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초 록

테스트 자동 생성 기술인 퍼징은, 크고 복잡한 프로그램에서도 오류를 검출하는데 높은 성능을 보여, 널리
이용되고 있다. 하지만, 테스트 대상 프로그램의 시맨틱 정보를 이용하면 퍼징의 테스트 커버리지 성능을
높일 수 있는 잠재력이 있음에도, 이러한 시맨틱 정보를 이용하는데 필요한 실행비용이 높고, 기술적인 난이
도가 높아 이러한 시맨틱 정보를 사용하는 퍼징 기술에 대한 연구는 더딘 편이다. 이러한 한계를 극복하기
위해 본 논문에서는 동적 함수 관련도를 사용하는 첫 퍼저인 FRIEND를 제시한다. FRIEND는 타겟 분기
bt를 포함한 함수 ft에 대해 높은 연관도를 가지는 함수를 식별하여 이 정보를 이용하여 어떤 테스트 입력을

변이할지, 테스트 입력의 어떤 바이트를 변이할 지를 결정하여 효율적으로 높은 커버리지와 버그 식별 능
력을 가지는 테스트를 생성하도록 한다. FRIEND를 LAVA-M의 4개의 프로그램과 10개의 실제로 활발히
사용되는 프로그램에 적용한 결과, 다른 최신 퍼저 (AFLFast, Angora, FairFuzz, RedQueen)과 비교하여
높은 커버리지와 버그 식별 능력을 보였다.

핵 심 낱 말 소프트웨어 테스팅, 자동화 테스트 생성 기술, 퍼징, 함수 관련도

Abstract
Fuzzing has become popular as a software bug detection technique for its high bug detection ability
(covering large execution space of a complex target program fast). Although semantic information of a
target program can be useful to improve test coverage of fuzzing, still most fuzzers do not utilize valuable
semantic information of a target program much. This is because obtaining such semantic information
is technically difficult and/or costly (i.e., causing high runtime overhead). To resolve such limitation,
this dissertation proposes FRIEND, which is the first fuzzer to use “dynamic function relevance”, which
is a salient method to improve test coverage and crash bug detection ability cost-effectively. FRIEND
identifies functions closely relevant to a target function ft containing a target branch bt and utilizes
this information to select test inputs and input bytes to mutate. I found that the dynamic function
relevance metric is simple and cheap to calculate and can improve fuzzing performance significantly. I
have applied FRIEND to 4 LAVA-M benchmark programs and 10 popular real-world programs. The
experiment results demonstrated that FRIEND covers significantly more execution paths and detects
more crashes than other cutting-edge fuzzers (i.e., AFLFast, Angora, FairFuzz, and RedQueen).

Keywords Software Testing, Automated test generation, fuzzing, function relevance
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Chapter 1. Introduction

Figure 1.1: Coverage guided fuzzing process

Fuzz testing (a.k.a. fuzzing) has become popular as a software bug detection technique for its high
bug detection ability. This is because fuzzing can cover large execution space of a complex real-world
software program fast. Unlike sophisticated automated testing techniques (e.g., symbolic execution [6,
20, 3] and concolic testing [32, 19]), fuzzing generates diverse test inputs fast by directly mutating test
input bytes with various heuristics to improve test coverage [29]. Thus, major software companies like
Google have applied fuzzing techniques for general quality assurance (e.g., [30, 13]).

1.1 Research Background

To improve test coverage and crash bug detection of a target program P , a fuzzer can utilize semantic
information of a target program P . For example, suppose that, to cover a target branch bt in a function
ft, functions g and h have to be executed before ft. A smart fuzzer can utilize this valuable semantic
information to generate test inputs to cover bt by assigning a high weight to a test input that executes
g and h before ft. However, most fuzzers do not use semantic information of P because extracting
such semantic information of P is technically challenging (i.e., both static time code analysis and run-
time dynamic analysis are required) and it causes high runtime overhead to calculate complex semantic
information.

1.2 Fuzzing Background

Fuzzing is an automatic test input generation technique that gernerates new test inputs by mutating
existing test inputs. Typically, fuzzing techniques treats a test input as a simple sequence of bytes and
mutates each byte to make test inputs that can cover new code area or trigger defects in a program
under test.

Figure 1.1 shows a common process of coverage guided fuzzing techniques. covearage guided fuzzers
are fuzzing techniques that utilizes coverage result of test input executions to generate as many test
inputs as possible that can cover large coverage area of a target program.
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1. First, the fuzzer selects a test input to mutate.

2. Second, the fuzzer mutates the selected test input to generate multiple new test inputs. For
efficiency, typically a fuzzer evaluates each selected test input to determine how many inputs to
generate. (i.e. The fuzzer determines how much time to spend on mutating a selected test input.)
How fuzzers evaluate test inputs is described in section 4 (Related works).

3. Third, the fuzzer executes the new test inputs on the target program to obtain dynamic execution
data.

4. Lastly, the fuzzer determines whether to keep the generated new test input or not. Generally, most
fuzzers save test inputs that can cover new path coverage or trigger new crashes.

