
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1562

Directed test suite augmentation: an empirical investigation

Zhihong Xu1, Yunho Kim2, Moonzoo Kim2, Myra B. Cohen1 and Gregg Rothermel1,*,†

1Department of Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA
2Department of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

SUMMARY

Test suite augmentation techniques are used in regression testing to identify code elements in a modified
program that are not adequately tested and to generate test cases to cover those elements. A defining feature
of test suite augmentation techniques is the potential for reusing existing regression test suites. Our prelimi-
nary work suggests that several factors influence the efficiency and effectiveness of augmentation techniques
that perform such reuse. These include the order in which target code elements are considered while gener-
ating test cases, the manner in which existing regression test cases and newly generated test cases are used,
and the algorithm used to generate test cases. In this work, we present the results of two empirical studies
examining these factors, considering two test case generation algorithms (concolic and genetic). The results
of our studies show that the primary factor affecting augmentation using these approaches is the test case gen-
eration algorithm utilized; this affects both cost and effectiveness. The manner in which existing and newly
generated test cases are utilized also has a substantial effect on efficiency and in some cases a substantial
effect on effectiveness. The order in which target code elements are considered turns out to have relatively
few effects when using concolic test case generation but in some cases influences the efficiency of genetic
test case generation. The results of our first study, on four relatively small programs using a large number
of test suites, are supported by our second study of a much larger program available in multiple versions.
Together, the studies reveal a potential opportunity for creating a more cost-effective hybrid augmentation
approach leveraging both concolic and genetic test case generation techniques, while appropriately utilizing
our understanding of the factors that affect them. Copyright © 2014 John Wiley & Sons, Ltd.

Received 10 May 2013; Revised 6 August 2014; Accepted 12 October 2014

KEY WORDS: regression testing; test case augmentation; concolic testing; genetic algorithms

1. INTRODUCTION

As software evolves, engineers regression test it to validate new features and detect whether new
faults have been introduced into previously tested code. To help with this process, engineers often
begin by reusing some or all of a system’s previously developed test cases [1–3].

Reusing test cases is important, but having done so, engineers should also consider code or system
behaviour, which, in the new version of the system, is not adequately tested. Test suite augmentation
[4–7] helps with this, by identifying where new test cases are needed and creating them.

Despite the importance of improving test suites, most research on regression testing (Section 2)
has focused simply on re-executing existing test cases. There has been research on approaches for
identifying code that needs retesting [4, 6, 8–10], but these approaches do not then generate test
cases, leaving that task to engineers. There has been research on automatically generating test cases
given pre-supplied coverage goals (e.g. [5, 11–13]), but this research has not attempted to integrate
the test case generation task with reuse of existing test cases in a regression testing context.

*Correspondence to: Gregg Rothermel, 256 Avery Hall, Department of Computer Science and Engineering, University
of Nebraska–Lincoln, Lincoln, NE 68588, USA.

†E-mail: grother@cse.unl.edu

Copyright © 2014 John Wiley & Sons, Ltd.

Z. XU ET AL.

In principle, any test case generation technique could be used to generate test cases for a modified
program. We believe, however, that test case generation techniques that leverage existing test cases
hold the greatest promise where test suite augmentation is concerned. This is because existing test
cases provide a rich source of data on potential inputs and code reachability, and existing test cases
are naturally available as a starting point in the regression testing context. Further, recent research
on test case generation has resulted in techniques that rely on dynamic test execution (e.g. [13–15]),
and such techniques can naturally leverage existing test cases.

To explore this belief, in a prior work [7], we developed a directed test suite augmentation tech-
nique. The technique begins by using a regression test selection algorithm [3] to identify code that
should be retested (target code). The technique then uses existing test cases to seed a concolic test
case generation algorithm [12] to create test cases that execute the target code. A case study showed
that the approach was more efficient and better at covering target code than an analogous approach
that did not utilize existing test cases. In subsequent work [16], we examined a similar approach to
augmentation using a genetic algorithm for test case generation, also with promising results.

While these initial results were encouraging, our attempts to create augmentation techniques
showed that several factors can potentially influence the efficiency and effectiveness of those tech-
niques. The following factors are of particular interest, because they can be considered in the design
of many types of augmentation techniques:

1. the order in which target code elements are considered (e.g. a random order or an order derived
from a depth-first traversal of the flow graph of the program under test) while generating
test cases,

2. the manner in which existing and newly generated test cases are used (e.g. the sample size
used for reuse or the source of the sample) and

3. the algorithm (e.g. concolic or genetic) used to generate test cases.

To create effective test suite augmentation techniques, we need to understand the influence of the
foregoing factors. Based on such an understanding, we should be better able to create augmentation
techniques that leverage test cases in a cost-effective manner.

This article investigates this possibility. We designed and conducted two empirical studies inves-
tigating the foregoing factors in the context of test suite augmentation. Both of our studies consider
concolic and genetic test case generation algorithms, two different orders of target code elements
and two different manners of using existing test cases.

In our first empirical study, we consider relevant combinations of the foregoing factors on four
programs for which a large number of test suites of varying ranges of initial coverage are available.‡

We measure the effectiveness of the approaches in terms of code coverage and their efficiency in
terms of the time required to perform augmentation. The results of this study show that among
the factors that we consider, the primary factor affecting augmentation is the algorithm utilized
to generate test cases; this affects both augmentation efficiency and effectiveness. The manner in
which existing and newly generated test cases are utilized also has a substantial effect on efficiency
and in some cases a substantial effect on effectiveness. The order in which target code elements are
considered has relatively few effects when using concolic test case generation but does influence
algorithm efficiency when using genetic test case generation. Post hoc analysis also shows that
coverage characteristics (i.e. the degree of coverage exhibited by an initial test suite) can affect the
impact of test reuse, but in our case, they did not affect the other factors studied.

In our second empirical study, we replicate the first on several versions of a substantially larger
program, for which the existing test suite had different coverage characteristics than those used on
the first set of programs. The results of our second study show that most of the effects observed
in the first study extend to the larger program. However, the manner in which existing and newly
generated test cases are reused has a much larger overall effect on the concolic algorithm, on this
larger program, than it has on the genetic algorithm.

‡Results of an earlier version of this first study have been presented by Xu et al. [17]; this journal article is a revised and
extended version of that paper, in which the study was re-executed under new experimental conditions, and a second,
new study was conducted. Section 2 provides details.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Finally, an analysis of the coverage achieved by different approaches in both studies, and a qual-
itative analysis of coverage limitations exhibited by the two algorithms, reveals that the genetic and
concolic approaches are often complementary in terms of the code they cover.

This work makes several contributions:

� We provide a new formalized algorithm for performing augmentation using various test case
generation algorithms and settings of potentially influential factors.
� We report results on empirical studies comparing genetic and concolic test case generation in

the context of augmentation and test reuse.
� Our results provide additional evidence that directed test suite augmentation techniques can be

effective.
� Our results reveal factors that researchers and experimentalists may wish to consider when

attempting to create and study directed test suite augmentation techniques.
� Our results reveal a potential opportunity for improving augmentation by employing hybrid

approaches that leverage the different strengths of concolic and genetic algorithms, while
appropriately utilizing our understanding of the factors that affect them.

The remainder of this article is organized as follows. Section 2 presents background and related
work. Section 3 describes the test suite augmentation techniques that we consider and the factors
relevant to them. Sections 4 and 5 present our two empirical studies, respectively. Section 6 provides
further analysis of the differences observed between concolic and genetic algorithms in the context
of different factors, culminating in a discussion of a potential hybrid algorithm. Finally, Section 7
presents our conclusions and discusses future work.

2. BACKGROUND AND RELATED WORK

In this section, we provide background and describe related work on test suite augmentation and
automated test case generation.

2.1. Test suite augmentation

Let P be a program, let P 0 be a modified version of P and let T be a test suite for P . Regression
testing is concerned with validating P 0. To facilitate this, engineers often begin by reusing T ,
and a wide variety of approaches have been developed for rendering such reuse more cost-
effective via techniques such as regression test selection (e.g. [3, 18–22]) and test case prioritization
(e.g. [23–25]).

Test suite augmentation, in contrast, does not focus specifically on the reuse of T . Rather, it
is concerned with the following tasks: (1) identifying testing targets in P 0 (portions of P 0 or its
specification for which new test cases are needed); and then (2) creating or guiding the creation of
test cases that cover or exercise these testing targets.

Various algorithms have been proposed for identifying the code that should be tested in software
systems following changes. Some of these approaches [26] operate on levels above the code such as
on models or specifications, but most operate at the level of the code, and in this article, we focus on
these. In practice, engineers often simply run existing test cases on the new system version, assess
what code is not covered in that version by these test cases and then create test cases that cover
this code. More sophisticated code-level techniques [8–10] use various analyses, such as slicing on
program dependence graphs, to identify code elements that are potentially affected by changes and
to select existing test cases that are related to these code elements. However, these approaches do
not provide methods for generating new test cases that may be needed to cover the identified code.

Several recent papers [4–6, 27–31] specifically address test suite augmentation. Three of these
papers [4, 6, 29] present an approach that combines dependence analysis and symbolic execution to
identify chains of data and control dependencies, which, if tested, are likely to exercise the effects
of changes. A potential advantage of this approach is a fine-grained identification of code ele-
ments requiring retesting; however, the papers do not present or consider any specific algorithms

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

for generating test cases. Person et al. [5] present an approach to program differencing using sym-
bolic execution that can be used to identify testing targets more precisely than the approaches of
Apiwattanapong et al. [4] and Santelices et al. [6, 29] and yields constraints that can be input to
a solver to generate test cases for those requirements. In another work, Person et al. [27] use pro-
gram analysis techniques to identify the parts of new programs that are affected by changes and
apply symbolic execution only on these parts. Jin et al. [31] identify the parts of new programs
that are affected by changes, generate test cases for the changed parts of new programs and report
behavioural differences between the original and new programs. Qi et al. [30] present an approach
for using dynamic symbolic execution to reveal execution paths that involve code changes and need
to be retested, with the goal of making the effects of program changes observable. Finally, Taneja
et al. [28] present an approach for using dynamic symbolic execution to prune irrelevant execution
paths for regression testing.

In other related work [32], Yoo and Harman present a study of test data augmentation. They
experiment with the quality of test cases generated from existing test suites using a heuristic search
algorithm. While their work presents a technique that is similar to techniques that we consider in this
article (because it uses a search algorithm seeded with existing test cases), their goal is to duplicate
coverage in a single release in order to improve fault detection, not to obtain coverage of the target
code elements in a subsequent release.

The test suite augmentation approach that we presented in earlier work [7] integrates a regression
test selection technique [3] with an adaptation of the concolic test case generation approach [12].
This approach leverages test resources and data from prior testing sessions to perform both iden-
tification of coverage requirements and generation of test cases to cover these. The augmentation
approach introduced by Xu et al. [16] operates similarly but uses a genetic algorithm to generate
test cases. Case studies of the approaches showed that both can be effective and efficient. Both of
these studies, however, were small, and neither study compared multiple augmentation approaches.
Further, while the paper by Xu et al. [16] describes potentially influencing factors, it considers only
one factor in detail.

This article is a revised and extended version of work presented in an earlier conference
publication [17]. This article expands on that work in several ways:

� The conference paper presented a single experiment studying several augmentation techniques
on four relatively small object programs. This article presents a new version of that exper-
iment, which has been enhanced in two ways. First, we have used a new set of initial test
suites that have a wider range of initial coverages, and this allows us to examine differences in
algorithm performance that occur because of initial test suite characteristics. Second, we have
compared augmentation techniques working with existing test suites with concolic test gener-
ation techniques working from scratch, and this allows us to consider the benefits of working
with existing test cases.
� We have added a second empirical study on a larger object program available in several ver-

sions. This study provides evidence that the trends observed in the first study can generalize,
while also showing the degree to which results may change owing to effects of scale.
� We have added additional analyses of data, including analyses of differences in technique per-

formance on specific coverage targets overall and on several concrete cases. These analyses
allow us to suggest ways in which a hybrid augmentation approach, combining the approaches
studied in this paper, might achieve even greater cost-effectiveness.

2.2. Test case generation

While in practice, test cases are usually generated manually, there has been a great deal of research
on techniques for automated test case generation. For example, there has been work on generating
test cases from specifications (e.g. [33–35]), from formal models (e.g. [36–38]), from semi-formal
models (e.g. [39, 40]) and by random selection of inputs (e.g. [41, 42]).

In this work, we focus on code-based test case generation techniques, many of which have been
investigated in prior work. Among these, several techniques (e.g. [43–45]) use symbolic execution

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

to find the constraints, in terms of input variables, that must be satisfied in order to execute a target
path and attempt to solve this system of constraints to obtain a test case for that path.

While the foregoing test case generation techniques are static, other techniques make use of
dynamic information. Execution-oriented techniques [46] incorporate dynamic execution informa-
tion into the search for inputs, using function minimization to solve subgoals that contribute towards
an intended coverage goal. Goal-oriented techniques [14] also use function minimization to solve
subgoals leading towards an intended coverage goal; however, they focus on the final goal rather
than on a specific path, concentrating on executions that can be determined through analysis (e.g. of
data dependencies) to possibly influence progress towards that goal.

Several test case generation techniques use evolutionary or search-based approaches (e.g.
[11, 13, 47–49]) such as genetic algorithms, tabu search and simulated annealing to generate test
cases. Other works [12, 15, 50–52] combine concrete and symbolic test execution to generate test
inputs. This second approach is known as concolic testing or dynamic symbolic execution and has
proven useful for generating test cases for target source code. The approach has been extended to
generate test data for database applications [53] and for Web applications using PHP [54, 55].

Implementations of several of the techniques discussed earlier are available. Java Path Finder [56]
is a representative symbolic execution tool; it began as a software model checker but now is
provided with various different execution models and extensions including some for generating
test cases using symbolic execution. There are several tools (EXE [50], DART [15], CUTE [12],
CREST [57], KLEE [58] and Microsoft Pex [59]) that apply concolic testing to unit testing of
C programs. There are also tools that apply search-based techniques. For example, AUSTIN [60]
is a structural test data generation tool (for unit tests) for the C language that uses search-based
techniques. AUSTIN is based on the Common Intermediate Language framework and currently
supports a random search, as well as a simple hill climber that is augmented with a set of con-
straint solving rules for pointer-type inputs. A second tool is called EvoSuite [61] and uses a
hybrid approach for generating test cases for Java programs. This approach primarily uses a
search-based approach but also integrates state-of-the-art techniques such as concolic testing and
testability transformation.

Recently, researchers have attempted to combine test case generation techniques to improve
testing effectiveness and efficiency. Inkumsah et al. [62] combine a genetic algorithm and con-
colic testing to generate test cases for object-oriented programs. Borges et al. [63] combine a
meta-heuristic search technique and symbolic execution to solve complex mathematical constraints
containing floating-point arithmetic. Symbolic search-based testing [64] uses symbolic execution to
construct fitness functions that improve the efficiency of search-based testing for branch adequate
test data generation. Malburg et al. [65] include constraint solving in the mutation stage of a genetic
algorithm to generate mutated offspring that efficiently explores different execution paths in order
to improve branch coverage. Galeotti et al. [66] consider the use of non-random starting points
(provided by a genetic algorithm) in concolic testing. None of this work, however, has explicitly
addressed the test case augmentation problem or studied the test case generation techniques in an
augmentation context.

3. AUGMENTATION TECHNIQUES

We now describe the augmentation techniques that we consider in our empirical studies. We begin
by presenting details relevant to the augmentation task as a whole, and then we present the specific
algorithms that we utilize, along with details pertinent to their implementations.

