 1 17268.6 1 17118.2

mpg123 1 4391.8 1 4587.2 xmlwf 0 2998.0 0 3628.0

Total # of bugs 74 85

Avg. # of branches covered 11743.4 12404.6

Fig. 7. The relation of the unique bugs detected by ZigZagFuzz and ZZF𝑛𝑜-𝑠ℎ𝑟

5.4 RQ4. Fuzzing Effectiveness of Different Schemes for POI Mutation of ZigZagFuzz
The experiment results show that using both structural mutation and byte-level mutation on POI significantly

increases testing effectiveness. Table 5 shows the number of the unique bugs detected and the number of branches

covered by ZZF
𝑏𝑦𝑡𝑒

, ZZF
𝑠𝑡𝑟𝑢𝑐𝑡

, and ZigZagFuzz (the largest numbers are marked in a bold font). On average,

ZZF
𝑏𝑦𝑡𝑒

and ZZF
𝑠𝑡𝑟𝑢𝑐𝑡

detected similar number of unique bugs and covered similar number of branches while

ZigZagFuzz detected significantly more unique bugs and covered more branches.

5.4.1 Bug Detection Achieved. ZigZagFuzz detected 1.7 (= 85/49) and 1.6 (= 85/53) times more unique bugs than

ZZF
𝑏𝑦𝑡𝑒

and ZZF
𝑠𝑡𝑟𝑢𝑐𝑡

, respectively. For example of avconv, ZigZagFuzz detected 13 unique bugs while ZZF
𝑏𝑦𝑡𝑒

and ZZF
𝑠𝑡𝑟𝑢𝑐𝑡

did only four and five bugs, respectively.
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Fig. 8. The relation of the unique bugs detected by ZZF𝑏𝑦𝑡𝑒 , ZZF𝑠𝑡𝑟𝑢𝑐𝑡 , and ZigZagFuzz

The Venn diagram in Figure 8 shows the number of unique bugs detected by ZZF
𝑏𝑦𝑡𝑒

, ZZF
𝑠𝑡𝑟𝑢𝑐𝑡

, and ZigZagFuzz.

From the diagram, we make the following observations:

• Combining the two mutation schemes on POI improves bug detection ability:
ZigZagFuzz detected 32 unique bugs that were not detected by the two variants with different mutation

schemes. Also, ZigZagFuzz detected the majority of the unique bugs detected by the two variants (i.e.,

ZigZagFuzz detected 71.4% (= 35/49) of the unique bugs detected by ZZF
𝑏𝑦𝑡𝑒

and 60.3% (= 32/53) of the

unique bugs of ZZF
𝑠𝑡𝑟𝑢𝑐𝑡

).

• The two variants with different mutation schemes detected much different sets of unique bugs:
ZZF

𝑏𝑦𝑡𝑒
detected only 32.1% (=17/53) of the unique bugs detected by ZZF

𝑠𝑡𝑟𝑢𝑐𝑡
. Similarly, ZZF

𝑠𝑡𝑟𝑢𝑐𝑡
detected

only 34.6% (= 17/49) of the unique bugs detected by ZZF
𝑏𝑦𝑡𝑒

. This indicates that the mutation scheme has a

high impact on detecting unique bugs.

5.4.2 Branch Coverage Achieved. ZigZagFuzz covered about 1.1 (= 12404.6/10877.1) and 1.2 (= 12404.6/10877.1)

times more branches than ZZF
𝑏𝑦𝑡𝑒

and ZZF
𝑠𝑡𝑟𝑢𝑐𝑡

, respectively. For example of avconv, ZigZagFuzz covered
18881.6 branches while ZZF

𝑏𝑦𝑡𝑒
and ZZF

𝑠𝑡𝑟𝑢𝑐𝑡
did only 15312.6 and 12475.0 branches on average, respectively.