It is important to select a good test input to mutate that can be mutated to test inputs that show
diverse program behaviors. And, it is also important to select proper test input bytes to mutate because
the search space of new mutated test inputs is combinatorial complexity, so if a fuzzer selects too many
input bytes, it is hard to generate good test inputs in limited time slot.

1.3 Thesis Statement and Contributions

1.3.1 Thesis Statement

The thesis statement of this dissertation is as follows:

1.3.2 Proposed Approach

As I metioned above, current state-of-the-art fuzzers do not use semantic information of target
program under test because extracting and utilizing semantinc information of program require high
runtime overhead. To resolve such limitation of current fuzzing techniques, I have developed FRIEND
(Function Relevance semantIcs basEd fuzziNg methoD), which is a novel fuzzing technique to adopt
“dynamic function relevance metric” [19]. To cover a target branch bt in a function ft, FRIEND identifies
functions closely relevant to ft (saying g, h) and utilizes this semantic information to select test inputs
(Section 2.4) and input bytes to mutate (Section 2.5). In more detail, initially FRIEND uses dynamic
taint analysis (DTA) to identify and mutate an input byte im that affects the branch condition of bt (i.e.,
the branch condition has data-dependency on the input byte im). Then, for bt that is not covered by
DTA-based test input generation, FRIEND generates test inputs that can cover g and h which are closely
relevant to ft; consequently, test inputs mutated/generated from such test inputs will likely cover bt in
ft. I have applied FRIEND to 14 target programs (4 LAVA-M programs and 10 real-world programs)
and demonstrated that FRIEND covers 25.8% to 513.6% relatively more unique execution paths and
detected 10 to 20 more crashes than cutting-edge fuzzers such as AFLFast [5], Angora [7], FairFuzz [25]
and RedQueen [2].
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1.3.3 Contributions

The main contributions of this paper are as follows:

1. I have developed FRIEND that is the first fuzzer to apply dynamic function relevance metric, which
is a salient method to improve test coverage and crash bug detection ability cost-effectively.

2. I have performed a series of the experiments where I have empirically evaluate FRIEND and other
cutting-edge fuzzers (i.e., AFLFast, Angora, FairFuzz, and RedQueen) and demonstrated that
FRIEND achieves significantly higher coverage and detects more crash bugs than the cutting-edge
fuzzers.

3. I have detected 21 new crash bugs by using FRIEND and reported those bugs to the original
developers to improve the quality of the open source target programs.

1.4 Structure of Dissertation

The remainder of this dissertation is structured as folows. Chapter 2 presents FRIEND with its
motivating example. Chapter 3 presents the empricial evaluation setting and results of FRIEND, chapter
4 describes realted works of FRIEND, and chapter 5 concludes the dissertation with future works.

3



Chapter 2. FRIEND: Function Relevance semantIcs basEd
fuzziNg methoD

2.1 Motivating Example

Figure 2.1: DTA Fail example

2.1.1 Example Description

Figure 2.1 shows an example code and data depedency tracked from a target branch b23 (line 23)
with 4-bytes length input 0000. In this case, DTA can not identify input bytes that affect b23 because
there is no data dependency between b23 and the given test input. Therefore, a fuzzer can not specify
which input bytes to mutate using DTA in this example to cover a target branch b23.

Figure 2.2 shows the same example code and data dependency tracked from a branch b12 (line 12).
The branch b12 has data dependency with the first input byte of a test input 0000. Let’s assume that
function f and function g has high function relevance. (i.e. function f and g are highly related to each
other.) Since f and g are highly related, if we select and mutate the first input byte 0 to 9 and generate
an input 9000, we can cover the target branch b23, and cover the crashed line 30.

Figure 2.3 shows a function relevance table of functions with the function f , and Figure 2.1.1 shows
a control flow graph showing execution paths of the test inputs 0000 and 9000.

4



Figure 2.2: Same example code with data dependency tracked from line 12

Figure 2.3: Function relevance table of function f

Although function f and function g have no direct call relation, it is safe to assume that the functions
f and g are highly related to each other, while the relavance between function f and functions h1, h2
are not, since when the function f is executed, the function g is always executed but the functions h1
and h2 are not.

To generate a test input that covers a target branch b23 in f (at line 23) in Figure 2.1, suppose that
a fuzzer performs dynamic taint analysis (DTA) as follows. Suppose that a fuzzer executes the target
program with an initial 4-byte long input 0000; its execution path is shown as a dotted gray line in
Figure 2.1.1 and its DTA result is shown in Figure 2.1 (see arrows with labels 1©, 2©, 3©, 4©, and 5© in
order). DTA fails to identify input bytes to mutate to cover b23 because the branch condition (i.e., a >

0 at line 22) of b23 does not have data-dependency on any input bytes (Figure 2.1). Thus, a DTA based
fuzzer fails to cover b23.