3.1. Augmentation basics

3.1.1. Coverage criteria. In this work, we are interested in code-based augmentation techniques,
and these typically involve specific code coverage criteria. In our studies, we focus on code cover-
age at the level of branches, that is, outcomes of predicate statements. We do this because branch
coverage is stronger than statement coverage, but more tractable than criteria such as path-based
coverage criteria, and hence more likely to be practical for and scale to larger systems.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

3.1.2. Identifying target code elements. As noted in Section 1, test suite augmentation consists
of two tasks: identifying the code that needs to be tested (target code elements) and creating test
cases that exercise those code elements. As Section 2.1 shows, there are numerous approaches for
identifying target code elements. In this work, we do not wish to compare these approaches, and
we wish to be able to focus on factors affecting the augmentation task while limiting the possible
confounding effects that may come from a particular choice of target code identification approaches.
Thus, we choose a simple and practical approach for performing target code identification. Given
program P and its test suite T and modified version P 0 of P , to identify target code elements in
P 0, we execute the test cases in T on P 0 and measure their branch coverage. Any branch in P 0 that
is not covered is considered to be a target code element. This approach corresponds to the common
‘retest-all’ regression testing process in which existing test cases are executed on P 0 first, and then,
augmentation is performed where needed.

3.1.3. Ordering target code elements. Our augmentation techniques operate on lists of target
code elements, and we believe that the order in which these elements are considered can affect
the techniques because test cases covering one element may incidentally cover another.§ In this
work, we investigate the use of a depth-first order (DFO) of target code elements, but other orders
are applicable.

The DFO of nodes in a control flow graph is the reverse of a postorder traversal of the
graph [69, p. 660]. In data-flow analysis, considering nodes in DFO causes nodes that are ‘earlier’
in control flow to be considered prior to those that follow them and can speed up the convergence
of the analysis. The same approach can be applied to place branches in DFO. We conjecture that by
considering target code elements in this order, we may achieve two things. First, we may be able to
speed up the process of generating test cases, because test cases generated for target code elements
that occur earlier in a program’s control flow may incidentally cover elements occurring later in
control flow, eliminating the need to specifically consider those later elements. Second, when using
test case generation techniques that rely on constraint solvers, we may be able to achieve better effi-
ciency by considering target code elements for which path constraints are shorter prior to those for
which constraints are longer.

To apply this approach interprocedurally, we calculate DFO in terms of branches in a program’s
interprocedural control flow graph (ICFG) [70, 71]. We first build the ICFG, then we perform a
postorder traversal of that graph by recording the branches visited and then we reverse the recorded
order. Finally, we filter out branches that were not designated as target code elements to obtain our
ordered list of target code elements.

For example, Figure 1 shows a simple ICFG. The E and X nodes represent method entry and
exit. The numbered nodes represent statements in the program. The nodes with two outgoing edges
represent predicate statements, and the labeled edges represent branches out of those predicates and
the entry edges of methods (the latter ensures that the code in methods containing no branches is
also covered). A postorder traversal of the graph visits branches in the order b7, b8, b3, b4, b1, b5,
b9, b6, b2 and b0. The resulting DFO of the branches in the ICFG is thus b0, b2, b6, b9, b5, b1,
b4, b3, b8 and b7. Considering branches in this order, we consider b7 only after we have considered
b0, b1, b4 and b3. If we begin the augmentation process with just one test case that covers b0, b1,
b3 and b8, we first filter out these four covered branches from the ordered list and then consider the
remaining branches in the order b2, b6, b9, b5, b4 and b7.

3.1.4. Test case reuse approach. Existing test cases provide a rich source of data on potential
program inputs and code reachability, and in the regression testing context, existing test cases are
naturally available. We may have many existing test cases in an existing test suite to work with, and
we may also generate many new test cases during the augmentation process. Choosing an effective
subset of the existing test cases when attempting to cover a target element is important, because
while larger subsets may provide more power for improving coverage, they also add to the cost of

§Consideration of element order is similar to the branch prioritization problem in concolic test case generation and has
been included in prior work (e.g. [30, 67, 68]).

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Figure 1. Interprocedural control flow graph.

the test case generation step. Two particular options for reusing test cases involve the following:
(1) using only those test cases that existed initially; and (2) using test cases that existed initially
together with any new test cases generated during augmentation. In our studies, we consider both of
these approaches.

3.2. Augmentation algorithms

There are various test case generation algorithms that could be considered in the augmentation
context. We chose to work with dynamic test case generation algorithms because these make use of
existing test cases, and the ability to reuse such test cases is a central focus of this work. Among
such algorithms, the most rigorously researched approaches to date involve concolic and search-
based approaches, and among the latter, genetic approaches have been the most prevalent. Thus, it
is these two approaches that we chose to investigate.

3.2.1. Main algorithm. Algorithm 1 controls the augmentation process, beginning with an initial
set of existing test cases, TC; an ordered list of target code elements (target branches), Bte, which
are not covered by the existing test cases TC; an iteration limit niter; and a Boolean flag UseNew.

The main loop (lines 5–22) continues until coverage no longer increases (which may occur owing
to the iteration limit being reached in the test case generation routines). Within this loop, if bt is not
covered, a test case generation algorithm is called to generate test cases (line 9). If the algorithm
generates and returns new test cases, this means that at least some new coverage has been achieved
in the program (although bt may or may not have been covered in the process).

To accommodate our other factor of concern—the manner in which existing and new test cases
are used—we allow newly generated test cases to be added back into our set of available test cases.
If Boolean flag UseNew is set to true, this causes the algorithm to do this (lines 17 and 18), and then
this newly formed TC is used for the next iteration of our algorithm.

We next describe two different test case generation algorithms that can be invoked at line 9 to
generate new test cases.

3.2.2. Genetic test suite augmentation. Genetic algorithms for structural test case generation begin
with an initial (often randomly generated) test data population and evolve the population towards
targets that can be blocks, branches or paths in a program [72–74]. To apply such an algorithm to
a program, the test inputs must be represented in the form of a chromosome, and a fitness function

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

Input: set of existing test cases TC, ordered list of target code elements Bte, an iteration limit niter and a Boolean
flag UseNew

Output: TC augmented with new test cases

1 foreach bt 2 Bte do
2 CoveredŒbt � D false
3 end
4 repeat
5 NewCoverage D false
6 for i D 1 to jBtej do
7 bt= i th element of Bte
8 if CoveredŒbt � ¤ true then
9 NewTests D AUGMENT.TC;Bte; bt ; niter/

10 if NewTests ¤ Empty then
11 NewCoverage D true
12 Bcov D ¹All target code elements covered byNewTests}
13 foreach bcov 2 Bcov do
14 CoveredŒbcov� D true
15 end
16 end
17 if UseNew then
18 TC D NewTests[TC
19 end
20 end
21 end
22 until NewCoverage is false;

Algorithm 1: Main augmentation algorithm

must be provided that defines how well a chromosome satisfies the intended goal. The algorithm
proceeds iteratively by evaluating all chromosomes in the population and then selecting a subset
of the fittest to mate. These are combined in a crossover stage where information from one-half of
the chromosomes is exchanged with information from the other half to generate a new population.
A small percentage of chromosomes in the new population are mutated to add diversity back into
the population. This concludes a single generation of the algorithm. The process is repeated until a
stopping criterion has been met.

Algorithm 2 describes the genetic algorithm we study in this work. The algorithm accepts four
parameters: a set of test cases TC, a list of target code elements Bte, an uncovered target branch
bt , and an iteration limit niter. The algorithm returns a set of new test cases NTC, containing all
generated test cases that cover previously uncovered branches in a modified program.

Input: set of test cases TC, list of target code elements Baff , uncovered target branch bt 2 Baff and iteration limit
niter

Output: set of new test cases NTC

1 NTC D ; // set of new test cases generated

2 TCbt D ¹test cases in TC that reach methodmbt , the method containing bt}
3 Population D TCbt
4 i D 0
5 repeat
6 Fitness D CalculateFitness.Population/
7 Population D Select.Population;Fitness/
8 Population D Crossover.Population/
9 Population D Mutate.Population/

10 i D i C 1
11 foreach tc 2 Population do
12 Execute (tc)
13 UpdateCov(tc)
14 if tc covers new branches in Baff then
15 NTC D NTC [¹tcº
16 end
17 end
18 until i � niter or bt is covered;
19 return NTC

Algorithm 2: Genetic augment algorithm

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Instead of using randomly generated test cases to form an initial population, we take advantage
of existing test cases to seed the population. We run this algorithm for each target branch bt . As the
starting population, we select all of the test cases reaching methodmbt , the method that contains bt ;
this determines the population size.

The algorithm repeats for a number of generations (set by the variable niter) or until bt is covered.
The first step (line 6) is to calculate the fitness of all test cases in the population. Because the fitness
of a test case depends on its relationship to the branch targeted for coverage, calculating the fitness
requires that the test case be executed. (For test cases provided initially, coverage information can be
obtained while performing the prior execution of TC, which in our case occurred in conjunction with
determining target code elements.) Next, a selection is performed (line 7), which orders and chooses
the best half of the chromosomes to use in the next step. This population is divided into two halves
(retaining the ranking), and the first chromosome in the first half is mated with the first chromosome
in the second half, and this continues until all have been mated. Next (line 9), a small percentage of
the population is mutated, after which all test cases in the current population are executed. If bt is
covered or the iteration limit is met, the algorithm is finished (line 18); otherwise, it iterates.

3.2.3. Concolic test suite augmentation. Concolic testing (concolic execution) [12, 15, 50] con-
cretely executes a program while carrying along a symbolic state and simultaneously performing
a symbolic execution of the path that is being executed. It then uses the symbolic path constraint
gathered along the way to generate new inputs that will drive the program along a different path on
a subsequent iteration, by negating a predicate in the path constraint. In this way, concrete execu-
tion guides the symbolic execution and replaces complex symbolic expressions with concrete values
when needed to mitigate the incompleteness of the constraint solvers [12]. Conversely, symbolic
execution helps generate concrete inputs for the next execution to increase coverage in the concrete
execution scope.

In traditional concolic testing, test case reuse is not considered, and test case generation focuses
on path coverage. First, a random input is applied to the program, and the algorithm collects the
path condition for this execution. Next, the algorithm negates the last predicate in this path condition
and obtains a new path condition. Calling a constraint solver on this path condition yields a new
input, and the algorithm then iterates in an attempt to negate the last predicate. If the algorithm
discovers that a path condition has been encountered before, it ignores it and negates the second-to-
last predicate. This process continues until no more new path conditions can be generated. Ideally,
the end result of the process is a set of test cases that cover all paths.

In this work, we alter the foregoing approach to function in the context of the main augmentation
algorithm presented in Section 3.2.1; this includes leveraging existing test cases and operating on
an ordered list of target code elements, at the level of branch coverage.

We use the following notation:

� CFGP D .NP ; EP / is a control flow graph of a target program P where NP is a set of nodes
(statements in P) and EP is a set of edges (actually, branches in P) between NP .
� A path condition pc of a target program P is a conjunction bi1^bi2^ : : : bin where bi1 ; : : : ; bin

are the conditions associated with taking given branches in EP and are executed in order. Note
that n can be larger than jEP j, as a condition associated with a branch in a loop body of P may
be executed multiple times (i.e. it is possible that bik D bil for k ¤ l).
� DelNeg.pc; j / generates a new path condition from a path condition pc by negating the condi-

tion associated with a branch occurring at the j th position in pc and removing all subsequent
conditions associated with branches. For example, DelNeg.bi1 ^ bi2 ^ bi3 ; 2/ D bi1 ^ :bi2 .
� b is a paired branch of a branch b (i.e. if b is a then branch, then b is the else branch).
� LastPos.b; pc/ returns a last position j of a condition associated with a branch bij in a path

condition pc where b D bij (i.e. 8j < k � n � bik ¤ b/. LastPos.b; pc/ returns 0 if b does
not exist in pc.
� Solve.pc/ returns a test case satisfying the path condition pc if pc is satisfiable; UNSAT

otherwise.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

We assume that conditional statements always have two branches for the sake of simplicity;
switch statements can be transformed into equivalent nested if statements (Section 4.3.2).

Algorithm 3 describes our concolic augmentation algorithm. The algorithm accepts the same four
parameters accepted by the genetic algorithm and returns a set NTC of new test cases. The beginning
of the main procedure resets the set of newly generated test cases NTC (line 1) and selects test cases
that can reach bt (the paired branch of bt) from TC (line 2). If there are no such test cases, the algo-
rithm terminates (lines 3 and 4). If there are such test cases, the algorithm obtains path conditions
by executing the target program with the selected test cases (line 6). Suppose the last occurrence
of bt is located in the mth condition associated with a branch of pc. From each path condition pc
obtained, the algorithm generates the minimum of niter and m new path conditions as follows. The
algorithm generates niter new path conditions (lines 8–20) by negating bim ; bim�1 ; : : : ; bim�niterC1

and removing all following conditions associated with branches in pc, respectively (line 10). If a
newly generated path condition pc0 has a solution tcnew (a new test case) (lines 11 and 12) and tcnew

covers uncovered branches in Bte (line 15), tcnew is added to NTC (line 16).

Input: set of test cases TC, list of target code elements Bte, an uncovered target branch bt 2 Bte and an iteration
limit niter

Output: set of new test cases NTC
1 NTC D ; // new test cases

2 TC
bt
D ¹all test cases in TC that reach bt}

3 if TC
bt
D ; then

4 return ;
5 end
6 PC

bt
D ¹path conditions obtained from executing test cases in TC

bt
}

7 foreach pc 2 PC
bt

do

8 for i D LastPos.bt ; pc/ to i � niter C 1 do
9 if i > 0 then

10 pc0 D DelNeg.pc; i/
11 tcnew D Solve.pc0/
12 if tcnew ¤ UNSAT then
13 Execute(tcnew)
14 UpdateCov(tcnew)
15 if tcnew covers uncovered branches in Bte then
16 NTC D NTC [¹tcnewº
17 end
18 end
19 end
20 end
21 end
22 return NTC

Algorithm 3: Concolic augment algorithm

Note that the iteration limit niter parameter is a ‘tuning’ parameter that determines how far back
in a path condition the augmentation approach will go and can affect both the efficiency and the
effectiveness of the approach.

4. EMPIRICAL STUDY 1

Our goal is to investigate augmentation techniques focusing on three factors (test case genera-
tion algorithm, order of target code elements and test reuse approach). We thus pose the following
research questions.

RQ1: How does the order of consideration of target code elements affect augmentation
techniques?
RQ2: How does the manner of use of existing and newly generated test cases affect augmentation
techniques?
RQ3: How does the use of genetic and concolic test case generation techniques affect augmen-
tation techniques?

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Table I. Objects of analysis.

Program Functions Lines of code Branches Test cases

printtok1 21 402 174 3052
printtok2 20 483 186 3080
replace 21 516 206 3174
tcas 8 138 76 1608

Table II. Branch coverage and sizes of initial test suites.

Branch coverage Test suite size

Program Average Minimum Maximum Average Minimum Maximum

printtok1 133.3 110.0 152.0 16.8 9 25
printtok2 158.8 129.0 173.0 18.4 8 29
replace 165.9 127.0 182.0 17.8 9 28
tcas 57.9 30.0 69.0 10.8 5 16

4.1. Objects of analysis

To facilitate technique comparisons, our objects of analysis (programs and test suites) must be
suitable for use by both implementations. To select appropriate objects, we examined C pro-
grams available in the Software–artifact Infrastructure Repository [75]. We selected four programs¶

(Table I), each of which is available with a large ‘universe’ of test cases; these test cases were cre-
ated with the aim of achieving both requirements and code coverage of the programs and with the
aim of including numerous test cases (a minimum of 30) for each coverable requirement or code
element [76].||

The programs that we selected do not have actual sequential versions. We were able, however,
to define a process by which a large number of test suites that need augmenting and that possess a
wide range of sizes and levels of coverage adequacy could be created for the given programs. This
let us model a situation where prior test suites are inadequate and require augmentation.