6 DISCUSSION

6.1 Real-world Bugs Detected by ZigZagFuzz
Among the 85 bugs detected by ZigZagFuzz, we reported 61 bugs to the original developers of the target programs.

To reduce the developer’s burden to review many bug reports, we excluded 11 reports detected in the latest

release version but could not replicate in the latest development version. Also, we did not report the 13 bugs in

avconv because it is no longer supported by the developers. We received the following positive responses from

the developers:

• 44 reported bugs have been fixed by the original developers

• 17 bugs are waiting to be confirmed

As shown in the following case studies, ZigZagFuzz can successfully detect complex bugs that require a specific

POI and a specific FI to trigger.
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Table 5. The total number of the unique bugs detected and the average numbers of the branches covered by the variants of
ZigZagFuzz with different mutation schemes

Programs ZZF
𝑏𝑦𝑡𝑒

ZZF
𝑠𝑡𝑟𝑢𝑐𝑡

ZigZagFuzz

#uniq. #branch #uniq. #branch #uniq. #branch

bugs covered bugs covered bugs covered

avconv 4 15312.6 5 12475.0 13 18881.6
bison 3 6118.4 1 5299.2 4 6207.6
cjpeg 0 4275.8 0 4165.0 0 4416.6
dwarfdump 7 9284.2 4 8952.8 6 9320.4
exiv2 0 8121.2 1 7034.2 0 7967.0

ffmpeg 1 38096.2 5 28570.6 11 42761.0
gm 5 11760.4 15 19608.4 17 19298.0

gs 7 23253.6 3 31589.2 8 35604.6
jasper 0 3789.0 2 3664.0 1 4073.0
mpg123 1 4536.8 0 3661.4 1 4587.2
nasm 9 8158.6 12 8247.0 11 8448.2
objdump 2 31134.4 0 28593.0 2 27759.6

pdftohtml 1 4699.4 0 4986.4 1 5029.4
pdftopng 2 7033.8 1 7257.2 2 8225.2
pspp 4 4505.2 3 6258.0 5 6690.2
readelf 2 8595.6 1 9769.0 2 9600.0

tiff2pdf 0 4255.2 0 4139.6 0 4384.8
tiff2ps 0 4018.6 0 3835.6 0 4091.6
xmllint 1 17215.6 0 14422.2 1 17118.2

xmlwf 0 3376.8 0 2655.2 0 3628.0

Total # of bugs 49 53 85

Avg. # of branches 10877.1 10759.2 12404.6

mpg123 -smooth --listentry -z -w l --quiet --index --4to1 -2 -q --fifo --outfile @@

Fig. 9. POI generated by ZigZagFuzz that triggers a crash in mpg123

6.1.1 Case Study 1: mpg123. ZigZagFuzz detected a new crash bug in mpg123 by generating a program option

configuration containing the 13 command-line options shown in Figure 9. -2 or –2to1 options make the program

to downsample an audio file. –index option makes the program to scan through an audio file.

The crash bug was triggered when mpg123 tries to scan an audio file with invalid sampling rate value. mpg123
supports specific sampling rate values that range from 8kHz to 48.0kHz. If an audio file with low sampling rate

value (e.g., 11,025Hz) is given as FI to mpg123 with -2 option, the program tries downsampling the audio file

and makes an invalid audio file with an unsupported sampling rate value (e.g., 5,512 Hz). Thus, by using –index
option with -2 option, it results in a wrong memory access when the program reads an invalid track in the audio

file.
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objdump @@ --adjust-vma=4 --start-address=0x0 -Wc -S -x -Ud 8-S o@rchite -g -f -Wm -Ud
-mh --file-offsets -f -a -mnf -Wf -Wo

Fig. 10. POI generated by ZigZagFuzz that triggers a segmentation violation error in objdump

We reported the bug to the developer of mpg123 (the bug report is available at https://sourceforge.net/p/

mpg123/bugs/322/) and the developer fixed the bug within 33 hours from the initial bug report. The developer

was highly interested in ZigZagFuzz because, although mpg123 had been extensively fuzzed by using Google’s

OSS-fuzz [14], the reported bug was not detected before. The response of the developer is as follows: “Interesting

approach you find stuff where oss-fuzz didn’t anymore”.