If a fuzzer naively analyzes both data dependency and control dependency together, it will find that

5



Figure 2.4: Control flow graph and execution paths of input 0000 and 9000

b23 depends on input[0], input[2], and input[3] and mutate all of them (i.e., 75% of all input bytes).
As a result, by mutating too many input bytes, it will increase execution search space unnecessarily large
and decrease the effectiveness and efficiency of fuzzing.

2.2 Overall Process

Algorithm 1 shows the overall process of FRIEND. It receives a target program Prog and a set
of initial seed test inputs INIT , and returns a set of generated test input TI. FRIEND uses function
relevance (Section 2.3) to select test inputs (Section 2.4) and input bytes to mutate (Section 2.5). We
highlighted the important steps in Algorithm 1 to which function relevance metric is applied (i.e., lines
12, 16, 17, and 29).

First, FRIEND executes initial seed test inputs INIT (lines 5–13). For each seed test input, it obtains
a corresponding execution path, a taint information input taint, and a function call trace func trace
(line 7). Also, it gets uncovered target branches target br (lines 9–11) each of which is adjacent to the
execution paths of INIT . For example of Figure 2.1, a target branch at line 30 is adjacent to the grey
dotted execution path of the test input 0000 (see Figure 2.3). In addition, FRIEND updates function
relevance information between every pair of the functions executed so far by using func trace (line 12,
see Definition 1 for the detail).

Then, FRIEND repeats the following steps until it covers all target branches or a given time budget
is completely consumed (lines 14–31).

6



Algorithm 1: the overall process of FRIEND
Input: Prog : a target program, INIT : a set of initial seed test inputs
Output: TI : a set of generated test inputs

1 target br ← ∅ : a set of uncovered branches adjacent to the explored paths
2 FR← empty map : a map from a pair of functions to the relevance between the functions
3 Taints← empty map : a map from a test input to taint information

4 TI ← INIT

5 foreach input ∈ INIT do
6 //Get the path, tainted input bytes of executed branches, and function execution trace
7 path, input taint, func trace← Run Prog(input)
8 Taints[input]← input taint

9 foreach uncovered branch b that is adjacent to path do
10 target br ← target br ∪ {b}
11 end

12 FR.update(func trace)
13 end
14 while target br 6= ∅ and timeout is not reached do
15 Select a branch bt from target br

16 ti← SelectTestInput(bt, TI, FR)

17 bytes← SelectBytes(bt, Taints[ti], FR)

18 while bt is not covered and timeout for bt is not reached do
19 new ti← mutate(ti, bytes)
20 TI.append(new ti)
21 path, input taint, func trace← Run Prog(new ti)
22 Taints[new ti]← input taint

23 foreach an adjacent uncovered branch b′ of path do
24 target br ← target br ∪ {b′}
25 end
26 foreach a branch b′′ newly covered by path do
27 target br ← target br − {b′′}
28 end

29 FR.update(func trace)
30 end
31 end

1. FRIEND selects a target branch bt from target br (line 15) 1 and selects a test input ti in a test
input pool TI to cover bt (line 16, Algorithm 2 in Section 2.4).

2. It selects bytes which are input bytes of ti that affect the branch condition of bt by using DTA and
function relevance (line 17, Algorithm 3 in Section 2.5).

1The same branch bt can be selected multiple times in the while loop (lines 14–31).

7



3. It repeats the following steps until bt is covered or a given time budget for bt is completely consumed
(lines 18–30):

(a) FRIEND generates a new test input new ti by mutating the selected input bytes bytes (line
19). Then, it adds new ti to TI (line 20), executes new ti (line 21), and records taint infor-
mation (line 22).

(b) It updates target br by adding new uncovered branches adjacent to path of new ti (lines
23–25) and by removing target branches covered by path of new ti (lines 26–28).

(c) It updates function relevance information by considering the function call trace of path (line
29)

2.3 Definition of Function Relevance

Among the dozens of function relevance/coupling metrics (e.g., [10, 26, 11, 23, 17, 1]), FRIEND
decides to use dynamic function relevance metric for its intuitive characteristics and its very low runtime
cost to calculate (dynamic function relevance was originally proposed to reduce false alarms of unit
testing [19]). FRIEND defines and applies dynamic function relevance as follows:

Definition 1. Let TI be a set of generated test inputs with unique path coverage. The function relevance
FR(f, g) between two functions f and g is defined as :

FR(f, g) = |{ti ∈ TI| ti that executes both f and g}|
|{ti ∈ TI| ti that executes f}| ∈ [0, 1]

A function g is highly relevant to f if FR(f, g) is high (i.e., FR(f, g) > τ where τ is a user-given
threshold). Intuitively speaking, high FR(f, g) means that f and g are frequently executed together and
it means that f may have high dependency on g. Thus, FR(f, g) can be used to identify test inputs that
cover functions highly relevant to f and likely cover a target branch in f (Section 2.4). Note that the
runtime overhead to calculate FR(f, g) is negligible, because FR(f, g) is calculated based on function
call traces and counting the number of function call traces that contain f or both f and g is very simple
(Section 3.2.5).