To create such test suites, we did the following. First, for each program P , we used a greedy
algorithm to sampleP ’s associated test universeU , to create test suites that were capable of covering
all the branches coverable by test cases in U , and we applied this algorithm 1000 times to P .
(We chose 1000 because it is a number beyond which—on all programs—further increases fail to
lead to changes in observed minimum and maximum sizes.) Next, we measured the minimum size
Tmin and maximum size Tmax for these suites; this provides estimates of the lower and upper size
bounds for coverage-adequate test suites for the programs. Because in practice, programs are often
equipped with test suites that are not coverage adequate and because we wish to study the effects of
augmentation using a wide range of initial test suite sizes and coverage characteristics, we set lower
and upper bounds for initial test suites at Tmin=2 and Tmax, respectively.

Second, we began the test suite construction phase, in which for each test suite to be constructed,
we randomly chose a number n such that Tmin=2 � n � Tmax and randomly selected n test cases
from U to create a test suite A. We measured the coverage achieved by A on P , and if A was
coverage adequate forP , we discarded it. We repeated this step until 100 non-coverage-adequate test
suites had been created. Statistics on the sizes and coverages obtained by these test suites are given
in Table II. (Branch coverage numbers listed in the table are for the extended programs (explained
further in Section 4.3.3)).

¶For this study, we began by considering the seven Siemens programs, because their size is amenable to study on enor-
mous numbers of test cases. Constraint solvers, however, have limitations, and available satisfiability modulo theory
solvers do not handle floating-point arithmetic, which is present in the three Siemens programs not selected.

||Concolic test case generation techniques set limits on the sizes of inputs they generate, and some inputs in the test pools
provided with the programs did not conform to reasonable limits. We thus ran several trials with various size limits and
selected limits that let us retain at least 60% of the inputs in the original test universes. We then removed, from the test
universes, test cases that did not conform to these limits. Table I lists the sizes of the test universes after this reduction.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

4.2. Variables and measures

4.2.1. Independent variables. Our experiment manipulated three independent variables:

IV1: Order in which target code elements are considered. As orders of target code elements,
we use the DFO described in Section 3 and a baseline approach that orders target code elements
randomly.
IV2: Manner in which existing and new test cases are reused. We consider two approaches to
reusing test cases, namely the approach in which a test case generation algorithm attempts to use
only existing test cases and the approach in which it uses existing along with newly generated
test cases.
IV3: Test case generation technique. We consider two test case generation techniques, namely
the genetic and concolic techniques described in Section 3.**

4.2.2. Dependent variables and measures. We wish to measure both the effectiveness and the
efficiency of augmentation techniques under each combination of potentially affecting factors. To
do this, we selected two variables and measures:

DV1: Effectiveness. There are various approaches that could be used to measure technique
effectiveness. One approach involves assessing the ability of techniques to detect faults present
in systems. This approach has the advantage of directly measuring a quality of test suites that is
typically most sought after by test engineers. From an empirical standpoint, however, measuring
fault-detection effectiveness has drawbacks. The fault detection ability of a testing technique can
vary depending on the number and type of faults present in systems, the locations of faults, and
the types of test oracles used [77]. It is possible, then, that sets of faults present in our object
programs might be (inadvertently) more prone to being detected by particular classes of test case
generation techniques than by others. This is a serious threat to internal validity, because it could
lead us to conclude, erroneously, that one technique is more effective than another.

A second approach that has been used to assess the effectiveness of test suite augmentation
techniques involves tracking behavioural differences (such as differences in outputs) [29–31].
While this is appropriate for assessing techniques that have a goal of exposing behavioural
differences between program versions, it is not appropriate for assessing techniques, such as ours,
that have a goal of improving test coverage. This is because not all test cases that improve cov-
erage necessarily expose behavioural differences, and not all test cases that expose behavioural
differences necessarily improve coverage.

A third approach to assessing technique effectiveness involves the use of data on the code
coverage achieved by test cases. While this approach does not rely on faults or measures of
behavioural differences, it has several advantages in the context of this study. First, coverage
does not possess problems related to locations and types of faults that can affect internal validity.
Second, the test case augmentation techniques that we consider are directly intended to work with
existing test suites to achieve higher levels of coverage in a modified program P , so measuring
coverage is a direct measure of technique intent and treats all of the techniques that we study in
similar manners. Finally, there is substantial evidence in the testing literature that code coverage
can correlate with fault detection. This correlation has been reported directly in relation to the
use of code coverage criteria [76, 78–81]. The correlation has also been observed indirectly in
the fact that coverage-based test case prioritization techniques, which order test cases in manners
that are intended to detect faults faster, do in fact succeed in doing so even when using orderings
based solely on simple coverage metrics (e.g. [23, 82, 83]).

We thus selected code coverage as our effectiveness measure. To measure the effectiveness of
our techniques, we track the number of branches in each object program that can be covered by
each augmented test suite.

**While it is possible to use many different variants of these algorithms and to experiment with differing parameters,
fixing our implementations as much as possible allows us to isolate the effect of other factors more effectively.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

DV2: Efficiency. To track augmentation technique efficiency, for each application of an aug-
mentation technique, we measure the cost of using the technique in terms of the wall clock time
required to apply it.

4.3. Experiment set-up

Several steps had to be followed to establish the experiment set-up needed to conduct our study.

4.3.1. Genetic algorithm implementation. We implemented the algorithm presented in Section 3;
however, doing this involved several implementation decisions. In making these decisions, we chose
to focus on creating a simple implementation; this lets us avoid overtuning the algorithm for the
specific problems.

First, in our case, each test case is a chromosome where the genes are inputs to the programs,
and we customized this for each program. For example, for printtok1 and printtok2, all the
characters in the input file form a chromosome, and each character is a gene, while for tcas, each
integer in the input is a gene in the chromosome. For selection, we selected the best half of the
population to generate the next generation; we kept the selected chromosomes in the new generation.
We ranked the chromosomes and divided them into two parts. The first chromosome in the first half
was mated with the first chromosome in the second half, the second chromosome in the first half
was mated with the second chromosome in the second half and so forth.

Second, in crossover, we performed a one-point crossover by randomly selecting a position
that is between 0 and the number of genes of the smaller chromosome; we then swapped every-
thing between chromosomes starting at that position to the end of the chromosome. In performing
this process, we did not attempt to preserve the well-formedness of the input. Existing test
cases were almost all well formed, so newly generated test cases that were not well formed helped
increase coverage.

Third, our search targets are branches in the program; therefore, for our fitness function, we used
the approach level described by Wegener et al. [84]. We chose the traditional form of a fitness
function that targets a single branch at a time, over more recent implementations (such as EvoSuite)
that target all branches at once. We did this for two reasons. First, it matches the method used by
the concolic algorithm. Second, we are testing at the system level (rather than the unit level), and
the number of branches in whole programs is substantially larger than the numbers of branches in
individual units. We found during initial experiments that calculating fitness based on coverage of all
branches was much slower than targeting a single branch at a time. Finally, because we are interested
in augmentation (rather than in generating test cases to cover all branches), our target pool is only
a small subset of the full branch set. The approach level is based on control dependence distance;
it is a discrete count measuring how far we are from the predicate controlling the target branch in
the control dependence graph when we deviate course. The further away we are from this predicate
when we take the wrong control dependence branch, the higher the value will be. Thus, we want to
minimize this value as we search. For instance, if we reach the predicate leading to our target, the
approach level is 0. If we take the wrong branch at the node just above this predicate, the approach
level is 1.††

Finally, we attempted to minimize our tuning between programs to avoid bias in our experi-
ments, but we found that the mutation rate was critical for convergence in the individual programs.
Therefore, we used different mutation rates that were obtained heuristically through observation.
For printtok1 and printtok2, we used 0.06; for replace, we used 0.08; and for tcas, we
used 0.05.

††In our initial implementation, for the sake of simplicity and because of instrumentation overhead, we did not com-
bine approach level with branch distance. We collected data relative to early implementations and did not observe any
improvements when branch distance was added. Because we nonetheless achieved good convergence on these pro-
grams, we did not consider branch distance as part of our approach. Still, research suggests that branch distance can be
an important part of fitness functions [85], so we intend to consider it further in the future.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

4.3.2. Concolic algorithm implementation. To implement the concolic test case generation algo-
rithm presented in Section 3, we created a tool based on CREST [57, 67]. CREST transforms
a program’s source code into an ‘extended’ version in which each original conditional state-
ment with a compound Boolean condition is transformed into multiple conditional statements with
atomic conditions without Boolean connectives (i.e. if(b1 && b2) f() is transformed into
if(b1) {if(b2) f()}). In addition, CREST transforms switch statements into nested condi-
tional statements (e.g. switch(c){ case 1: f();break; case 2: g();break;} is
transformed into if (c==1) f(); else if (c==2) g();).

4.3.3. Extended programs. To facilitate fair comparisons between concolic and genetic algorithms,
we cannot apply the former to extended programs and the latter to non-extended programs. We thus
opted to create extended versions of all four programs and apply both algorithms to those versions.
All results, including all measures of coverage, are reported relative to these extended versions.

4.3.4. Iteration limits. Genetic algorithms iteratively generate test cases, and an iteration limit gov-
erns the stopping point for this activity. Similarly, the concolic approach that we use employs an
iteration limit that governs the maximum number of path conditions that should be solved to gen-
erate useful test cases. These iteration limits can affect both the effectiveness and efficiency of the
algorithms. Thus, we cannot run experiments with just one iteration limit per approach, because
this would result in a case where our comparisons might reflect iteration limits rather than dif-
ferences between techniques. For this reason, we chose multiple iteration limits for each test case
generation approach, using 1–3–5–7–9 for concolic and 5–10–15–20–25 for genetic. (The different
numbers are due to the different meanings of iterations across the two algorithms, as explained in
Sections 3.2.2 and 3.2.3.)

4.4. Experiment operation

Given our independent variables, an individual augmentation technique consists of a triple
(G, A, M), where G is one of the two test case generation techniques (genetic or concolic), A is one
of two target code element orders (random or depth first) and M is one of the two test case reuse
approaches (existing test cases or new + existing test cases). An individual augmentation technique
application consists of an augmentation technique applied at an iteration limit L, and in our case, L
has five levels.

Our experiment thus employs eight augmentation techniques and 40 augmentation technique
applications. Each of these is applied to each of our four programs for each of the 100 test suites that
we created for that program. This results in 16 000 runs, for each of which we collect our dependent
variables to obtain the data sets needed for our analysis.

Our experiments were run on Linux boxes with Intel Core2Duo E8400s at 3.6 GHz and with
16 GB RAM, running Fedora 9 as operating systems. Our processes were the only user processes
active on the machines.

4.5. Threats to validity

The primary class of threats to external validity for this study involves the representativeness of
our object programs and test suites. We have examined only four relatively small C programs, and
the study of other programs and other types of code changes may exhibit different cost-benefit
trade-offs. While the universes of test cases provided with these programs were not randomly gen-
erated (test cases were deliberately designed to target requirements and code components), we did
randomly select test cases from these universes to create test suites; test suites generated by other
mechanisms may also exhibit different trade-offs. Furthermore, our programs are chosen to allow
the application of both genetic and concolic testing and, thus, do not reveal cases in which program
characteristics might hinder one but not the other of these approaches.

A second class of threats to external validity pertains to our algorithms. We have utilized only one
variant of a genetic test case generation algorithm with specific choices for selection, crossover, and
fitness calculation operations, and we have used only one variant of a concolic testing algorithm.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Genetic algorithms require tuning in terms of fitness function, selection method, and mutation mech-
anism. We performed minimal tuning in order to avoid overfitting, but alternative tunings might
have allowed the genetic algorithms to perform differently. Similarly, we have used just one con-
colic algorithm and implementation, and alternative algorithms or implementations might allow the
approach to perform differently. Finally, as we have also mentioned, efficiency differences between
the implementations cannot be compared in any rigorously quantitative sense.

In addition to the foregoing threats, we have applied both algorithms to extended versions of the
programs, where the genetic approach does not require this and might function differently on the
original source code. Further, we have considered only two approaches for handling target branches;
other approaches or approaches that handle sets of target branches rather than single branches
(e.g. [86]) may exhibit different results.

Threats to external validity such as the foregoing can be addressed only by additional studies.
The primary threat to internal validity for this study is possible faults in the implementations

of the algorithms and tools we used. We controlled for this threat through extensive functional
testing of our implementations. A second threat involves the potential for inconsistent decisions and
practices in the implementation of the techniques studied; for example, variation in the efficiency of
implementations of techniques could bias the data collected.

Where construct validity is concerned, there are other metrics that could be pertinent to the effects
studied. Our effectiveness measurements focus on code coverage, and studies of fault-detection
effectiveness may yield additional insights. Further, our measurements of efficiency consider only
technique run time and omit costs related to the time spent by engineers employing the approaches.
Our time measurements also suffer from the potential biases detailed in our discussion of internal
validity, given the inherent difficulty of obtaining efficient technique prototypes.

Where conclusion validity is concerned, our choices of iteration limits for the two test case gener-
ation algorithms may have limited our ability to compare the genetic and concolic algorithms fairly
in regard to RQ3; it is possible that the addition of additional levels could alter the results of the
comparison.

4.6. Results and analysis

As an initial overview of the data, Tables III–VI present data on final coverage and increased
coverage (final coverage� initial coverage), and Tables VII–X present data on cost. Final coverage,
increased coverage and cost values are obtained per program, across all test suites, for each iteration
limit and for each combination of order of target code elements and test reuse approach. Coverage
is shown as the number of branches covered by augmented test suites, and cost is shown in seconds.
Each table presents results for concolic and genetic techniques for one combination of the branch
order and test case reuse treatments.

Table III. Coverage using depth-first order and existing test cases.

Total Initial
branches coverage Final coverage Increased coverage

Genetic 5 10 15 20 25 5 10 15 20 25

printtok1 174 133.3 154.9 155.9 156.0 156.3 156.7 21.6 22.6 22.7 23.0 23.4
printtok2 186 158.8 175.9 176.2 176.3 176.4 176.4 17.1 17.4 17.5 17.6 17.6
replace 206 165.9 184.6 185.4 186.3 186.7 186.9 18.7 19.5 20.4 20.8 21.0
tcas 76 57.9 69.7 70.5 70.7 70.8 70.8 11.8 12.6 12.8 12.9 12.9

Concolic 1 3 5 7 9 1 3 5 7 9

printtok1 174 133.3 144.0 150.4 151.3 152.2 152.5 10.7 17.1 18.0 18.9 19.2
printtok2 186 158.8 165.5 170.8 171.8 172.5 173.2 6.7 12.0 13.0 13.7 14.4
replace 206 165.9 176.5 185.6 188.3 189.2 189.6 10.6 19.7 22.4 23.3 23.7
tcas 76 57.9 65.1 66.8 68.9 69.5 69.5 7.2 8.9 11.0 11.6 11.6

Unit: number of branches.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

Table IV. Coverage using depth-first order and existing plus new test cases.