6.1.2 Case Study 2: objdump. The following two new features of ZigZagFuzz enabled the successful detection of

a segmentation violation error in objdump:

• Iterative/interleaved POI mutations with FI mutations:
To trigger the crash, a test input should satisfy a complex intermixed sequence of POI- and FI-dependent

conditions like Figure 1. The interleaving of POI mutations with FI mutations of ZigZagFuzz can generate

a proper pair of a POI and a FI that can satisfy conditions in a complex intermixed sequence of POI- and

FI-dependent conditions.

ZigZagFuzz triggered this crash bug when objdump is commanded to show the disassembled code of

an object file for Netronome Flow Processor (NFP) architecture. -m nfp or -mnf option generated by

ZigZagFuzz causes objdump to show the disassembled code of an object file for NFP architecture.

To detect the crash error, a test input should contain both a proper POI (i.e., -mnf) that triggers objdump
to handle NFP architecture and a proper FI that contains a corrupted NFP file which contains an empty

section owner information; when objdump tries to access the corresponding section, it causes a crash error.

By using the interleaved mutation approach for POI and FI, ZigZagFuzz successfully generated a test input

that caused the crash error.

• Combined application of both structural and byte-level mutations to POI:
ZigZagFuzz could generate a POI that leads to the crash by utilizing both structural mutation and byte-level

mutation on POI. Figure 10 shows the POI generated by ZigZagFuzz that triggers the segmentation violation

error. It shows that ZigZagFuzz created a complex POI by using both structural mutation and byte-level

mutation. The tokens such as –start-address is generated by structural mutation and -mnf is generated

by byte-level mutation (-mnf is not included in a dictionary used by ZigZagFuzz, since it is not an officially

documented program option).

We reported this bug to objdump developers and they fixed the bug by applying the patch in Figure 11 (the

patch checks if the given section owner information is empty or not in Lines 5-6). The patch indicates that the

crash bug is induced when an NFP file has an empty section owner information.

6.2 Dependency of Bugs on POIs and FIs Generated by ZigZagFuzz
Table 6 presents the 22 bugs of gm and pspp detected by ZigZagFuzz as an example to show dependencies between

the bugs and input components generated by ZigZagFuzz. The third row shows a failure type of each bug. The

fourth and fifth rows indicate whether each bug is dependent solely on a POI or a FI, respectively. The sixth row

indicates whether each bug is dependent on both POIs and FIs. Lastly, the seventh row indicates if the bug was

detected by ZigZagFuzz only among the top four program option fuzzers in RQ1.

We determined the dependency between a bug and an input component as follows:

• A bug is dependent solely on a POI if the bug is triggered with a specific POI with any FIs (or no FI).
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Fig. 11. The fix commit of the corrupted NFP file bug in objdump

Table 6. Dependency analysis results on 22 bugs detected by ZigZagFuzz

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Prog. gm pspp

Fail. ty. a.v. a.v. a.v. a.v. f.p. f.p. h.b. s.f. h.b. s.f. s.f. s.f. s.f. s.f. s.f. h.b. s.f. a.v. a.v. a.v. a.v. h.b.

POI ✓ ✓ ✓ ✓ ✓

FI ✓ ✓ ✓ ✓

Both ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ZZF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

a.v.: assert violation, f.p.: floating point exception, h.b.: heap-buffer-overflow, s.f.: segmentation fault

• A bug is dependent solely on a FI if the bug is triggered with a specific FI with a default initial POI in

Section 4.3.1.

• A bug is dependent on both POIs and FIs if the bug can be triggered by a combination of a specific POI and

a specific FI.