2.3.1 Computing Dependency of a Target Function on Other Functions 2

Suppose that a program has a target function f and other function g and it has nf system test
executions that invokes f . Based on function call profiles, we compute dependency of f on g as p(g|f).
Given a static call graph G(V,E) (see Def. 2) and system test executions, we compute p(g|f) as follows:

• Case 1: for g which is a predecessor of f in G(V,E), p(g|f) is calculated as n1
nf

where n1 is a number
of system executions where g calls f directly or transitively.

• Case 2: for g which is a successor of f in G(V,E), p(g|f) is calculated as n2
nf

where n2 is a number of
system executions where f calls g directly or transitively.
2This section is quoted from Yunho Kim at el. [19] to supplement enough explanation of the concept of function relevance.

The use is authorized by the original author.
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Figure 2.5: Computing function relevance example

• Case 3: for g which is a successor and predecessor of f in G(V,E) (i.e., there exists a recursive call
cycle between f and g), p(g|f) is calculated as n3

nf
where n3 is a number of system executions where

f calls g or g calls f directly or transitively.

Definition 2. A static call graph G(V,E) is a directed graph where V is a set of nodes representing
functions in a program and E is a relation V × V . Each edge (a, b) ∈ E indicates that a directly calls b.
We call a node p as a predecessor of f if there exists a path from p to f . We call a node s as a successor
of f if there exists a path from f to s.

For example, Step 1 of Fig. 2.5 shows three test cases (-1,1), (1,1), and (5,1) and their corresponding
function call profiles for the program. Based on the profiles, we calculated dependency of f on other
functions as follows:

• p(main|f) = 1.00 (= n1
nf

= 3
3 )

• p(a1|f) = 0.66 (= n1
nf

= 2
3 )

• p(a2|f) = 0.33 (= n1
nf

= 1
3 )

• p(b|f) = 1.00 (= n1
nf

= 3
3 )

• p(g|f) = 1.00 (= n2
nf

= 3
3 )

• p(h|f) = 0.33 (= n2
nf

= 1
3 )

2.4 Selection of Test Input to Mutate

Algorithm 2 shows how FRIEND selects a test input to mutate to cover a target branch bt. FRIEND
selects a test input that (1) reaches the branch condition of a target branch bt, (2) has not been selected
to target bt before, and (3) has the highest function relevance score with regard to bt among the test
inputs that has not been selected before. We define a function relevance score TIscore(ti, bt) of a test
input ti with regard to bt as follows:

Definition 3. The function relevance score TIscore(ti, bt) of ti with respect to a target branch bt in ft

is defined as follow:

TIScore(ti, bt) = |{g | g is executed by ti and FR(ft, g) > τ}|
|{h | h is executed by ti}|

where τ is a user-given threshold.
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Algorithm 2: Test input selection algorithm

1 Function SelectTestInput(bt, TI, FR):
2 tisel ← ti ∈ TI such that

1. reaches the branch condition of bt, and

2. has not been selected to target bt before, and

3. has the highest function relevance score TIScore(ti, bt)
among the unselected test inputs

return tisel

Our conjecture is as follows. A test input ti that has high function relevance score with respect to
a target branch bt executes many functions highly relevant to ft. Thus, new test inputs generated from
such ti will likely cover bt.

2.5 Selection of Input Bytes to Mutate

Algorithm 3: Input byte selection algorithm

1 Function SelectBytes(bt, input taint, FR):
2 bytes← input taint[bt]
3 foreach b′ ∈ HRB(bt) do
4 bytes← bytes ∪ input taint[b′]
5 end
6 return bytes

FRIEND uses the following conjecture. The input bytes that affect a function g highly relevant to
a target function ft (containing a target branch bt), will likely affect ft and, consequently, bt. In other
words, we believe that the function relevance information can capture dependency between input bytes
and a target branch in a simple and light-weight way.

In more detail, to cover bt, FRIEND selects and mutates a subset of input bytes that affect the
branch conditions of the branches highly relevant to a target branch bt. By using the function relevance
metric, FRIEND defines a set of branches highly relevant to a target branch bt as following:

Definition 4. For a target branch bt in a function ft, we define the set of highly relevant branches
HRB(bt) as follows:

HRB(bt) = {b in g| g ∈ {h|FR(ft, h) > τ}}

where τ is a user-given threshold

Algorithm 3 shows how FRIEND selects input bytes to mutate for a given target branch bt. First,
from the taint information obtained at line 21 of Algorithm 1, it selects input bytes that affect the branch
condition of a target branch bt (i.e., input bytes on which the branch condition of bt has data-dependency)
(line 2 of Algorithm 3). Then, FRIEND additionally selects input bytes that affect the branch conditions
of the branches highly relevant to bt (i.e., HRB(bt)) (lines 3–5 of Algorithm 3).
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2.6 Implementation

We have implemented FRIEND on top of Angora [7]. FRIEND’s test input selection and input
byte selection strategies are implemented in additional 1,000 lines of RUST code. To extract a list of
the executed functions from a test execution, FRIEND instruments a target program using a LLVM [22]
compiler pass consisting of 100 lines of C++ code. FRIEND uses a function relevance threshold τ as 0.7.
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Chapter 3. Experiment Setup and Results

3.1 Experiment Setup

3.1.1 Research Questions

RQ1. Coverage Achievement Ability : To what extent does FRIEND achieve test coverage, com-
pared to other fuzzers?