Total Initial
branches coverage Final coverage Increased coverage

Genetic 5 10 15 20 25 5 10 15 20 25

printtok1 174 133.3 155.7 156.8 157.0 157.4 157.8 22.4 23.5 23.7 24.1 24.5
printtok2 186 158.8 176.4 176.6 176.5 176.6 176.6 17.6 17.8 17.7 17.8 17.8
replace 206 165.9 185.2 186.5 186.7 187.3 187.2 19.3 20.6 20.8 21.4 21.3
tcas 76 57.9 70.7 70.9 70.9 71.0 71.0 12.8 13.0 13.0 13.1 13.1

Concolic 1 3 5 7 9 1 3 5 7 9

printtok1 174 133.3 144.2 150.7 151.7 152.5 152.9 10.9 17.4 18.4 19.2 19.6
printtok2 186 158.8 165.7 171.3 172.2 172.9 173.7 6.9 12.5 13.4 14.1 14.9
replace 206 165.9 176.8 187.5 189.7 190.5 190.8 10.9 21.6 23.8 24.6 24.9
tcas 76 57.9 65.6 67.7 70.2 70.9 70.9 7.7 9.8 12.3 13.0 13.0

Unit: number of branches.

Table V. Coverage using random order and existing test cases.

Total Initial
branches coverage Final coverage Increased coverage

Genetic 5 10 15 20 25 5 10 15 20 25

printtok1 174 133.3 154.9 155.5 155.6 156.2 156.4 21.6 22.2 22.3 22.9 23.1
printtok2 186 158.8 175.7 176.3 176.5 176.5 176.4 16.9 17.5 17.7 17.7 17.6
replace 206 165.9 184.4 185.9 186.3 186.9 187.0 18.5 20.0 20.4 21.0 21.1
tcas 76 57.9 69.8 70.6 70.7 70.8 70.8 11.9 12.7 12.8 12.9 12.9

Concolic 1 3 5 7 9 1 3 5 7 9

printtok1 174 133.3 144.0 150.4 151.3 152.2 152.5 10.7 17.1 18.0 18.9 19.2
printtok2 186 158.8 165.5 170.8 171.8 172.5 173.2 6.7 12.0 13.0 13.7 14.4
replace 206 165.9 176.5 185.6 188.3 189.2 189.6 10.6 19.7 22.4 23.3 23.7
tcas 76 57.9 65.1 66.8 68.9 69.5 69.5 7.2 8.9 11.0 11.6 11.6

Unit: number of branches.

Table VI. Coverage using random order and existing plus new test cases.

Total Initial
branches coverage Final coverage Increased coverage

Genetic 5 10 15 20 25 5 10 15 20 25

printtok1 174 133.3 155.6 156.2 156.7 157.7 157.3 22.3 22.9 23.4 24.4 24.0
printtok2 186 158.8 176.5 176.6 176.5 176.6 176.6 17.7 17.8 17.7 17.8 17.8
replace 206 165.9 185.4 186.3 187.0 187.6 187.4 19.5 20.4 21.1 21.7 21.5
tcas 76 57.9 70.6 70.9 70.9 70.9 71.0 12.7 13.0 13.0 13.0 13.1

Concolic 1 3 5 7 9 1 3 5 7 9

printtok1 174 133.3 144.2 150.7 151.7 152.4 152.8 10.9 17.4 18.4 19.1 19.5
printtok2 186 158.8 165.7 171.3 172.2 172.9 173.7 6.9 12.5 13.4 14.1 14.9
replace 206 165.9 176.8 187.6 189.5 190.6 190.8 10.9 21.7 23.6 24.7 24.9
tcas 76 57.9 65.6 67.2 70.2 70.9 70.9 7.7 9.3 12.3 13.0 13.0

Unit: number of branches.

We now discuss and analyse these data with respect to our three research questions, in turn.

4.6.1. RQ1: order of target code elements. Our first research question pertains to the effects of
using different orders of target code elements; in this case, DFO versus random. Table XI presents
a view of our data that helps us address this question. The table presents results per program, with

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Table VII. Cost using depth-first order and existing test cases.

Cost (s)

Genetic 5 10 15 20 25

printtok1 38.7 78.9 117.2 158.4 194.6
printtok2 26.2 54.9 83.9 113.1 151.7
replace 65.7 128.4 185.2 247.5 322.7
tcas 3.1 5.6 8.3 11.1 13.7

Concolic 1 3 5 7 9

printtok1 1.6 4.4 7.1 9.9 12.6
printtok2 0.3 0.5 0.8 1.1 1.4
replace 0.9 2.9 5.0 6.9 9.0
tcas 0.1 0.2 0.3 0.4 0.4

Table VIII. Cost using depth-first order and existing plus new
test cases.

Cost (s)

Genetic 5 10 15 20 25

printtok1 81.2 151.3 239.5 314.8 385.7
printtok2 54.5 106.3 147.4 229.0 272.6
replace 92.3 183.3 283.4 365.8 449.6
tcas 5.1 9.6 14.3 18.7 24.3

Concolic 1 3 5 7 9

printtok1 1.9 5.7 9.4 13.1 16.6
printtok2 0.3 0.6 0.9 1.3 1.6
replace 1.1 3.9 6.7 9.3 11.9
tcas 0.1 0.2 0.3 0.4 0.5

Table IX. Cost using random order and existing test cases.

Cost (s)

Genetic 5 10 15 20 25

printtok1 81.2 151.3 239.5 314.8 385.7
printtok2 54.5 106.3 147.4 229.0 272.6
replace 92.3 183.3 283.4 365.8 449.6
tcas 5.1 9.6 14.3 18.7 24.3

Concolic 1 3 5 7 9

printtok1 1.9 5.7 9.4 13.1 16.6
printtok2 0.3 0.6 0.9 1.3 1.6
replace 1.1 3.9 6.7 9.3 11.9
tcas 0.1 0.2 0.3 0.4 0.5

coverage results in the upper half and cost results in the bottom half. Column headers use mnemon-
ics to indicate techniques: GDE corresponds to (genetic, DFO, existing), GDN to (genetic, DFO,
new + existing), GRE to (genetic, random, existing), GRN to (genetic, random, new + existing),
CDE to (concolic, DFO, existing), CDN to (concolic, DFO, new + existing), CRE to (concolic, ran-
dom, existing) and CRN to (concolic, random, new + existing). Individual columns correspond to
techniques compared; thus, column 2, with header ‘GDE versus GRE’, compares (genetic, DFO,
existing) with (genetic, random, existing).

Each entry in the table summarizes the differences observed between the two techniques for each
of the five iteration limits. ‘D’ indicates that the technique using DFO exhibited the better (greater)

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

Table X. Cost using random order and existing plus new test cases.

Cost (s)

Genetic 5 10 15 20 25

printtok1 89.3 171.1 248.6 379.7 428.5
printtok2 64.9 114.8 165.7 201.2 294.7
replace 93.5 188.6 285.2 375.8 471.0
tcas 5.2 9.7 15.1 20.6 25.3

Concolic 1 3 5 7 9

printtok1 1.9 5.7 9.4 12.9 16.5
printtok2 0.3 0.6 0.9 1.3 1.6
replace 1.1 4.0 6.8 9.5 12.2
tcas 0.1 0.2 0.3 0.4 0.5

Table XI. Impact of order in which target code elements are considered on coverage and cost.

GDE versus GRE GDN versus GRN CDE versus CRE CDN versus CRN

Coverage

printtok1 R D D D D D D D R D = = = = = = = D D D
printtok2 D R R R = R = R R R = = = = = = R R R R
replace D R = D R R D R R R = = = = = R R D R R
tcas R R D D = D D R D R = = = = = D D = = R

Cost

printtok1 D D D D D D D D D D R R R D D R R R R R
printtok2 D D D D D D D D R D D R R R R R D D R R
replace D D D D R D D D D D R D D D D R D D D D
tcas R R R D D D D D D D = R R D R D D R D D

mean coverage value or better (lesser) cost value, ‘R’ indicates that the technique using random
order exhibited the better (greater) mean coverage or better (lesser) cost value and ‘=’ indicates
that techniques exhibited equal mean coverage or cost (through the second decimal place). For
example, for printtok1, comparing GDE and GRE for coverage, the table contains ‘R D D D D’,
indicating that at the lowest iteration limit, random order produced greater coverage, and at the other
four limits, DFO produced greater coverage. A similar entry for printtok1 for cost, containing
‘D D D D D’, indicates that at all five iteration limits, DFO exhibited the lowest cost.

For each pair of techniques compared, for each iteration limit L, we applied a Wilcoxon–Mann–
Whitney [87] test to the coverage (cost) data obtained across all test suites augmented using ˛ D 0:05
as the significance threshold, to validate the null hypothesis: there is no significant difference
between two orders (DFO and random) in terms of effectiveness (efficiency) when corresponding
techniques are compared at iteration limit L. (We did not use a t-test because our data are not nor-
mally distributed.) In the table, bold italicized fonts indicate statistically significant differences. For
example, for printtok2, comparing GDE and GRE for coverage, the only statistically significant
difference between techniques occurred at iteration limit 15. It is these statistical differences that we
focus on with respect to our research question.

We begin by considering the results for the genetic algorithm. Where coverage is concerned,
no clear advantage resided in either test case order, and results were relatively similar in the
instances in which existing, or new and existing, test cases were used. Across all iteration limits and
programs, there was only one case in which the two orders resulted in a statistically significant dif-
ference (printtok2 at iteration limit 15). Even when considering the non-statistically significant
differences between orders, there was no clear winner.

Where cost results for the genetic algorithm are concerned, we see different trends. First, in
the GDE-versus-GRE case, there were 16 instances in which order caused statistically significant

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

differences: these included all instances for printtok1 and printtok2 and most instances for
replace. In the GDN-versus-GRN case, there were also 17 instances, again including all instances
for replace and most instances for printtok1 and printtok2. In all of these instances, DFO
was less costly than random.

Turning to the concolic approach, where coverage is concerned, when new and existing test cases
are considered, there is only one statistically significant difference between techniques, for tcas in
the CDN-versus-CRN case at iteration limit 3. Again, even non-statistically significant differences
revealed no clear winner. Moreover, when only existing test cases were used, techniques exhibited
no differences in coverage at all. Therefore, there were no apparent patterns involving iteration limits
or programs to indicate that order influenced coverage.

Finally, considering cost results for the concolic approach, unlike the case for the genetic
approach, we found only a few statistically significant differences in costs, with five in the
CDE-versus-CRE case and four in the CDN-versus-CRN case. Seven of these instances were on
replace, where DFO was less costly than random, and these were at higher iteration limits, so
this may indicate some trend that will emerge as programs become more complex. However, for the
other three programs, there was no clear advantage adhering to either random or DFO orders.

4.6.2. RQ2: use of existing and new test cases. Our second research question pertains to the effects
of reusing existing and newly generated test cases. Table XII presents data relevant to this question.
The table format is similar to that of Table XI, but in keeping with the goal of comparing across
test case reuse approaches, the differences in terms compared all involve reuse approaches (existing
vs new + existing). ‘E’ indicates cases in which the use of only existing test cases was superior, and
‘N’ indicates cases in which the use of new plus existing test cases was superior. Bold italicized
fonts indicate statistically significant differences. For each pair of techniques compared, for each
iteration limit L, we again applied a Wilcoxon–Mann–Whitney [87] test to the coverage (and cost)
data obtained across all test suites augmented using ˛ D 0:05 as the significance threshold, to
validate the null hypothesis: there is no significant difference between the two methods of reusing
test cases in terms of effectiveness (efficiency) when corresponding techniques are compared at
iteration limit L.

We begin by considering the results for the genetic algorithm. Where coverage is concerned, in
all instances, the use of new and existing test cases was superior to reusing only existing test cases,
and in most instances, the difference was statistically significant. This includes 19 of 20 instances
when DFO was used and 16 of 20 instances in which random order was used.

Where cost results for the genetic algorithm are concerned, we observe even stronger effects:
in all instances, using existing test cases only was less expensive, and the effect of doing so was
statistically significant.

Turning to the concolic approach, where coverage is concerned, here, we see a strong evidence
that test case reuse mattered for coverage, with the use of new and existing test cases always more
effective, and in all instances statistically significantly so.

Table XII. Impact of test case reuse approaches on coverage and cost.

GDE versus GDN GRE versus GRN CDE versus CDN CRE versus CRN

Coverage

printtok1 N
printtok2 N
replace N
tcas N

Cost

printtok1 E
printtok2 E
replace E
tcas E

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

Finally, considering cost results for the concolic approach, we again note statistically significant
differences in all instances, again with lower costs adhering to the use of only existing test cases.

4.6.3. RQ3: test case generation algorithm. Our third research question pertains to the effects of
using different test case generation algorithms, and we begin by comparing them for effectiveness.
One issue to consider in doing this involves inherent differences in the test case generation algo-
rithms. In Section 4.3, we described the reasoning behind using several iteration limits for each
algorithm: we expect concolic and genetic algorithms to respond differently over different limits,
and using different limits lets us observe techniques independent of the threat to internal validity
that would attend the use of a single iteration limit.

Where comparisons of techniques are concerned, there is no inherent relationship between a given
iteration limit for the concolic approach and a given iteration limit for the genetic approach; that
is, concolic limits 1, 3, 5, 7 and 9 do not ‘correspond’ in any way to genetic limits 5, 10, 15, 20
and 25. It follows that we cannot validly compare algorithms to each other on a per-iteration-limit
basis. Instead, for each object program P , we located the iteration limit Lg at which the genetic
algorithm operated most effectively on P and the iteration limit Lc at which the concolic algorithm
operated most effectively onP , and we compared the algorithms at these respective optimal iteration
limits. To perform these comparisons, we again applied a Wilcoxon–Mann–Whitney [87] test to the
coverage data at the chosen iteration limits using ˛ D 0:05 as the significance threshold, to validate
the null hypothesis: there is no significant difference between the effectiveness of the two test case
generation techniques.

Table XIII presents data relevant to RQ3 with respect to algorithm effectiveness following the
analysis procedure just described. The table provides data for each program and for each of the
four combinations of target code element order and test reuse strategies studied. An individual table
entry indicates which technique achieved greater coverage (‘G’ indicating the genetic algorithm
and ‘C’ indicating the concolic algorithm), and bold italicized fonts indicate instances in which the
difference is statistically significant.

As the table shows, on every program but replace, the genetic algorithm outperformed the
concolic algorithm, in each category in which they were compared. On replace, the advantage
went to concolic. All differences were statistically significant.

Turning to efficiency, this comparison is complicated by the inherent differences in our two
implementations. In fact, it is quite difficult to fairly compare genetic and concolic techniques
for efficiency because their implementations are derived from different sources and cannot be
said to represent ‘optimal’ implementations of the two algorithms. Thus, we restrict ourselves to
observing efficiency differences in a qualitative fashion. As data presented in Tables VII–X show,
costs for the genetic algorithm ranged from times in the tenths of seconds to times above 400 s,
while costs for the concolic algorithm ranged from times in the tenths of seconds to times near
20 s. With our current implementations, this represents a very large difference in favour of the
concolic approach.

A further issue involves the effects that increasing iteration limits have on the respective algo-
rithms. Here, as remarked earlier, increases in limits seemed to lead to roughly similar increases,
proportionally, in costs. This provides some post hoc justification for our choice of particular
iteration limits, in that they seem comparable in terms of their effects on relative effort.

Table XIII. Comparison of coverage achieved by test case generation techniques: genetic versus concolic.

Program GDE versus CDE GDN versus CDN GRE versus CRE GRN versus CRN

printtok1 G G G G
printtok2 G G G G
replace C C C C
tcas G G G G

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

4.7. Discussion and implications

We now discuss the results presented in the prior section and provide further analysis.