The five out of the 22 bugs are dependent solely on POIs (i.e., bug indices 2, 8, 11, 14, and 17), four bugs are

dependent solely on FIs (i.e., bug indices 18, 19, 20, and 22), and the remaining 13 bugs are dependent on both POIs

and FIs. ZigZagFuzz detected various types of crash bugs. In detail, ZigZagFuzz detected eight assert violations,

two floating point exception bugs, four heap-buffer-overflow bugs, and eight segmentation fault bugs. Note that,

among the top four fuzzers, only ZigZagFuzz detect three POI-dependent bugs and seven POI-FI-dependent bugs.

7 RELATED WORK

7.1 Fuzzers that Mutate Program Option Input (POI)
TOFU [42] is a fuzzer that mutates program option configurations for directed fuzzing. It generates many different

option configurations by using structural mutation and tries to find an option configuration that gives the closest

distance to a target basic block. TOFU receives a specification of program options (i.e., the name of options
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and the type of option argument if any) from a user and performs structural mutation on the program option

configurations by using the specification as a dictionary. Unlike TOFU, ZigZagFuzz just requires a list of program

option keywords that are described in the manual pages and/or the help messages of target programs. Also,

ZigZagFuzz actively generates diverse POIs with accompanying FIs to explore large path space while TOFU

mutates POI only until it finds a path to a target block.

Zeller et al. [47] (an online course) developed a fuzzer that automatically infers the program option grammar

of Python programs that use argparse function. They use the inferred program option grammar to generate

valid program option configurations and fuzz input files with the generated option configurations.

CLIFuzzer [15] also tried to automatically infer program option input grammar from the usage of standard

C library function getopt. CLIFuzzer’s applicability is limited, since many real-world programs use its own

program option handling logic, not getopt (CLIFuzzer was evaluated on small C/C++ programs with a maximum

size of 81,215 lines). In contrast, we target much larger real-world programs whose average size is 307,866 lines

(only six of the target subjects use getopt).
Eclipser [7] supports option configuration mutation. Eclipser tracks relation between each input byte and

branch constraints with light-weight instrumentation on binary code, and it supports tracking not only input file

bytes but also POI’s bytes. After tracking the relation, it searches for correct values of the related bytes with

multiple executions to cover the branches.

CarpetFuzz [38] does notmutate POIs, but it selects effective POIs from possible option combinations by utilizing

relationship information extracted using natural language processing techniques. It parses CLI documentation

and extracts dependency or conflict among program options. Then, it selects only valid POIs that satisfy the

extracted relationship conditions. After selecting POIs, CarpetFuzz mutates only FIs using the selected POIs.

ConfigFuzz [48] mutates both POI and FI by mutating input bytes and interpreting the first few bytes as POI

and the remaining bytes as FI. Based on a manually written program option grammar, ConfigFuzz inserts, at the

entry point of the main function, code that converts input bytes into a program option configuration. In contrast,

ZigZagFuzz’s clear separation and interleaving of POI mutation phases and FI mutation phases enables to explore

deeper state of a target program and, thus, detects more bugs.

7.1.1 Comparison between ZigZagFuzz and POWER. ZigZagFuzz has the following new features compared to its

predecessor POWER [19]:

(1) Unlike POWER, ZigZagFuzz separately mutates POIs and FIs in an iterative/interleaving manner because a

target program may have a complex intermixed sequence of POI-dependent branches and FI-dependent

branches that depend on each other (see Section 2). In contrast, POWER mutates both POIs and FIs together

for the first one hour and it mutates only FI for the remaining time.

We illustrate the necessity of iterative/interleaved application of POI mutations with FI mutations in Figure 1

in Section 2. Section 4.1 (RQ 2: Fuzzing Effectiveness of the Interleaving of POI Mutation Phases with FI

Mutation Phases) and Section 5.2 show that this iterative/interleaving mutations of POIs with FIs improve

bug detection ability by 25.0% and branch coverage achievements by 21.7%.