RQ2. Crash Detection Ability : To what extent does FRIEND detect crash bugs, compared to other
fuzzers?

RQ3. Effect of the Test Input Selection Strategy of FRIEND: How much does the test in-
put selection strategy affect FRIEND’s coverage achievement and the number of the crashes detected,
compared to FRIEND without the test input selection strategy and FRIEND with random test input
selection?

RQ4. Effect of the Input Byte Selection Strategy of FRIEND: How much does the input
byte selection strategy affect FRIEND’s coverage achievement and the number of the crashes detected,
compared to FRIEND without the input byte selection strategy and FRIEND with random input byte
selection?

RQ5. Runtime Cost of Function Relevance Related Metrics: How much runtime overhead is
caused by computing function relevance related metrics during the entire fuzzing process of FRIEND?

3.1.2 Target Subject Programs

I evaluated FRIEND on two different types of datasets: (1) 4 programs of LAVA-M [12], and (2)
10 real-world programs. Table 3.1 presents a type, name, version, size in terms of LoC, and a brief
description of each target subject.

LAVA-M Benchmark

LAVA-M is a widely-used bug benchmark set for evaluating fuzzers. LAVA-M consists of injected
bugs in four GNU coreutils programs: base64, md5sum, uniq, and who. LAVA-M authors injected 44,
57, 28, and 2136 bugs into base64, md5sum, uniq, and who, respectively. Each of the injected bug is
guarded by a comparison with four-byte magic number and is triggered only if the condition is satisfied.

Real-world Programs

I have collected the latest versions (as of March 4th, 2020) of the 10 popular real-world C/C++
programs that have been extensively tested by other fuzzing tools (i.e., the latest versions of the subject
programs may have only very few crash bugs left). The average size of the real-world target subjects is
72,238 LoC.
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Table 3.1: Target subjects

Type Subjects Ver Size (LoC) Description

LAVA-M base64 8.24 8937 GNU coreutils
md5sum 8.24 9232 GNU coreutils
uniq 8.24 9108 GNU coreutils
who 8.24 20133 GNU coreutils

Real-world bison 3.5.2 43797 Parser generator
Programs bsdtar 3.4.1 87592 Archive tool

cjpeg 2.0.4 4714 JPEG encoder
exiv2 0.27.2 97570 EXIF parser
nm 2.34 108933 GNU binutils
objdump 2.34 154286 GNU binutils
pngfix 1.6.37 8558 PNG utility
re2 2020-03-03 50947 Regular expr. engine
readelf 2.34 60559 GNU binutils
size 2.34 105428 GNU binutils

3.1.3 Techniques to Compare

To answer RQ1 and RQ2, I have applied FRIEND and the following state-of-the-art fuzzers publicly
available to the 10 real-world target subjects. I have compared the coverage achievement ability and
crash detection ability of the fuzzers:

• AFLFast [5]: it is an extension of AFL [37]. AFLFast extends AFL’s power schedule to assign
more time to low-frequency paths (i.e., execution paths that explore interesting behaviors).

• Angora [7]: it is one of the state-of-the-art fuzzers which utilizes dynamic taint analysis (DTA) to
select test input bytes to mutate.

• FairFuzz [25]: it is also an extension of AFL that searches for interesting input bytes that are
worth to mutate to cover rarely executed branches.

• RedQueen [2]: it is one of the state-of-the-art virtual machine-based fuzzer for binary programs.
Based on the observed relation between input bytes and program states, it can generate inputs
that pass sanity checks efficiently.

I also compare FRIEND with the aforementioned four fuzzers and the following three fuzzers on
LAVA-M to evaluate crash bug detection ability. Since the tools of the following three fuzzers are not
publicly available, I used the crash bug detection results of the six fuzzers (except FairFuzz whose paper
does not report its LAVA-M experiment results) reported in the corresponding papers (these papers do
not report coverage result).

• FUZZER [12]: it is a coverage-guided fuzzer used by the LAVA-M authors.

• SES [12]: it is a symbolic execution tool used by the LAVA-M authors.

• Steelix [27]: it fuzzes binary programs. Steelix utilizes both coverage information and comparison
progress information to guide test input generation.
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Variants of FRIEND

To answer RQ3 (i.e., to evaluate the effect of the test input selection strategy (Section 2.4)), I
applied FRIEND and its following variants to the 10 real-world target subjects.