4.7.1. Target code element order. One might argue that in principle, the order of target code ele-
ments is not likely to significantly affect algorithm effectiveness in terms of coverage achieved,
because the same elements will ultimately be considered under any order. This is what we observed
in the results of our study.

Where efficiency is concerned, in contrast, we did observe differences: our results show that DFO
provided savings in costs when using the genetic algorithm. This can be explained by observing
that with the genetic algorithm, if we target higher-level branches first, we can incidentally cover
additional branches. Also, test cases that cover branches higher in dependency chains could have
inputs that are close to those used to reach lower branches, thereby seeding the population with
inputs that help the algorithm cover those more quickly.

With the concolic algorithm, in contrast, cost saving results were mixed. We suspect this is
because test cases generated to cover a given branch bt (lines 11–19 of Algorithm 3) may fail to
cover other uncovered branches unless these uncovered branches share a common ancestor branch
at a short distance from bt (less than niter) in an execution tree. In such cases, the order of target
code elements is not likely to affect cost.

All things considered, based on our results, we conjecture that DFO has the potential to be more
efficient than random order when using genetic algorithms, because we observed this in almost all
cases considered. There appears to be no clear benefit to using either order, however, where the
concolic approach is concerned. Still, these results do not preclude finding some other orders that
are more predictably cost-effective for that approach.

4.7.2. Test case reuse approach. Our results show that the use of new test cases in addition to
existing test cases always significantly increased the cost of test case generation by both techniques.
This result can be explained by the correlation between technique effort and the number of test cases
used to seed the technique. Having additional test cases affects the population size for the genetic
algorithm, while the concolic technique must consider each test case supplied to it.

The use of new test cases also significantly increased test case generation technique effectiveness
in all scenarios in which the concolic approach was used, and in most scenarios in which the genetic
approach was used. The difference across techniques can be explained as follows. With the genetic
algorithm, having additional test cases to work with can increase population diversity and improve
the chances that crossover will generate chromosomes that cover previously uncovered branches;
however, changes due to the increase might not be substantial when just a few test cases are added
to those that have been used previously. The concolic approach, in contrast, utilizes each new test
case independently and can potentially gain from each as such.

If these results generalize, we have identified an important cost-benefit trade-off. With both test
case generation techniques, we found a potential pay-off for incurring the additional costs involved
in reusing test cases, and this effect was greater for the concolic technique than for the genetic
technique. In practice, whether any effectiveness gain is worth the additional cost must be assessed
relative to the actual costs of generating test cases versus the actual benefits of obtaining better
coverage on the particular systems being verified. Such assessments, however, are viable in the
context of software evolution, where systems are expected to be retested many times, and long-term
cost-benefit gains make assessments more worthwhile.

4.7.3. Test case generation techniques. As mentioned in our discussion of threats to validity, we
are studying particular variants and implementations of test case generation algorithms. Keeping
that discussion in mind, in our experiment, the concolic and genetic test case generation techniques
that we studied did perform statistically significantly differently. The genetic algorithm exhibited
greater effectiveness than the concolic algorithm on printtok1, printtok2 and tcas under all
combinations of other factors. It appears that the genetic algorithm was more costly (potentially by
two orders of magnitude) than the concolic algorithm in doing this, although again, this comparison

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

must be made cautiously. These observations do prompt us, however, to further explore the reasons
for differences. We postpone discussion of that exploration to Section 6, however, when we can
present it together with further input from the results of our second study.

4.7.4. Iteration limits. Our focus in this work is on test case generation algorithms, test case reuse
approaches and target code element orders. Thus, rather than considering iteration limit to be an
independent variable, we blocked on iteration limit level when performing our analyses. We did
examine our data, however, to assess whether iteration limit effects existed.

First, there does appear to be an increasing trend in coverage values as iteration limits increase.
Beginning with the genetic algorithm, and considering the 16 cases in which limits increased (i.e.
four increases per program, progressing from 5 to 10, 10 to 15, 15 to 20 and 20 to 25), coverage
values for GDE increased as limits increased in all 16 cases, coverage values for GRE increased
as limits increased in 14 of 16 cases, coverage values for GDN increased as limits increased in all
16 cases and coverage values for GRN increased as limits increased in all 16 cases. The coverage
increases, however, were small overall—never more than two branches—and only 24 of 64 increases
were statistically significant, which indicates that our genetic algorithm was converging.

Iteration trends occurred for the concolic algorithm as well; values generally increased by small
amounts in all 64 cases. In this case, all of these increases were statistically significant, suggesting
that iteration played a more measurable role for the concolic approach than for the genetic approach
and that further increases may provide opportunities to increase effectiveness.

Where algorithm efficiency is concerned, iteration limits had larger effects. For the genetic algo-
rithm, costs differed across iteration limits by relatively substantial amounts (i.e. by factors ranging
from 4 to 6 from iteration limits 5 to 25). Where the concolic algorithm is concerned, we also saw
increases in costs as iteration limits increased. The increases were smaller numerically than those
observed with the genetic algorithm, but they were similar in terms of the factors involved (i.e. the
increases ranged from 5 to 10 as iteration limits ranged from 1 to 9).

4.7.5. Initial test suite characteristics. Test suites can differ in terms of size, composition and
coverage achieved. Such differences in test suite characteristics could potentially affect augmenta-
tion processes. For example, the extent to which an existing test suite achieves coverage prior to
modifications can affect the number and locations of coverage elements that must be targeted by
augmentation. Furthermore, test suite characteristics can impact the size and diversity of the starting
populations utilized by test case generation techniques.

For these reasons, we chose to additionally examine our results in terms of four different fixed
levels of coverage achieved by test suites. To do this, for each object program, we considered the
total branch coverage achieved by the 100 test suites for that program, ranked the test suites in
terms of coverage, and partitioned them into four equal size quartiles, denoted Q1, Q2, Q3 and
Q4, respectively, where Q1 contains the 25 test suites achieving the lowest levels of coverage, Q2
contains the 25 suites achieving the next highest levels and so forth. We then conducted the same
statistical tests on the resulting data that were conducted in examining our first and second research
questions, on a per-quartile basis.

In three of the resulting comparisons, namely (1) the impact of test order on coverage, (2) the
impact of test order on cost, and (3) the impact of test reuse on cost, we observed no differences
in results across quartiles. That is, test suite characteristics did not impact the associated effects. In
one of the resulting comparisons, however, namely (4) the impact of test reuse on coverage, we did
observe effects.

Table XIV presents results relevant to this assessment. The table is similar to Table XII, but in this
case, we provide separate results per program for each of the four quartiles in the rows labeled ‘Q1’,
‘Q2’, ‘Q3’ and ‘Q4’. Where Table XII revealed statistically significant coverage differences between
approaches using existing test cases and approaches using existing plus new test cases in all but five
cases, the per-quartile assessment exhibits many more cases in which differences are not statistically
significant. This may be caused, in part, by the fact that these comparisons employ data sets that,
being smaller, do not provide enough data to provide sufficient power to statistical tests. There does
appear to be a tendency, however, for lower quartiles to exhibit significance more frequently than

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Table XIV. Impact of test reuse in quartiles.

Coverage

GDE versus GRN GRE versus GRN CDE versus CDN CRE versus CRN

printtok1 Q1 N
Q2 N
Q3 N
Q4 N N N N E N N N N E = N N N N = N N N N

printtok2 Q1 N
Q2 N
Q3 N N N N N N N N N N N = N = N N = = = =
Q4 N N E E E N E E E E N N = N N N N N N N

replace Q1 N
Q2 N
Q3 N
Q4 N N N N N N N N N N N N N N N = N N N N

tcas Q1 N
Q2 N
Q3 N N N N N N N N N N = N N = = = = = N N
Q4 N = N = = N N N N N = = = = = = = = = =

Table XV. Results of concolic testing from scratch.

printtok1 printtok2 replace tcas

Iteration level Cost Coverage Cost Coverage Cost Coverage Cost Coverage

1 1.4 111 0.5 87 1.5 56 0.2 71
3 3.4 111 0.9 92 2.5 78 — —
5 5.3 111 1.3 101 3.8 78 — —
7 7.8 111 1.9 110 6.2 78 — —
9 9.6 111 2.3 115 8.8 78 — —

higher quartiles. In other words, the coverage benefits of using new test cases in addition to existing
ones may dissipate as the degree of coverage achieved by initial test suites increases. Further, on
the most complex of the programs, replace, the efficacy of using new test cases dissipates more
slowly for the concolic algorithm than for the genetic algorithm. This may indicate the potential
for the algorithms to be differently influenced by initial test suite characteristics on programs of
different characteristics, a suggestion that we return to in Section 6 following presentation of the
results of our second study.

4.7.6. The benefits of augmentation. In Section 1, we conjectured that augmentation techniques
working with existing test suites can perform better than augmentation techniques working without
existing suites. To further consider this claim, we applied the concolic testing tool CREST from
scratch on our programs, working without the benefit of test cases (the approach under which these
algorithms have been traditionally been studied to date).‡‡

Table XV displays the results, listing the cost in seconds and the final coverage reached in
branches on each program, per iteration level (leftmost column). Entries of the form ‘—’ under
tcas indicate cases where larger iteration limits are not needed. Comparing results with those for
augmentation techniques reveals substantially poorer coverage on all programs but tcas, at costs
that are relatively similar. The benefit of allowing the concolic approach to reuse test cases in the
augmentation task is quite clear.

‡‡An equivalent investigation of the genetic algorithm is not possible, because that algorithm necessarily begins with
existing test suites.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

5. EMPIRICAL STUDY 2

The results of Study 1 suggest that target code element order and test case reuse approach can
indeed have different impacts in the context of different augmentation techniques and that the two
underlying test case generation techniques that we consider can indeed have different strengths on
different programs. However, as we discussed in Section 4.5, the programs we used in that study are
relatively small and simple. We wish to see whether the results of our first study generalize to larger,
more complex programs. Thus, we replicated Study 1 on a considerably more complex open-source
program, grep, for which a sequence of six versions was available.

For this study, we again consider the same research questions considered in Study 1, and for com-
pleteness, we repeat these here, designated as RQ10, RQ20 and RQ30 in recognition of the different
experimental contexts being utilized.

RQ10: How does the order of consideration of target code elements affect augmentation
techniques?
RQ20: How does the manner of use of existing and newly generated test cases affect augmenta-
tion techniques?
RQ30: How does the use of genetic and concolic test case generation techniques affect
augmentation techniques?

As noted, this study utilizes the grep program provided in the Software-artifact Infrastructure
Repository [75]. The grep program is a command-line text-search utility originally written for
Unix. It searches files or standard input globally for lines matching a given regular expression and
prints the lines to the program’s standard output. It contains about 10 000 lines of C code. As men-
tioned earlier, grep is available with six sequential versions. However, the program does not have
an enormous test universe of test cases offering complete coverage of the code; rather, it comes with
a single test suite containing 792 test cases. We augment this test suite for each of the five versions
after the base version. Table XVI provides details on the numbers of the branches for each of these
subsequent versions, as well as the coverage achieved on each of those versions by the test suite
prior to augmentation. (Note that in this study, as in our first study, we utilize the ‘extended’ versions
of grep that are required by the concolic algorithm implementation.)

This study utilizes the same variables and measures as Study 1. It also possesses the same threats
to validity as Study 1 with the exception of those specifically addressed in this study (size and
representativeness of the object programs). We thus do not repeat discussion of these here. Instead,
we describe only the differences between this study and Study 1. We then present data and analysis
and discussion of results.

5.1. Experiment set-up

The grep program is quite different from the programs used in Study 1, in terms of its size and its
initial test suite, and this required us to make some adjustments to the experiment process. First, one
test case for grep has three parts: option, pattern and file. The option part includes command-line
arguments that change many of the program’s behaviours. For example, the option flag ‘-i’ enables
case-insensitive search. The pattern part is the regular expression that the user wishes to find in files.
Therefore, both option and pattern parts are strings. The file part specifies where the user wishes to
search for the pattern and is usually a path. We did not limit option and pattern lengths as we did for

Table XVI. Initial coverage information for grep.

Version Total number of branches Initial coverage

V1 3934 2151
V2 4146 2245
V3 4234 2271
V4 4262 2284
V5 4264 2284

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

the programs in our first study, as both lengths in the existing test cases are less than 30, which does
not cause any problem for our test case generation techniques. For the file parameter, the existing
test cases make use of five different files of which the largest contains 10 965 lines.

A second set of changes involves the settings used for the genetic algorithm, the first of which
relate to the test suite reuse approach. With the genetic algorithm, if all test cases are used to form
the initial population for a target, the test case generation process may take an inordinately long
(and practically unreasonable) amount of time. In such cases, it is common to use a subset of the
population [88]. To determine a reasonable subset size to use, we ran trials on the base version
(V0) using initial sizes 25, 50, 100, 150 and 792. These trials covered 540, 613, 577, 634 and
623 branches separately in 5.6, 4.4, 4.7, 6.1 and 6.7 days, respectively. We determined that size 50
presented the best ratio of coverage to efficiency when applied to version V0. For a target, if there
are more than 50 test cases reaching the method that contains it, we select the 50 fittest test cases as
the initial population when we just use existing test cases. When we consider existing plus new test
cases in the genetic technique, in addition to the 50 we chose, we add the newly generated test cases
that reach the method containing the target into the initial population for the target. In this case, the
existing plus new approach has more test cases to use for each target. In our experiment runs, we
use that population size on subsequent versions. Note that this approach is practically reasonable in
the context of evolving software, because engineers can tune a testing approach on an initial version
and then use that tuned approach on subsequent versions.

We also altered the genetic algorithm process somewhat for use on grep. Every character in the
option and pattern arguments to the program is treated as a gene in the chromosome. The whole file
is also a gene—this is different from the approach used for the smaller programs but is necessary
because the files used for grep are very large, and if we consider mutating the file content, it would
be difficult for the concolic technique to do so. To be fair, however, in both techniques, we treat the
file name itself as a manipulable input. For the genetic approach, this means that the file name is
treated as a gene, and we can switch the file in the chromosome with other files in the file pool. We
used the same strategies for fitness function, selection and crossover as on the smaller programs. We
use a mutation rate of 0.05.

Finally, because the test case generation process takes much longer on grep than on the programs
used in Study 1, rather than use five different iteration levels, we used just one. To make an informed
decision as to an iteration level, we applied the following process to version V0. (Again, this is a
process that engineers could apply on an initial version in practice in order to tune an approach
for use on subsequent versions). We reasoned that an iteration level should be chosen based on the
trade-off it presents with respect to costs and benefits. We used the following formula to examine
these trade-offs:

.C.IkC3/ � C.Ik//=C.Ik/

.T .IkC3/ � T .Ik//
(1)

Here, C.Ik/ is the number of covered branches in the target program at the kth iteration level, and
T .Ik/ is the execution time required to augment the test suite at the kth iteration level, measured
in hours for the concolic algorithm and days for the genetic algorithm. The formula calculates the
cost-benefit increase across the subsequent three versions to avoid local minima or maxima that may
exist in calculating it across a single iteration level.

To choose an iteration level for the genetic and concolic algorithms, we applied each algorithm to
version V0 of grep at increasingly higher iteration levels, applying the equation to each level as the
data required for that level (from applications at subsequent levels) became available. We continued
this process until the difference in ratios between two successive iterations fell below 0.01. In other
words, after this point, it takes more than 1 h for the concolic approach and 24 h for the genetic
approach to increase coverage by 1% when we run the experiment at the third higher level. This
process ultimately led us to choose iteration level 11 for the concolic approach and iteration level
15 for the genetic approach.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

Table XVII. Coverage and cost data for grep, per version and technique.

