
Challenges in Automated Unit Testing of Complex C++
Programs

Letian ZhangO 이아청 김문주

KAIST KAIST KAIST

zhangletian630@gmail.com ahcheong.lee@kaist.ac.kr moonzoo.kim@gmail.com

Abstract
 Clementine is an automated C++ unit-testing tool to analyze source code and generate random method

call sequences. The key challenge of generating unit tests for real-world C++ programs is the severe
diversity of C++ syntax features. Because of the diversity, Clementine suffers huge amounts of uncompilable
test cases. The two objectives of this research are 1) to prevent Clementine from generating uncompilable
test cases and 2) to support Clementine to generate at least one compilable test case for a broader range
of functions.

In this paper, we enumerate the examples of complex C++ syntaxes that resulted in test case generation
failure. By addressing those problems, we could improve Clementine's reliability and usability for developers.
We applied the fixed Clementine on 16 real-world C++ programs, and the results show that 1) Clementine
could reduce 94.6% uncompilable test codes, and 2) it could generate at least one compilable test code for
all (100%) target functions in the programs.

1. Introduction
Unit testing in C++ presents unique challenges owing to certain

features inherent in the language. C++ is renowned for its
complexity, extensive feature set, and close-to-the-hardware
capabilities, making it a powerful but intricate language to work
with [1]. This complexity often translates into difficulties in
designing and executing effective unit tests. There are some
examples of automated unit-level testing tools for other
programming languages (Randoop [2] and EvoSuite [3] for Java
programs Pynguin [4] for Python programs.) Unfortunately, there
are only a few automated unit-level tests for C++ programs due to
complex C++ features. The intricacies of manual memory
management, intricate pointer arithmetic, and the potential for
undefined behavior make it challenging to ensure the correctness
and reliability of C++ code. Despite these challenges, the
importance of unit testing in the C++ development process cannot
be overstated. Robust unit tests serve as a fundamental tool for
identifying bugs early in the development lifecycle, enhancing
code maintainability, and supporting the overall stability and
longevity of C++ projects. In this context, addressing the
challenges associated with C++ unit testing becomes imperative
for ensuring the delivery of high-quality, reliable software.
Additionally, a recent study reported that automated software
testing produces test cases with higher test coverage compared
to manually written test cases [5]

Clementine is a continuation of CITRUS [1]. It is an automated
C++ unit-testing tool designed to analyze source code and
generate method call sequences. In contrast to earlier automated

test tools designed for C++, Clementine stands out by offering
support for critical features such as template processing and STL
classes. Notably, it surpasses competitors like KLOVER, FSX,
and UTBotCPP, which lack this extended functionality. Additionally,
Clementine uniquely addresses non-public member functions, a
capability absents in KLOVER, FSX, CITRUS, and UTBotCPP.
We applied Clementine on 16 real-world projects (shown in Table
1) and found that Clementine generates a lot of uncompilable test
code, and also it fails to generate test code for many functions
under test. So, we made improvements and refinements to
address these two aspects, and we eventually reduced the
number of uncompilable test functions generated from 4091 to
221 (reduced 94.6%), and the number of failures where
Clementine failed to generate test functions was reduced from
6567 to 0 (100%).

Figure 1 Clementine process

This research was supported by the National Research Foundation

grants funded by the Korea government (NRF-2021R1A5A1021944,

NRF-2021R1A2C2009384).

2. Diverse problematic C++ syntax features
In this section, we explore a spectrum of challenges posed by

various aspects of C++ syntax within the framework of
Clementine's testing methodology. The intricacies can be broadly
categorized into distinct themes, each demanding unique
consideration.

2.1 Specialized Classes

When utilizing the object factory to generate product objects,
which are represented as pointers, the dereferencing of these
pointers takes place during the invocation of specific functions or
when passing the object as an argument to the target function.
However, there are numerous reasons in C++ why the act of
dereferencing a pointer may be deemed illegal. These reasons
encompass a wide range of scenarios, and some of them include:

a. The target pointer points to an abstract class, no direct
instances of it can be created [7]

b. The copy constructor of the class pointed to by the target
pointer is not accessible (non-public access, deleted).

To solve these problems, Clementine construct an inheritance
tree by analyzing the source code and following the inheritance
tree to find the subclasses of the class that do not have these
characteristics.

2.2 Array Creation

Clementine encounters difficulties when attempting to create an
array of structs due to the absence of default constructors for
some structs [8]. To address this, we analyzes the constructor
requirements of various structures and implements a solution that
involves calling the constructor repeatedly, ensuring successful
array creation regardless of the struct's characteristics.