• FRIEND −IS : a variant of FRIEND that does not use test input selection strategy; it selects the
test input that reaches the branch condition of the target branch and has the shortest execution
time.

• FRIEND RIS : a variant of FRIEND that uses a random test input selection instead of the function
relevance based one; it randomly selects a test input that reaches the branch condition of the target
branch.

Similarly, to answer RQ4 (i.e., to evaluate the effect of the input byte selection strategy (Section 2.5)),
I applied FRIEND and its following variants to the 10 real-world target subjects.

• FRIEND −BS : a variant of FRIEND that does not use dynamic function relevance-based input
byte selection strategy (i.e., Lines 3–5 in Algorithm 3 are removed)

• FRIEND RBS : a variant of FRIEND that uses a random input byte selection instead of the function
relevance based one; it randomly selects the same amount of input bytes as FRIEND selects.

3.1.4 Fuzzing Setup

Timeout Setup

For LAVA-M benchmark, I ran FRIEND and FairFuzz for five hours with one CPU core, which
follows the fuzzing setup for LAVA-M benchmark in the literatures [12, 7, 2] (for the other fuzzers, I used
the results reported in the corresponding papers). For the real-world subjects, I ran AFLFast, Angora,
FairFuzz, RedQueen, FRIEND, and the variants of FRIEND for 24 hours, which follows the guideline
on evaluating fuzzers proposed by Klees et al. [21].

Testbed Setup

All the experiments were performed on our own cluster in which each node is equipped with Intel
quad-core i5-9600K (3.7 Ghz) and 16GB RAM, running Ubuntu 16.04 64 bit version.

3.1.5 Measurement

Coverage Achievement

To answer RQ1, RQ3, and RQ4, for coverage measurement, I count the number of the unique
execution paths reported by the fuzzing tools and the number of the covered lines and branches reported
by gcov. Note that all fuzzers applied to measure the coverage of the real-world programs (i.e., AFLFast,
Angora, FairFuzz, RedQueen, and FRIEND) share the same mechanism to probe and count a number of
the unique execution paths (see [33, 21] for detail). To reduce the random variance on the experiment,
I repeated the experiments 10 times and report the average numbers of the covered unique execution
paths, lines, and branches of the 10 experiment results.
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Crash Bug Detection

To answer RQ2, RQ3, and RQ4, I report the number of the crash bugs detected by the applied
fuzzing techniques. Similarly to other fuzzing papers [4, 31], I count the number of the unique stack
traces generated from the crashes as the number of crash bugs detected. To reduce the random variance
on the experiment, I repeated the experiments 10 times and report the number of crash bugs detected
by at least one of the 10 experiments.

3.1.6 Threats to Validity

A threat to external validity is the representativeness of our target subjects. I expect that this threat
is limited since I choose the target programs widely used ones by many fuzzing researchers. LAVA-M is
a de facto standard benchmark for evaluating fuzzers, and I chose real-world subjects that were used in
other fuzzing studies in literature for fuzzer evaluation.

A threat to internal validity is possible bugs in the implementation of FRIEND. To control this
threat, I have tested our implementation extensively.
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Table 3.2: The numbers of the unique paths, lines, and branches covered by the fuzzers

Targets AFLFast Angora FairFuzz Red- FRIEND
Queen

#unique
paths

covered

bison 4328 12784 3602 2305 16660
bsdtar 4396 10953 4375 2082 16531
cjpeg 3655 3871 3124 5510 5117
exiv2 8584 3940 5961 1758 9181
nm 2454 21767 2345 1979 28203
objdump 6600 66672 5318 5097 67775
pngfix 1138 3221 863 1076 4318
re2 4741 26312 4669 7712 35096
readelf 11090 16634 12896 5991 18898
size 3174 22615 2790 5184 35651
Average 5016.0 18876.9 4594.3 3869.4 23743.1

#covered
lines

bison 7541 7131 3117 6182 7436
bsdtar 6952 7648 7002 6584 8078
cjpeg 2044 1901 1956 1987 1961
exiv2 7484 8259 7258 7406 8252
nm 4569 5694 4614 4518 6018
objdump 8230 11613 9016 8488 10806
pngfix 971 1066 960 1031 1024
re2 8502 9322 8716 9514 9611
readelf 10543 11307 11310 11034 11874
size 4526 5560 4880 5045 6131
Average 6136.2 6950.1 5882.9 6178.9 7119.0

#covered
branches

bison 4668 4411 1723 3781 4471
bsdtar 3631 3896 3672 3374 4148
cjpeg 2353 2137 2266 2241 2201
exiv2 6021 6710 5806 6067 6958
nm 2580 3090 2647 2579 3270
objdump 5154 6454 5268 5191 6354
pngfix 504 531 492 535 533
re2 4332 4791 4425 5033 5042
readelf 7659 7697 8133 8142 8106
size 2764 3206 2846 3004 3484
Average 3966.6 4292.3 3727.8 3994.7 4456.5
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3.2 Results

This section shows the experiment results to answer the five research questions.