Version

V1 V2 V3 V4 V5 Average

Technique D R D R D R D R D R D R

Coverage

GA E 584 575 557 592 607 590 594 636 656 593 599.6 597.2
N 587 570 584 615 594 583 631 640 635 621 606.2 605.8

CT E 390 390 405 405 423 423 448 448 448 448 422.8 422.8
N 604 622 621 621 644 626 668 676 668 676 641.0 644.2

Cost (h)

GA E 93.6 93.6 88.8 98.4 110.4 84.0 79.2 96.0 91.2 88.8 92.6 92.2
N 160.80 163.2 146.4 184.8 208.8 182.4 132.0 163.2 180.0 213.6 165.6 181.4

CT E 7.6 8.2 11.6 12.3 13.9 13.7 12.5 12.3 12.4 12.7 11.6 11.8
N 28.3 28.2 40.4 41.1 46.3 43.2 34.9 39.7 35.7 39.9 37.1 38.4

Having selected the foregoing parameters, we proceeded with the experiment runs, in which we
applied each augmentation technique to each of the five subsequent versions of grep. Because the
algorithms do include non-deterministic behaviour, we applied each algorithm three times for each
version. We thus obtained 60 data points on the program for each algorithm, in total (i.e. 2 test reuse
approaches � 2 target orders � 5 versions � 3 runs).

5.2. Results and analysis

Table XVII presents the data gathered for grep. The upper half of the table provides coverage data,
and the lower half provides cost data. In each half of the table, the first two rows present the data
for the genetic algorithm, and the last two rows present the data for the concolic algorithm. Cov-
erage data are presented in terms of the numbers of previously uncovered branches (total number
of branches � initial coverage in Table XVI) that the approach covered. Cost data are presented
in hours. For each version and algorithm, four numbers are shown, corresponding to measure-
ments gathered for the four combinations of target code element orders (‘D’ and ‘R’) and test case
reuse approaches (‘E’ and ‘N’). Each cell in the table shows the mean value across the three runs
performed for the given combination.

Where coverage data are concerned, for the genetic algorithm, on average across all versions,
using DFO and existing test cases covered 599.6 new branches while using existing plus new test
cases added 606.2, just a 1.1% increase. Using random order, existing test cases covered 597.2
branches while existing plus new added 605.8, a 1.4% increase. Results varied across versions,
however, with the use of existing plus new cases outperforming the use of just existing test cases on
only three of five versions for each order (V1, V2 and V4 for DFO and V2, V4 and V5 for random).
For DFO, the largest increase was 6.2% on V4, and the smallest was �3.2% on V5, while for
random orders, the largest increase was 4.7% on V5 and the smallest was�1.2% on V3. Differences
associated with target orders were also small on average (less than one branch), with no target order
being predominantly better.

For the concolic algorithm, differences associated with test case reuse methods were greater. On
average, across all versions, using DFO and existing test cases covered 422.8 new branches, while
using DFO and existing plus new test cases covered 641.0, a 51.6% increase. Using random orders
and existing test cases covered 422.8 new branches, while using random orders and existing plus
new test cases covered 644.2 branches, a 52.4% increase. Improvements in results were consistent
across versions and fell within relatively similar ranges, with the largest increase being 54.9% on
V1 and the smallest being 49.1% on V4 and V5 for DFO and the largest increase being 59.5% on
V1 and the smallest being 48% on V3 for random orders. Differences associated with target orders,
however, continued to be small or none on average.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Where cost data are concerned, for the genetic algorithm, on average, across all versions, using
DFO and existing test cases cost 92.6 h while using existing plus new test cases cost 165.6 h, a
78.8% increase. Using random order and existing test cases cost 92.2 h, while using random order
and existing plus new test cases cost 181.4 h, a 96.9% increase. Results were consistent in direction
across versions, varying in magnitude from 97.4% on V5 to 64.9% on V2 for DFO and from 117.1%
on V3 to 70.0% on V4 for random orders. Differences between target orders, in contrast, were less
consistent across versions. When using just existing test cases, there was no average difference (and
no clear winner) between DFO and random orders. When using existing plus new test cases, there
was a 15.84 h average difference favouring DFO, with DFO outperforming random on all but V3.

For concolic testing, on average, across all versions, using DFO and existing test cases cost 11.6 h,
while using DFO and existing plus new test cases cost 37.1 h, a 220.0% increase. Using random
order and existing test cases cost 11.8 h while using random order and existing plus new test cases
cost 38.4 h, a 224.5% increase. Results were again consistent in direction across versions, varying
in magnitude from 272.4% on V1 to 179.2% on V4 for DFO and from 243.9% on V1 to 214.2%
on V5 for random. Differences between test case orders, however, were inconsistent across versions
and relatively small on average (e.g. 1.3 h when using existing plus new test cases and 0.2 h when
using just existing test cases).

Finally, where comparisons of the test case generation algorithms are concerned, when using
just existing test cases, the genetic algorithm attained substantially higher coverage (from 37.5%
to 49.7%) across the five versions than the concolic algorithm. When using existing plus new test
cases, however, the concolic algorithm outperformed the genetic algorithm, from amounts ranging
from 1.0% to 9.1% across versions. Also, in all cases, the concolic algorithm was substantially faster
than the genetic algorithm.

5.3. Discussion and implications

We begin by summarizing the results for grep, as follows:

� DFO and random orders had little effect on coverage differences, for both the genetic and
concolic approaches and under both test case reuse approaches.
� DFO and random orders had inconsistent and varying effects on the costs of genetic and con-

colic approaches in general. The one combination of treatments in which order had an impact
occurred when using both existing and new test cases with the genetic algorithm.
� The concolic algorithm benefitted substantially in terms of coverage when using existing plus

new test cases rather than just existing test cases, and this benefit occurred for both test case
orders. The genetic algorithm benefitted only mildly and less consistently.
� In all cases, using existing plus new test cases added substantial costs to the test case generation

process.
� The concolic approach outperformed the genetic approach in terms of coverage when using

existing plus new test cases, while the genetic approach was better when using just existing
test cases.

The foregoing results are similar in their overall trends to those seen in Study 1, with the exception
of the last. We believe that the differences observed for the concolic approach are primarily due to
the fact that initial test suites achieved much lower levels of coverage on grep than did the initial
test suites used in Study 1; thus, new test cases that are generated had greater potential to lead to
additional coverage simply because more targets were available. The fact that the genetic algorithm
did not achieve a similar level of improvement, on the other hand, is likely due to the fact that
the newly generated test cases did not provide better power than the existing test cases, which is
consistent with what we observed on the smaller programs.

The data also prompt additional observations. On this much larger program, the costs associated
with the test generation task were much greater than on the smaller programs. There was still a cost-
benefit trade-off involved, for both techniques, in choosing to use existing or existing plus new test
cases, but the benefit-to-cost ratio for the genetic algorithm was much smaller here than with the
first four programs, and the benefit-to-cost ratio for the concolic algorithm was much larger. Thus,

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

the cases in which using existing plus new test cases would be worthwhile are likely to occur much
less often for the genetic algorithm than for the concolic algorithm.

6. ADDITIONAL ANALYSIS AND IMPLICATIONS

Our two studies revealed overall performance differences between augmentation techniques
utilizing different test case generation algorithms and suggested several reasons for those differ-
ences. To obtain further insights, we analysed the differences in coverage results between the
techniques in greater detail, and we present the results of that analysis here. The results also prompt
us to explore the possibility of a hybrid augmentation technique that combines genetic and concolic
test case generation approaches; we discuss several factors that may be important to consider in
creating such a technique.

6.1. Overall comparison

We begin by considering results of Study 1. Table XVIII shows the differences in branch coverage
achieved by concolic and genetic test case generation techniques in that study. The table shows,
for each of the four programs, for each of the four techniques applied and for the iteration level at
which the most effective results were seen, the average numbers of branches across 100 test suites
such that (1) (GA–CT) test cases generated by the genetic algorithm covered that branch while
no test cases generated by the concolic algorithm covered it; (2) (CT–GA) test cases generated by
the concolic algorithm covered that branch while no test cases generated by the genetic algorithm
covered it; (3) (GA\ CT) each algorithm succeeded in generating at least one test suite that covered
the branch; (4) (GA [CT) one or both algorithms succeeded in generating at least one test suite that
covered the branch. As the table shows, for all techniques and programs, each of the two algorithms
(concolic and genetic) was able to cover at least some branches that could not be covered by the other
algorithm. On tcas, the smallest of the four programs, the numbers are small (between 0.01 and
1.39 branches). On the other three programs, larger ranges of branch coverage differences occurred,
with the genetic algorithm accounting for more differences on printtok1 and printtok2 and
the concolic algorithm accounting for more on replace.

We provide further details on two of the programs in Figure 2. The figure focuses on the two
object programs on which the techniques exhibited the greatest range of differences, replace and
printtok1, and on the case in which DFO and new plus existing test cases are utilized. For each
of these two cases, the figure displays a graph. The x-axes in these graphs correspond to branches
(branch identifier numbers) in the program. The y-axes indicate the numbers of test suites (from
among the 100 suites used) in which each branch was covered, with the bar extending upward from
the line labeled ‘0’ showing results for the concolic algorithm and the bar extending downward from
that line showing coverage for the genetic algorithm.

In the case of replace, we see that a relatively small number of branches (13 to be precise)
were not covered by any of the 100 test suites, for either technique. A much larger number (101 to

Table XVIII. Branch coverage differences—smaller programs.

Program GA–CT CT–GA GA \ CT GA[CT GA–CT CT–GA GA \ CT GA[CT

DFO/EXISTING DFO/NEW
printtok1 5.25 0.27 152.23 157.75 5.65 0.11 152.76 158.52
printtok2 4.39 1.17 171.90 177.54 4.02 1.13 172.50 177.71
replace 4.23 5.70 183.90 193.84 3.35 5.29 185.46 194.09
tcas 1.37 0.10 69.44 70.91 0.13 0.01 70.86 71.00

RAND/EXISTING RAND/NEW
printtok1 5.32 0.15 152.35 157.82 5.21 0.13 152.64 157.98
printtok2 4.35 1.14 172.02 177.51 4.02 1.08 172.63 177.7
replace 4.28 5.67 183.93 193.88 3.28 5.22 185.58 194.08
tcas 1.39 0.04 69.50 70.93 0.13 0.02 70.80 71.00

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

Figure 2. Comparison of branch coverage behaviours for concolic and genetic algorithms on two represen-
tative cases.

Table XIX. Branch coverage differences—grep.

Version GA–CT CT–GA GA \ CT GA[CT GA–CT CT–GA GA \ CT GA [CT

DFO/EXISTING DFO/NEW
V1 541 236 154 931 375 302 302 979
V2 553 293 112 958 403 334 287 1024
V3 531 270 153 954 383 349 295 1027
V4 546 293 155 994 394 341 327 1062
V5 565 285 163 1013 382 334 334 1050

RAND/EXISTING RAND/NEW
V1 521 243 147 911 342 323 299 964
V2 559 278 127 964 411 355 266 1032
V3 559 272 151 982 398 356 270 1024
V4 548 276 172 996 374 319 357 1050
V5 518 292 156 966 369 343 333 1045

be precise) were covered by all 100 test suites, for both techniques. The remaining branches were
missed for at least some test suites by one or both algorithms. For the concolic algorithm, only a
few such branches (seven to be precise) were missed by between 1 and 99 test suites, while for the
genetic algorithm, far more (86 to be precise) were missed by between 1 and 99 test suites. In other
words, the concolic algorithm achieved much higher rates of success in covering branches than the
genetic algorithm on a large number of branches.

The printtok1 object yields a different picture. Here again, several branches were left uncov-
ered by both techniques, but the genetic technique was 100% successful on a few more branches (22
to be precise) than the concolic approach, and the genetic approach had somewhat higher success at
covering branches that are not always covered. The differences between the two algorithms on this
object program, however, were not as large as those seen on replace.

We next turn our attention to Study 2 and grep. In this case, because the executions per version
involve independent runs of techniques, we cannot compare differences per run; instead, we choose
a different approach. Table XIX shows, for each of the five versions of grep and for each of the

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

Table XX. Numbers of times in which branches in grep were
covered by one, two or three test suites, for depth-first order with

existing and new test cases.

GA only CT only

Version 1 2 3 1 2 3

V1 25 11 339 0 0 302
V2 13 16 374 0 0 334
V3 16 11 356 0 0 349
V4 13 21 360 0 0 341
V5 6 10 366 0 0 334

four techniques applied, the numbers of branches such that (1) (GA–CT) at least one of the three
test suites generated by the genetic algorithm covered that branch while no test suites generated by
the concolic algorithm covered it; (2) (CT–GA) at least one of the three test suites generated by
the concolic algorithm covered that branch while no test suites generated by the genetic algorithm
covered it; (3) (GA\ CT) each algorithm succeeded in generating at least one test suite that covered
the branch; and (4) (GA [CT) one or both algorithms succeeded in generating at least one test suite
that covered the branch.

As the table shows, on the larger grep object, the genetic and concolic algorithms exhibited
large disparities in their abilities to cover specific branches. For example, for the scenario in which
DFO and existing test cases only were used, both algorithms jointly were able to cover between
112 and 163 branches across the five versions, but the numbers of branches covered only by the
concolic algorithm exceeded these numbers by factors of between 0.5 and 0.8, and the number of
branches covered only by the genetic algorithm exceeded these numbers by a factor of between 2.5
and 3.9. Similar trends (although with different increase factors) can be seen in the other scenarios.
Clearly, in this more complex program, the differences in coverage abilities of the two algorithms
were larger than those seen on the smaller, less complex programs.

Table XX considers these differences further for the case in which DFO and existing plus new test
cases are used. For each version of grep, the table displays data about just those branches that are
covered only by the genetic test case generation or only by the concolic test case generation. The data
denote the numbers of times these branches were covered by only one of the test suites generated,
only two of the test suites generated or all three of the test suites generated. The table shows a trend
observed generally (across all four augmentation techniques) on the program: the concolic approach
either succeeded or failed in all cases (on all test suites created), whereas the genetic algorithm often
encountered branches that are covered only probabilistically, that is, on some test suites generated
but not on others.

6.2. Analysis of specific branches

To further understand the differences in technique performance, we selected several branches
from replace, printtok1 and grep on which such differences occurred and analysed them to
determine causes of the differences. On replace, we selected the seven branches that exhibited
the most extreme differences in results in cases where the concolic algorithm greatly outperformed
the genetic algorithm. On printtok1, we selected the seven branches that exhibited the most
extreme differences in results in cases where the genetic algorithm greatly outperformed the con-
colic algorithm. On grep, where we have only three test suites, we could not locate branches
that were outliers, so instead, we randomly sampled four branches that were easy for the concolic
approach to cover but not for the genetic approach to cover and four branches in which this situation
was reversed.

Considering replace first, we were able to classify the seven branches on which the concolic
algorithm outperformed the genetic algorithm into three groups based on three overall observed
causes of problems in coverage.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

The first group (G1) of branches relates to limitations in the mutation pool settings chosen for
the genetic algorithm. One of the seven branches falls into this group. In replace, there is a
predicate that checks the number of input arguments provided to the program, and the program
needs to be given fewer than two arguments to cover the ‘true’ branch out of this predicate. In
the initial population of test cases provided to the algorithm, however, all test cases have two or
three arguments, and we did not include the choice of mutating the number of inputs as part of our
mutation pool. Thus, the genetic algorithm can never cover the branch. To cover this branch with
the genetic approach, we would need to have sufficient knowledge of the program internals to cause
us to change this behaviour, perhaps via a pre-processing static analysis. In our study, we treated
the programs as black boxes for the genetic algorithm, and tuning was performed based on program
specifications, inputs and environment conditions. In contrast, the concolic approach treats program
as white boxes, and applying it requires testers to consider program internals. Thus, for the concolic
approach, we specified the number of arguments as a symbolic value, and this allowed us to cover
the branch in question on every run.