2.3 Target Type Extraction as clang:: RecordType

 In C++, as an object-oriented programming language, the vast
majority of function calls need to be realized by creating objects
of classes. Clementine is a clang-based automated testing tool,
so when creating test functions for these target functions, it
happens from time to time that the target class is extracted as

clang::RecordType. But the complexity of clang AST can lead to a
variety of scenarios where it doesn't succeed in getting the target
class as the clang::RecordType we need, for example:

a. Injected-class-name (Figure 3)
b. Type alias by C++ keyword using [9]
This ultimately leads to Clementine failing to generate test

functions for such a target function. To solve such a problem, get
the underlying clang::RecordType by performing a desugar
operation

2.4 Template Functions

Another notable feature of the C++ language is Template
Functions [10]. The need for complex and large template functions
has led Clementine to fail to generate test functions for such
functions Since A template class in C++ has two primary
components: template parameters and template specialization. I'll
explain the problems we found by the difference in the two parts
where they occurred:

a. Template specialization
Among the problems we've found with Template Specialization

is that the source code doesn't contain the specialization of the
target template or contains the specialization but is invalid. The
solution is that if no valid specialization is found during the
analysis of the target source code, then create a type alias for the
target template through the using statement, replacing the
template type parameter with a simple built-in type.

b. Template Parameters
 One example of this problem is that when Clementine targets

a non-template member class of a template class, it treats the
class as a separate template class but fails to get the template
parameter of that member class. To solve this problem, if the
parent class of the target class is a template class and the target
class itself is not a template class, then only the parent class is
treated as a template class.

2.5 Operator Overloading Call Statement.

There are many overloaded operators in C++ classes (Figure
4), to test these overloaded operators, Clementine needs to
correctly identify how the operator is called, i.e., identify whether
it is the target class that is being invoked or a pointer to the target
class. In addition, some special operators require special handling,
such as the correct order of operands and how to write statements

Figure 2 struct examples

Figure 3 Injected-class-name example

that call the target overloaded operator with the correct syntax
rules.

3. Experiment Evaluation
3.1 Experiment Setup
To be able to discover more fully the problems of Clementine in

generating test functions for objective functions, we applied
Clementine to 16 real-world subjects. In total, there are 63,442
functions to be tested.

3.2 Experiment Result
The number of uncompilable test functions generated is

reduced from 4091 to 221 (94.6%), and the number of failures
where Clementine failed to generate test functions is reduced
from 6567 to 0 (100%).

4 Conclusion and Future Works
In conclusion, this paper addressed challenges in Clementine,

a C++ automated unit-testing tool, specifically focusing on issues
related to test case generation. Our research resulted in
substantial improvements to Clementine's source code, reducing
the number of unworkable test cases and successfully generating
tests for previously problematic functions.

Despite Clementine's demonstrated capabilities, challenges
persist in generating uncompilable test code, stemming from
issues such as accessing non-public member functions or
variables and handling template structs incorrectly. In future work,
we plan to develop mechanisms for correct access those
problems. These collaborative efforts, accompanied by thorough
testing and evaluation, aim to establish a more robust and reliable
testing framework within Clementine, advancing its capabilities in
generating compilable test code.

References

[1] R. S. Herlim, Y. Kim, and M. Kim, CITRUS: Automated Unit
Testing Tool for Real-world C++ Programs, IEEE International
Conference on Software Testing, Verification and Validation (ICST)
Testing Tools track, April 4 - 13, 2022

[2] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
Directed Random Test Generation,” Proceedings of the 29th
International Conference on Software Engineering, (Washington,

DC, USA), pp. 75–84, IEEE Computer Society, 2007
[3] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite

Generation for Object-oriented Software,” Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, (New York, NY, USA),
pp. 416–419, ACM, 2011

[4] S. Lukasczyk, F. Kroiß, and G. Fraser, “Automated Unit Test
Generation for Python,” in Proceedings of the 12th Symposium on
Search-based Software Engineering (SSBSE 2020, Bari, Italy,
October 7–8), vol. 12420 of Lecture Notes in Computer Science,
pp. 9–24, Springer, 2020

[5] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg,
“Does Automated Unit Test Generation Really Help Software
Testers? A Controlled Empirical Study,” ACM Trans. Softw. Eng.
Methodol., vol. 24, Sept. 2015.

[6] F.Celler, “Programming Style Guidelines: ArangoDB Edition”
Version 1.2.0

[7] Sakkinen, Markku. Inheritance and other main principles of
C++ and other object-oriented languages. No. 20. University of
Jyväskylä, 1992.

[8] E. El-Qawasmeh and B. Mahafzah, "Investigation of C++
Constructor Fail Features," 2000.

[9] H. D. Pande and B. G. Ryder, "Static type determination and
aliasing for C++," Rutgers University, 1990.

[10] Siek, Jeremy, and Walid Taha. "A semantic analysis of C++
templates." European Conference on Object-Oriented
Programming. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006.

Figure 4 overloaded operator example

Table 1. 16 real-world C++ open-source projects
used for evaluation.