3.2.1 RQ1:Coverage Achievement Ability

The experiment results show that FRIEND covers more unique execution paths, more lines, and
more branches than the other fuzzers, on average over the 10 real-world target subjects. Table 3.2 shows
the number of the unique execution paths (the 2nd to 12th rows), the lines (the 13th to 23rd rows), and
the branches (the 24th to the last rows) covered by the applied fuzzing techniques for the 10 real-world
target subjects. Bold cell represents the best coverage achieved among the fuzzers applied. For example,
for bsdtar, FRIEND covers 16,531 unique paths while the second best fuzzer (i.e., Angora) covers only
10,953 paths (the third raw of the table). For another example, for size, FRIEND covers 6,131 source
code lines while the second best fuzzer (i.e., Angora) covers only 5,560 lines (the 22nd row).

On average, FRIEND achieved the highest unique path coverage, line coverage, and branch cover-
age among the applied five fuzzers. FRIEND covers 373.3%, 25.8%, 416.8% and 513.6% more unique
execution paths than AFLFast, Angora, FairFuzz, and RedQueen, respectively on average; it achieves
the highest path coverage for the nine out of the 10 subjects (except cjpeg). Similarly, FRIEND covers
2.4% (Angora) to 21.0% (FairFuzz) and 3.9% (Angora) to 19.6% (FairFuzz) more lines and branches
than the other fuzzers, respectively on average.

Figure 3.1 shows the trend of the unique path coverage achieved on the real-world subjects by the
fuzzers for 24 hours. Note that, for most subjects, FRIEND consistently achieves higher path coverage
with huge difference. Also note that the performance gap between FRIEND and the other fuzzers is
getting bigger as time goes on because AFLFast, FairFuzz, and RedQueen reach a saturation point after
few hours on many subjects, but the coverage of FRIEND keeps increasing.

Thus, as I have seen, I can confirm that the function relevance-based fuzzing strategies of FRIEND
are effective to improve test coverage significantly.

I guess that the path coverage of RedQueen is poor because RedQueen is much slower than the other
fuzzers in terms of test generation speed. This is because RedQueen is a virtual-machine based fuzzer
and it frequently performs heavy kernel-level operations such as virtual machine controls to instrument
a target program in a kernel level. For example of exiv2, the test input generation speed of FRIEND is
3.5 times faster than RedQueen (i.e.,. RedQueen generated 576 test inputs per second while FRIEND
did 1995 ones per second).

3.2.2 RQ2: Crash Detection Ability

The experiment results show that FRIEND successfully detects injected bugs in LAVA-M and real-
world unknown crashes. Table 3.3 shows the number of LAVA-M injected bugs detected by AFLFast,
Angora, FairFuzz, RedQueen, and FRIEND. For base64 and uniq, Angora, FRIEND, and RedQueen
detected the same number of the bugs. For md5sum, RedQueen detected 61 while FRIEND did 57. For
who, RedQueen detected 2462 while FRIEND did 2402 (i.e., FRIEND detected 2.4% less crashes than
RedQueen).

For the 10 real-world subjects, however, FRIEND detected at least twice more crash bugs than the
other fuzzers, which is a more meaningful indicator for crash bug detection ability for real-world appli-
cation. Table 3.4 shows the number of the real-world crashes detected by AFLFast, Angora, FairFuzz,
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Table 3.3: The number of the LAVA-M injected bugs detected by the fuzzers

Targets #listed #detected bugs
bugs AFL- Angora Fair- FUZZER RED- SES Steelix FRIEND

Fast Fuzz QUEEN

base64 28 9 29 0 7 29 0 7 29
uniq 44 0 48 0 7 48 9 43 48
md5sum 57 0 57 47 2 61 0 28 57
who 2136 1 1541 0 0 2462 18 194 2402

Total 2265 10 1675 47 16 2600 27 272 2536

Table 3.4: The number of the real-world crashes detected by the fuzzers

Targets AFLFast Angora FairFuzz RED- FRIEND
QUEEN

bison 5 5 1 0 5
bsdtar 0 0 0 0 0
cjpeg 0 0 0 0 0
exiv2 0 0 0 0 0
nm 2 5 0 1 6
objdump 0 0 0 2 3
pngfix 0 0 0 0 0
re2 0 0 0 0 0
readelf 0 0 0 0 2
size 1 1 0 4 5

Total 8 11 1 7 21

RedQueen, and FRIEND. For example, for readelf, FRIEND detected two crashes while the other
fuzzers detected none (see the 10th row of Table 3.4). FRIEND detected 21 real-world unknown crashes
from the five target subjects (bison, nm, objdump, readelf, and size). Compared to the second best
fuzzer Angora, FRIEND detected almost twice more crashes (11 vs 21). For all of these five subjects,
FRIEND detected all the bugs detected by the other four fuzzers (AFLFast, Angora, FairFuzz, and
RedQueen).