The second group (G2) of branches also involves mutation pool settings, but of a different type,
and three of the seven branches belong to it. There are several branches in replace such that, for
those branches to be taken, characters in specific strings must equal the NULL character. Because
we did not include this character in our mutation pool, the only way in which it would occur in
a test case would be if it occurred in the initial test case population, and this is infrequent. Thus,
it is difficult for the genetic algorithm to cover such branches. Including all possible characters in
the mutation pool could remedy this but would increase the search space and cost of the approach
substantially. Further analysis of the program could also remedy this, at the cost of such analysis. In
contrast, the concolic approach did not exclude the character.

The third group (G3) of branches involves the presence of deeply nested if branches, and three
branches belong to it. Predicates in deeply nested branches pose a well-known problem for genetic
algorithms, although the algorithms can be helped through specific program transformations [89].
For example, in replace, there is one branch in a function named in_set_2. This is in the
first if statement in that function, but this function is called at the 10th level of its callee function
makepat. Above makepat, there are two other functions. To cover this branch, a test case must
satisfy several conditions. The genetic algorithm had no ‘knowledge’ of these conditions and simply
attempted to proceed in a general search direction; thus, it was difficult for the algorithm to satisfy
all the conditions at once. Here too, the concolic approach, by design, had no problem.

Considering printtok1, we were able to classify the seven branches considered into two
groups. The first group (G4) contains one branch, and the failure of the concolic algorithm to
cover it was related to limitations of CREST involving pointer arithmetic and nonlinear arith-
metic. More specifically, printtok1 contains a predicate check_delimiter() that contains
the isalpha() and isdigit() C standard macro functions. Both of these functions use the
bitwise & operator and pointer arithmetic. To cover this branch using concolic testing, we would
need to use an implementation that supports bitwise operators by employing bit-vector logic
and handle pointer arithmetic by providing a memory model. In contrast, the genetic approach
was not affected by complex expressions such as this because it does not attempt to solve
path constraints.

The failure of the concolic approach to cover the second group (G5) of branches, including the
other six, was due to iteration limits. The printtok1 program includes a next_state() func-
tion that uses a symbolic input character as an index into an array of characters. Because CREST
does not support accesses to array elements through a symbolic index variable, it transforms the pro-
cess to use if-then-else statements to handle all possible values of the symbolic index variable
one by one. For example, consider a program containing the following function:

01:void f(int x){
02: if (x == 10){ ... }
03: else if (x == 20){ ... }
04: else if (x == 30){ ... }
05: ... }

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

Given the foregoing, for a symbolic unsigned char variable i, the code int
next_state(int i) { ... if(a[i]==C) f(b[i]);...} is transformed into the fol-
lowing code where a is an array of characters, b is an array of integers (suppose that b[i]=i+10;
i.e. b[0]=10, b[1]=11, ...) and C is a character constant:

06:int next_state(int i){...
07: // Transformation of
08: // if(a[i]==C) f(b[i]);
09: if(i==0 && a[0]==C) f(b[0]);
10: else if(i==1 && a[1]==C) f(b[1]);
11: ...
12: else if(i==255 && a[255]==C)f(b[255]);
13: ... }

However, this transformation still does not solve the problem completely. Suppose that the
concolic approach tries to cover the branches in f() (lines 2–4). The concolic approach controls
the symbolic variable i that is passed to next_state() as a parameter (line 6) and controls the
parameter to f() indirectly (lines 9–12). In other words, to cover the branches in f(), the concolic
approach must try corresponding different branches in next_state() (i.e. a maximum of 256
different values for symbolic variable i). Given an iteration limit less than 10, there is little chance
for the approach to reach all branches in f(). For example, suppose that a target branch bt is the
then branch of f() at line 2 (i.e. x==10). Also suppose that an initial value of i is 255, which
makes the first symbolic execution path be :.i D 0^aŒ0�DC/^:.i D 1^aŒ1�DC/ : : :^:.i D
254 ^ aŒ254�DC/ ^ .i D 255 ^ aŒ255�DC/ ^ :.x D 10/ : : : (see the rightmost execution path
in Figure 3). To cover bt , Algorithm 3 has to iterate through lines 8–16 255 more times, as bt can
be covered by only the leftmost execution path in Figure 3. However, this is not possible because
niter < 10 in our experiments (see line 8 in Algorithm 3). In contrast, the genetic approach may
reach any of the branches if it succeeds in choosing appropriate inputs.

Finally, we turn to grep. Of the four branches on which the genetic approach had difficulties,
one (group G6) was a deeply nested branch, similar to the case discussed earlier with respect to
replace. The other three branches (group G7) are all incident on malloc attempts and taken
when that routine fails because of the exhaustion of memory. It is virtually impossible for the genetic
approach to generate test cases for grep that consume enough memory to trigger coverage of these
branches. The concolic approach, however, covered them, but this is actually a side effect rather
than a direct effect. This is because the concolic algorithm saves execution path information for test
cases, and eventually, this path information can consume enough memory to cause malloc failures.

Figure 3. Symbolic execution tree of the example code.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

For the four branches on which the concolic approach had difficulties, we identified two groups,
each relevant to two of the branches. The first group (G8) is related to external binary library func-
tions such as strcmp() and strlen(). Branches belonging to this group are taken based on
results of these binary library functions. These functions cannot be analysed by the concolic algo-
rithm, and thus, it failed to generate test cases that cover them. The genetic approach does not need
to analyse the functions and did select inputs that cover the branches.

The second group (G9) of branches are related to dynamic memory management. For example,
grep transforms a given regular expression pattern into a deterministic finite automaton (DFA) and
stores the DFA in a buffer. Before grep stores the DFA into the buffer, it should check whether the
size of the buffer is large enough to contain the DFA. If not, grep extends the buffer. Because the
concolic approach cannot control the size of the DFA directly via path conditions, it is difficult for it
to cover branches that compare the size of the buffer and the size of the DFA. The genetic approach,
however, because of the diversity created through crossover and mutation, can by chance end up
with test cases that vary the DFA size as needed.

Table XXI summarizes the foregoing results. For each of the groups identified, the table lists
the program(s) that group occurred in, the number of branches, the algorithm that exhibited the
weakness in achieving coverage, and the cause of the weakness. The rightmost column in the table
classifies the observed weaknesses into three categories, as follows.

The first broad category of weaknesses (groups G1 and G2, four branches) involved tuning limi-
tations (mutation pool settings) and occurred only for the genetic algorithm. Such weaknesses will
necessarily occur for that algorithm because of the way in which the algorithm must be applied;
however, in practice, they could be partly addressed by tuning the algorithm better, which is par-
ticularly possible in the context of an evolving program as test suites are reused and improved on
subsequent versions.

The second broad category of weaknesses (group G4, one branch) involved effects related to
implementations and occurred only for the concolic algorithm. In this case, the failure of the tech-
nique is not algorithmic but rather is due to the specific implementation of the algorithm and could
be addressed through improvements in implementations. For example, the concolic approach could
be implemented to better handle nonlinear arithmetic.

The third broad category of weaknesses (groups G3, G5, G6, G7, G8 and G9, 18 branches)
involves neither tuning problems nor implementation problems but rather lies in the natures of the
algorithms themselves. Genetic algorithms are simply not likely to handle deeply nested ifs (groups
G3 and G6), whereas concolic algorithms can. Concolic algorithms are simply not able to handle
non-analysable external libraries or dynamic memory management issues (groups G8 and G9). We
also place group G5 in this category. While we selected iteration limits, and thus, they might be
seen as a matter of tuning, at the core of the concolic approach, some limit will be needed as an
algorithmic matter, and there could exist programs such that, for any limit selected, that limit is not
sufficient to allow certain branches to be reached. Finally, regarding group G7, the fact that the con-
colic implementation could cover branches incident on malloc failures is related to the algorithm’s
need to collect data that can exceed available memory.

Table XXI. Summary of coverage limitations.

Number Weak
Group Program of branches algorithm Specific cause Classification

G1 replace 1 GA Limitations in mutation pool setting (arguments) Tuning
G2 replace 3 GA Limitations in mutation pool setting (NULL char) Tuning
G3 replace 3 GA Deeply nested ifs not reached Algorithmic
G4 printtok1 1 CT Limitations handling arithmetic constructs Implementation
G5 printtok1 6 CT Iteration limits and loops Algorithmic
G6 grep 1 GA Deeply nested ifs not reached Algorithmic
G7 grep 3 GA Malloc failures not covered Algorithmic
G8 grep 2 CT External libraries not analysable Algorithmic
G9 grep 2 CT Dynamic memory management not controlled Algorithmic

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

6.3. Towards a hybrid algorithm

While approaches for combining different test case generation techniques have been studied (as
discussed in Section 2.2), these approaches have not yet been investigated in the context of test suite
augmentation. The differences observed between the concolic and genetic algorithms in our data
and additional analysis suggest that augmentation techniques that combine both approaches should
be more cost-effective than approaches that utilize just single techniques.§§ Such hybrid algorithms
could enable an overall test case generation approach that addresses the algorithmic limitations seen
in the approaches singly.

The results of our study suggest that such a hybrid approach should be structured as follows.

� The concolic approach was much more efficient than the genetic approach, so a hybrid
approach should begin with concolic testing first and let it cover as many branches as possible
before passing control to the genetic algorithm.
� Given that the test reuse approach had an impact on effectiveness for concolic testing only,

when we use the concolic algorithm, we should add new test cases as the process goes on. In
contrast, test reuse had little impact on the coverage for the genetic algorithm while signifi-
cantly increasing its cost. Thus, when we use the genetic algorithm, we can rely on existing
test cases in our initial population for every target.
� Order of targets can impact the efficiency of the genetic algorithm but had no effect on

the concolic algorithm. Thus, we can order the targets for the former but need not do so for
the latter.
� Figure 2 and Table XX illustrate that the concolic testing algorithm was usually consistent

across runs (i.e. it tended to cover the same branches in each run using the same existing test
cases), while the genetic approach was far more non-deterministic. Therefore, it should suffice
to execute the concolic approach just once if there is no change in existing test cases, while we
may benefit from running the genetic algorithm multiple times even when existing test cases
do not change.

7. CONCLUSIONS AND FUTURE WORK

In this work, we have focused on test suite augmentation utilizing genetic and concolic algorithms,
and on factors that affect its cost-effectiveness. The results of our studies show that the primary
factor affecting augmentation was the test case generation algorithm utilized; this affected both
cost and effectiveness. The manner in which existing and newly generated test cases were utilized
also had a substantial effect on efficiency and in some cases a substantial effect on effectiveness.
The order in which target code elements were considered turned out to have relatively few effects
when using concolic test case generation but in some cases influenced the efficiency of genetic
test case generation. The results of our first study, on four relatively small programs using a large
number of test suites, were supported by our second study of a much larger program available
in multiple versions. Together, the studies reveal a potential opportunity for creating a more cost-
effective hybrid augmentation approach leveraging both concolic and genetic test case generation
techniques, while appropriately utilizing our understanding of the factors that affect them.

Our results have several implications for the creation and further study of augmentation
techniques. Perhaps the most intriguing result stems from the observed complementariness of
the concolic and genetic test case generation approaches, and the implications this raises for the
prospects of hybrid approaches. The results also have implications, however, for engineers creating
initial test suites for programs. This is because such engineers often begin, at least at the system
test level, with black-box requirements-based test cases. It has long been recommended that such
test suites be extended to provide some level of coverage. The techniques we have presented can
conceivably serve in this context too, working with initial black-box test cases and augmenting these.

§§Of course, such a hybrid approach can function only in cases in which both concolic and genetic test case generation
are possible, and each class of approaches, as just discussed, has limitations to applicability.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

There are additional factors that influence augmentation that we have not examined directly in
this work. Program characteristics certainly play a role, because they can impact the ability of test
case generation techniques to function cost-effectively, as described in Sections 3.2.2 and 3.2.3.
Characteristics of program modifications also matter. Finally, algorithms used to identify target code
differ and may affect the relative cost-effectiveness of subsequent augmentation algorithms. More
formal studies of these factors could be helpful.

In closing, the results of this research provide many insights into the test suite augmentation
problem, techniques for addressing it and factors that affect those techniques. Given all of the factors
involved in the problem, however, including those not yet studied, a great deal of further research
is needed. Through such research, we hope to be able to make cost-effective, automated techniques
for test suite augmentation available to software engineers.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation under awards CNS-0454203 and
CCF-1161767 and by the Air Force Office of Scientific Research through award FA9550-10-1-0406 to the
University of Nebraska–Lincoln. Also, this work was supported in part by the Engineering Research Center
of Excellence Program of Korea Ministry of Science, ICT and Future Planning (MSIP)/National Research
Foundation (NRF) of Korea (grant NRF-2008-0062609), the Information Technology Research Center
support program funded by MSIP and supervised by the National IT Industry Promotion Agency, Korea
(NIPA-2014-H0301-14-1023), the NRF Mid-career Researcher Program funded by MSIP, Korea (NRF-
2012R1A2A2A01046172) and the IT R&D Program of Ministry of Knowledge Economy/Korea Evaluation
Institute of Industrial Technology (10041752). We thank Yuyang Liu for her valuable input on concolic
testing of the object programs.

REFERENCES

1. Leung HKN, White L. Insights into regression testing. Proceedings of the International Conference on Software
Maintenance, Miami, FL, 1989; 60–69.

2. Onoma K, Tsai W-T, Poonawala M, Suganuma H. Regression testing in an industrial environment. Communications
of the ACM 1998; 41(5):81–86.

3. Rothermel G, Harrold MJ. A safe, efficient regression test selection technique. ACM Transactions on Software
Engineering and Methodology 1997; 6(2):173–210.

4. Apiwattanapong T, Santelices R, Chittimalli PK, Orso A, Harrold MJ. Matrix: maintenance-oriented testing require-
ments identifier and examiner. Testing: Academic and Industry Conference on Practical Research and Techniques,
Windsor, UK, 2006; 137–146.

5. Person S, Dwyer MB, Elbaum S, Păsăreanu CS. Differential symbolic execution. Proceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering, Atlanta, GA, USA, November 2008; 226–237.

6. Santelices R, Chittimalli PK, Apiwattanapong T, Orso A, Harrold MJ. Test-suite augmentation for evolving software.
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, L’AQUILA, ITALY,
2008; 218–227.

7. Xu Z, Rothermel G. Directed test suite augmentation. Proceedings of the Asia-Pacific Software Engineering
Conference, Penang, Malaysia, 2009; 406–413.

8. Binkley D. Semantics guided regression test cost reduction. IEEE Transactions on Software Engineering 1997;
23(8):498–516.

9. Gupta R, Harrold MJ, Soffa M. Program slicing-based regression testing techniques. Journal of Software Testing,
Verification, and Reliability June 1996; 6(2):83–111.

10. Rothermel G, Harrold MJ. Selecting tests and identifying test coverage requirements for modified software.
Proceedings of the International Symposium on Software Testing and Analysis, Seattle, WA, USA, 1994; 169–184.

11. Díaz E, Tuya J, Blanco R, Javier Dolado José. A tabu search algorithm for structural software testing. Journal of
Computers and Operations Research 2008; 35(10):3052–3072.

12. Sen K, Marinov D, Agha G. CUTE: a concolic unit testing engine for C. Proceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering, Lisbon, Portugal, 2005; 263–272.