(2) ZigZagFuzz considers the distinct characteristics of POIs and FIs and applies a reduction strategy by

clustering POIs and FIs separately (Section 3.6). In contrast, POWER adopts a selective approach, greedily

targeting promising POIs. Also, ZigZagFuzz employs function coverage as a criterion for corpus reduction

while POWER prioritizes expensive function relevance. This new corpus shrinking method improves test

coverage 5.6% and bug detection 14.9% (RQ3 in Section 5.3).

(3) ZigZagFuzz applies both byte-level mutations and structural mutations to POIs (which improves bug

detection by 60.4% (= (85-53)/53) compared to applying only structural mutations in RQ4) while POWER

does only structural mutations to POI (see Section 3.4 and Section 5.4).
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7.2 Structural Mutation in Fuzzing Techniques
Structural mutation was developed for effective fuzzing for simply structured file inputs (to structured file inputs

of high complexity, grammar-based fuzzing [17, 32, 39] are applied). It receives a dictionary containing tokens

provided by users or automatically extracted from source code and/or documents of a target program. Structural

mutation adds/deletes/replaces a token to effectively generate test inputs that satisfy the input constraints of a

target program. Zest [31] performs structural mutation by utilizing manually written parametric generators which
convert a byte sequence into a structured input such as a XML format file. Yoo et al. [44] utilizes grammar-aware

mutation operators for effective continuous unit-level fuzzing. Superion [39] improves AFL’s dictionary-based

mutation to align with their grammar-aware fuzzing.

The main difference between ZigZagFuzz and the above fuzzers is that ZigZagFuzz applies both structural

mutation and byte-level mutation to POI while Zest and Superion applies structural mutation to FI without

recognizing the importance of diverse POI.

7.3 Heuristics to Select Test Inputs
AFLfast [2] favors inputs that execute rarely executed paths. FairFuzz [21] and Vuzzer [34] favor inputs which

execute rarely executed branches and which execute basic blocks located in deep control-structure, respectively.

CollAFL [13] favors inputs whose execution paths have many uncovered neighbor branches. Ankou [26] defines

a distance between two different execution paths and scores each input according to its execution path’s

“uniqueness” which is measured using the distances to other paths. TortoiseFuzz [41] favors inputs which execute

many functions, loops, and basic blocks that have many memory access operators. SAVIOR [5] statically labels

suspicious basic blocks which contain (or which can reach) operators that can lead to undefined behaviors and it

scores each input in terms of a number of the suspicious basic blocks visited by the test input.

While the aforementioned selection/prioritization heuristics of these fuzzers consider only FI (not POI),

ZigZagFuzz selects test inputs based on both POI and FI and, thus, improves bug detection ability further (see

Section 3.6 and Section 5.3).

8 CONCLUSION
This paper presents a novel fuzzing technique ZigZagFuzz, which improves bug detection ability by separately

fuzzing file input and program option input in an interleaving manner. We have applied ZigZagFuzz to the 20

popular real-world subjects and confirmed that ZigZagFuzz significantly outperforms the state-of-the-art fuzzing

techniques (i.e., ZigZagFuzz detected 1.9 to 10.6 times more unique bugs than the compared cutting-edge fuzzers).

Also, we have demonstrated that the core ideas of ZigZagFuzz (i.e., different fuzzing strategies for different input

domains, interleaving phases of mutating program option input with ones of mutating file input, domain-wise

corpus shrinking by reducing POIs and FIs separately, and applying both structural and random byte mutations

to POIs) are effective to improve fuzzing performance.

For future work, we will apply the key ideas of ZigZagFuzz to not only programs with program option input,

but also to programs with configurations of different types such as build configurations. Also, we observed

that different fuzzing techniques detected different sets of unique bugs as shown in Figure 5 in Section 5.1. We

plan to study the differences between the unique bugs detected by each fuzzer, which can help improve fuzzing

effectiveness.
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