13. Waeselynck H, Thévenod-Fosse P, Abdellatif-Kaddour O. Simulated annealing applied to test generation: landscape
characterization and stopping criteria. Empirical Software Engineering: An International Journal 2007; 12(1):35–63.

14. Ferguson R, Korel B. The chaining approach for software test data generation. ACM Transactions on Software
Engineering and Methodology 1996; 5(1):63–86.

15. Godefroid P, Klarlund N, Sen K. DART: directed automated random testing. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, Chicago, Illinois, USA, 2005; 213–223.

16. Xu Z, Cohen M, Rothermel G. Factors affecting the use of genetic algorithms in test suite augmentation. Proceedings
of the Genetic and Evolutionary Computation Conference, Portland, OR, USA, 2010; 1365–1372.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

Z. XU ET AL.

17. Xu Z, Kim Y, Kim M, Rothermel G, Cohen MB. Directed test suite augmentation: techniques and tradeoffs. Proceed-
ings of the ACM SIGSOFT Symposium on Foundations of Software Engineering, Santa Fe, New Mexico, November
2010; 257-266.

18. Chen YF, Rosenblum DS, Vo KP. TestTube: a system for selective regression testing. Proceedings of the International
Conference on Software Engineering, Sorrento, Italy, 1994; 211–220.

19. Orso A, Shi N, Harrold MJ. Scaling regression testing to large software systems. Proceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering, Newport Beach, Ca, Usa, 2004; 241–251.

20. Ren X, Shah F, Tip F, Ryder BG, Chesley O. Chianti: a tool for change impact analysis of Java programs. Proceedings
of the International Conference on Object-Oriented Programming Systems, Languages, and Applications, Vancouver,
British Columbia, Canada, October 2004; 432–448.

21. Ruth M, Oh S, Loup A, Horton B, Gallet O, Mata M, Tu S. Towards automatic regression test selection for web
services. Proceedings of the International Computer Software and Applications Conference, Beijing, China, 2007;
729–736.

22. Yoo S, Harman M. Pareto efficient multi-objective test case selection. Proceedings of the International Symposium
on Software Testing and Analysis, London, United Kingdom, 2007; 140–150.

23. Elbaum S, Malishevsky AG, Rothermel G. Test case prioritization: a family of empirical studies. IEEE Transactions
on Software Engineering 2002; 28(2):159–182.

24. Li Z, Harman M, Hierons R. Search algorithms for regression test case prioritization. IEEE Transactions on Software
Engineering 2007; 33(4):225–237.

25. Walcott A, Soffa ML, Kapfhammer GM, Roos RS. Time-aware test suite prioritization. Proceedings of the
International Symposium on Software Testing and Analysis, Portland, ME, USA, 2006; 1–12.

26. Bohner S, Arnold R. Software Change Impact Analysis. IEEE Computer Society Press: Los Alamitos, CA, 1996.
27. Person S, Yang G, Rungta N, Khurshid S. Directed incremental symbolic execution. Programming Language Design

and Implementation, San Jose, CA, USA, 2011; 504–515.
28. Taneja K, Xie T, Tillmann N, Halleux J, Schulte W. eXpress: guided path exploration for regression test generation.

Proceedings of the International Symposium on Software Testing and Analysis, Toronto, ON, Canada, 2011; 1–11.
29. Santelices R, Harrold MJ. Applying aggressive propagation-based strategies for testing changes. International

Conference on Software Testing, Verification, and Validation, Berlin, German, 2011; 11–20.
30. Qi D, Roychoudhury A, Liang Z. Test generation to expose changes in evolving programs. Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, 2010; 397–406.
31. Jin W, Orso A, Xie T. Automated behavioral regression testing. International Conference on Software Testing,

Verification, and Validation, Paris, France, 2010; 137–146.
32. Yoo S, Harman M. Test data augmentation: generating new test data from existing test data. Technical Report TR-08-

04, King’s College London, 2008.
33. Chang J, Richardson D. Structural specification-based testing: automated support and experimental evaluation. Pro-

ceedings of the ACM SIGSOFT Symposium on Foundations of Software Engineering, Toulouse, France, 1999;
285–302.

34. Marinov D, Khurshid S. TestEra: a novel framework for automated testing of Java programs. Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, San Diego, USA, 2001; 22–31.

35. Offutt J, Abdurazik A. Generating tests from UML specifications. Proceedings of the International Conference on
UML, Fort Collins, CO, USA, 1999; 416–429.

36. Avritzer A, Weyuker EJ. The automatic generation of load test suites and the assessment of the resulting software.
IEEE Transactions on Software Engineering 1995; 21(9):705–716.

37. Hartman A, Nagin K. Model driven testing—AGEDIS architecture interfaces and tools. Proceedings of the European
Conference on Model Driven Software Engineering, Nuremberg, Germany, 2003; 1–11.

38. Visser W, Pasareanu C, Khurshid S. Test input generation with Java Pathfinder. Proceedings of the International
Symposium on Software Testing and Analysis, Boston, MA, USA, 2004; 97–107.

39. Briand LC, Labiche Y, He S. Automating regression test selection based on UML designs. Information and Software
Technology 2009; 51:16–30.

40. Pilskalns O, Uyan G, Andrews A. Regression testing UML designs. Proceedings of the International Conference on
Software Maintenance, Philadelphia, Pennsylvania, USA, 2006; 254–264.

41. Bird D, Munoz C. Automatic generation of random self-checking test cases. IBM Systems Journal 1983; 22(3):
229–245.

42. Chen TY, Merkel R. Quasi-random testing. IEEE Transactions on Reliability 2007; 56(3):562–568.
43. Clarke L. A system to generate test data and symbolically execute programs. IEEE Transactions on Software

Engineering 1976; 2(3):215–222.
44. DeMillo R, Offutt A. Constraint-based automatic test data generation. IEEE Transactions on Software Engineering

1991; 17(9):900–910.
45. Gotlieb A, Botella B, Reuher M. Automatic test data generation using constraint solving techniques. Proceedings of

the International Symposium on Software Testing and Analysis, Clearwater Beach, FL, USA, 1998; 53–62.
46. Korel B. Automated software test data generation. IEEE Transactions on Software Engineering 1990; 16(8):870–897.
47. Baresel A, Binkley D, Harman M, Korel B. Evolutionary testing in the presence of loop-assigned flags: a testability

transformation approach. Proceedings of the International Symposium on Software Testing and Analysis, Boston,
MA, USA, 2004; 108–118.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

DIRECTED TEST SUITE AUGMENTATION: AN EMPIRICAL INVESTIGATION

48. Michael C, McGraw G, Shatz M. Generating software test data by evolution. IEEE Transactions on Software
Engineering 2001; 27(12):1085–1110.

49. Pargas RP, Harrold MJ, Peck RR. Test-data generation using genetic algorithms. Journal of Software Testing,
Verification, and Reliability 1999; 9:263–282.

50. Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR. Exe: automatically generating inputs of death. Proceedings
of the Conference on Computing Communications and Security, Alexandria, VA, USA, 2006; 322–335.

51. Clarke L, Richardson D. Applications of symbolic evaluation. Journal of Systems and Software 1985; 5(1):15–35.
52. Sen K, Agha G. JCUTE: concolic unit testing and explicit path model-checking tools. Proceedings of the

International Conference on Computer Aided Verification, Seattle, WA, USA, 2006; 419–423.
53. Emmi M, Majumdar R, Sen K. Dynamic test input generation for database applications. Proceedings of the

International Symposium on Software Testing and Analysis, London, United Kingdom, 2007; 151–162.
54. Artzi S, Kiezun A, Dolby J, Tip F, Dig D, Paradkar A, Ernst MD. Finding bugs in dynamic web applications.

Proceedings of the International Symposium on Software Testing and Analysis, Seattle, WA, USA, 2008; 261–272.
55. Wassermann G, Yu D, Chander A, Dhurjati D, Inamura H, Su Z. Dynamic test input generation for web applications.

Proceedings of the International Symposium on Software Testing and Analysis, Seattle, WA, USA, 2008; 249–260.
56. Available from: http://babelfish.arc.nasa.gov/trac/jpf [last accessed 29 October 2014].
57. CREST—automatic test generation tool for C. Available from: http://jburnim.github.io/crest/ [last accessed 29

October 2014].
58. Cadar C, Dunbar D, Engler D. KLEE: unassisted and automatic generation of high-coverage tests for complex sys-

tems programs. Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation, San
Diego, CA, 2008; 209–224.

59. Tillmann N, Schulte W. Parameterized unit tests. Proceedings of the ACM Symposium on Foundations of Software
Engineering, Lisbon, Portugal, 2005; 253–262.

60. Lakhotia K, Harman M, Gross H. AUSTIN: a tool for search based software testing for the C language and its
evaluation on deployed automotive systems. Proceedings of the international Symposium on Search Based Software
Engineering, Benevento, Italy, 2010; 101–110.

61. Fraser G, Arcuri A. EvoSuite: automatic test suite generation for object-oriented software. Proceedings of the ACM
SIGSOFT Symposium on Foundations of Software Engineering, Szeged, Hungary, 2011; 416–419.

62. Inkumsah K, Xie T. Improving structural testing of object-oriented programs via integrating evolutionary testing and
symbolic execution. Proceedings of the IEEE/ACM International Conference on Automated Software Engineering,
Atlanta, Georgia, 2007; 297–306.

63. Borges M, d’Amorim M, Anand S, Bushnell D, Pasareanu C. Symbolic execution with interval solving and meta-
heuristic search. Proceedings of the IEEE International Conference on Software Testing, Verification, and Validation,
Montreal, QC, Canada, 2012; 111–120.

64. Baars A, Harman M, Hassoun Y, Lakhotia K, McMinn P, Tonella P, Vos T. Symbolic search-based testing. Proceed-
ings of the IEEE/ACM International Conference on Automated Software Engineering, Oread, Lawrence, Kan, 2011;
53–62.

65. Malburg J, Fraser G. Combining search-based and constraint-based testing. Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering, Oread, Lawrence, Kan, 2011; 436–439.

66. Galeotti JP, Fraser G, Arcuri A. Improving search-based tset suite generation with dynamic symbolic execution.
Proceedings of the International Symposium on Software Reliability Engineering, Pasadena, CA, 2013; 360–369.

67. Burnim J, Sen K. Heuristics for scalable dynamic test generation. Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, L’AQUILA, ITALY, 2008; 443–446.

68. Xie T, Tillmann N, Halleux P, Schulte W. Fitness-guided path exploration in dynamic symbolic execution. Proceed-
ings of the IEEE/IFIP International Conference on Dependable Systems and Networks, Estoril, Lisbon, Portugal,
2009; 359–368.

69. Aho AV, Lam M, Sethi R, Ullman JD. Compilers, Principles, Techniques, and Tools, 2nd edn. Addison-Wesley:
Boston, MA, 2007.

70. Pande H, Landi W, Ryder BG. Interprocedural def-use associations in C programs. IEEE Transactions on Software
Engineering 1994; 20(5):385–403.

71. Sinha S, Harrold MJ, Rothermel G. Interprocedural control dependence. ACM Transactions on Software Engineering
and Methodology 2001; 10(2):209–254.

72. McMinn P. Search-based software test data generation: a survey. Journal of Software Testing, Verification, and
Reliability 2004; 14(2):105–156.

73. Tonella P. Evolutionary testing of classes. Proceedings of the International Symposium on Software Testing and
Analysis, Boston, Massachusetts, 2004; 119–128.

74. Wappler S, Lammermann F. Using evolutionary algorithms for the unit testing of object-oriented software.
Proceedings of the Genetic and Evolutionary Computation Conference, Washington, D. C. USA, 2005; 1053–1060.

75. Do H, Elbaum SG, Rothermel G. Supporting controlled experimentation with testing techniques: an infrastructure
and its potential impact. Empirical Software Engineering: An International Journal 2005; 10(4):405–435.

76. Hutchins M, Foster H, Goradia T, Ostrand T. Experiments on the effectiveness of data flow- and control flow-based
test adequacy criteria. Proceedings of the International Conference on Software Engineering, Sorrento, Italy, 1994;
191–200.

77. Xie Q, Memon AM. Designing and comparing automated test oracles for GUI-based software applications. ACM
Transactions on Software Engineering and Methodology 2007; 16(1):1–36.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

http://jburnim.github.io/crest/

Z. XU ET AL.

78. Cai X, Lyu MR. The effect of code coverage on fault detection under different testing profiles. Proceedings of
International Workshop on Advances in Model-Based Testing, St. Louis, Missouri, 2005; 1–7.

79. Frankl PG, Iakounenko O. Further empirical studies of test effectiveness. Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Lake Buena Vista, FL, USA, 1998; 153–162.

80. Namin AS, Andrews JH. The influence of size and coverage on test suite effectiveness. Proceedings of the
International Symposium on Software Testing and Analysis, Chicago, IL, USA, 2009; 57–68.

81. Piwowarski P, Ohba M, Caruso J. Coverage measurement experience during function test. Proceedings of the 15th
International Conference on Software Engineering, Baltimore, Maryland, USA, 1993; 287–301.

82. Do H, Rothermel G, Kinneer A. Empirical studies of test case prioritization in a JUnit testing environment. Proceed-
ings of the International Symposium on Software Reliability Engineering, Saint-Malo, Bretagne, France, 2004; 113–
124.

83. Rothermel G, Untch R, Chu C, Harrold MJ. Prioritizing test cases for regression testing. IEEE Transactions on
Software Engineering October 2001; 27(10):929–948.

84. Wegener J, Baresel A, Sthamer H. Evolutionary test environment for automatic structural testing. Information and
Software Technology 2001; 43(14):841 –854.

85. Arcuri A. It does matter how you normalise the branch distance in search based software testing. Proceedings of the
IEEE International Conference on Software Testing, Verification, and Validation, Paris, France, 2010; 205–214.

86. Arcuri A, Iqbal Z, Briand L. Formal analysis of the effectiveness and predictability of random testing. Proceedings
of the International Symposium on Software Testing and Analysis, Trento, Italy, 2010; 219–229.

87. Dowdy S, Wearden S, Chilko D. Statistics for Research, 3rd edition. Wiley: Hoboken, NJ, USA, 2004.
88. Sthamer H. The automatic generation of software test data using genetic algorithms. Ph.D. Thesis, 1996.
89. McMinn P, Binkley D, Harman M. Empirical evaluation of a nesting testability transformation for evolutionary

testing. ACM Transactions on Software Engineering and Methodology 2009; 18:11:1–11:27.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

	Directed test suite augmentation: an empirical investigation
	SUMMARY
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Test suite augmentation
	Test case generation

	AUGMENTATION TECHNIQUES
	Augmentation basics
	Coverage criteria
	Identifying target code elements
	Ordering target code elements
	Test case reuse approach

	Augmentation algorithms
	Main algorithm
	Genetic test suite augmentation
	Concolic test suite augmentation

	EMPIRICAL STUDY 1
	Objects of analysis
	Variables and measures
	Independent variables
	Dependent variables and measures

	Experiment set-up
	Genetic algorithm implementation
	Concolic algorithm implementation
	Extended programs
	Iteration limits

	Experiment operation
	Threats to validity
	Results and analysis
	RQ1: order of target code elements
	RQ2: use of existing and new test cases
	RQ3: test case generation algorithm

	Discussion and implications
	Target code element order
	Test case reuse approach
	Test case generation techniques
	Iteration limits
	Initial test suite characteristics
	The benefits of augmentation

	EMPIRICAL STUDY 2
	Experiment set-up
	Results and analysis
	Discussion and implications

	ADDITIONAL ANALYSIS AND IMPLICATIONS
	Overall comparison
	Analysis of specific branches
	Towards a hybrid algorithm

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