3.2.3 RQ3: Effect of the Test Input Selection Strategy of FRIEND

The experiment results show that the test input selection strategy of FRIEND is effective to increase
coverage achievement ability and bug detection ability. Table 3.5 shows the numbers of covered unique
paths, lines, branches, and detected crashes by FRIEND −IS , FRIEND RIS , and FRIEND. FRIEND
−IS and FRIEND RIS cover 9.5% and 11.0% less unique execution paths than FRIEND, respectively on
average. Similarly, FRIEND −IS and FRIEND RIS cover 1.7% and 0.9% less lines and 2.5% and 1.0%
less branches than FRIEND, respectively on average. Also, FRIEND −IS and FRIEND RIS detect only
eight crashes while FRIEND does 21. Thus, we can conclude that the dynamic function relevance-based
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Table 3.5: The numbers of the covered unique paths, covered lines, covered branches, and detected
crashes by FRIEND −IS , FRIEND RIS , and FRIEND

Targets #unique paths covered #covered lines

FRIEND−IS FRIENDRIS FRIEND FRIEND−IS FRIENDRIS FRIEND

bison 19363 13885 16660 7465 7140 7436
bsdtar 12915 10126 16531 7906 7946 8078
cjpeg 4034 4879 5117 1876 1958 1961
exiv2 4027 7891 9181 8091 8391 8252
nm 25702 27268 28203 5678 5759 6018
objdump 68132 64599 67775 11376 11495 10806
pngfix 3842 3877 4318 1019 1022 1024
re2 34710 33521 35096 9748 9623 9611
readelf 18901 18616 18898 11495 11528 11874
size 25141 29276 35651 5563 5985 6399

Average 21676.7 21393.8 23743.1 7021.7 7084.7 7145.8

Targets #covered branches #detected crashes

FRIEND−IS FRIENDRIS FRIEND FRIEND−IS FRIENDRIS FRIEND

bison 4514 4447 4471 5 5 5
bsdtar 4084 4063 4148 0 0 0
cjpeg 2131 2197 2201 0 0 0
exiv2 6662 7054 6958 0 0 0
nm 3083 3145 3270 2 2 6
objdump 6367 6387 6354 0 1 3
pngfix 529 533 533 0 0 0
re2 5031 5017 5042 0 0 0
readelf 7863 7926 8106 0 0 2
size 3211 3379 3484 1 0 5

Average 4347.5 4414.8 4456.5 8 8 21

test input selection strategy is effective to improve the coverage achievement ability and bug detection
ability of FRIEND.

3.2.4 RQ4. Effect of the Input Byte Extension Strategy of FRIEND

The experiment results show that the input byte selection strategy of FRIEND is effective to increase
coverage achievement ability and bug detection ability. Table 3.6 shows the numbers of covered unique
paths, lines, branches, and detected crashes by FRIEND −BS , FRIEND RBS , and FRIEND. FRIEND
−BS and FRIEND RBS cover 18.1% and 15.6% less unique execution paths than FRIEND, respectively
on average. Similarly, FRIEND −BS covers 2.4% less lines. FRIEND −BS and FRIEND RBS cover 2.5%
and 1.0% less branches than FRIEND, respectively on average. Also, FRIEND −BS and FRIEND RBS

19



Table 3.6: The numbers of the covered unique paths, covered lines, covered branches, and detected
crashes by FRIEND −BS , FRIEND RBS , and FRIEND

Targets #unique paths covered #covered lines

FRIEND−BS FRIENDRBS FRIEND FRIEND−BS FRIENDRBS FRIEND

bison 18241 19219 16660 7435 7465 7436
bsdtar 11744 9129 16531 7613 7995 8078
cjpeg 4269 3763 5117 1854 1986 1961
exiv2 5569 5211 9181 8205 8365 8252
nm 23211 21002 28203 5971 6552 6018
objdump 61710 58700 67775 10308 11143 10806
pngfix 3598 3267 4318 1022 1061 1024
re2 26710 27585 35096 9419 9376 9611
readelf 16429 18713 18898 11348 11754 11874
size 22929 33881 35651 6579 6351 6399

Average 19441.0 20047.0 23743.1 6975.4 7204.8 7145.8

Targets #covered branches #detected crashes

FRIEND−BS FRIENDRBS FRIEND FRIEND−BS FRIENDRBS FRIEND

bison 4484 4514 4471 5 5 5
bsdtar 4510 4090 4148 0 0 0
cjpeg 2154 2093 2201 0 0 0
exiv2 6801 6966 6958 0 0 0
nm 3208 3403 3270 2 4 6
objdump 6129 6290 6354 0 0 3
pngfix 531 526 533 0 0 0
re2 4890 4887 5042 0 0 0
readelf 7633 8006 8106 0 0 2
size 3603 3544 3484 0 1 5

Average 4394.3 4431.9 4456.5 7 10 21

detect only seven and 10 crashes respectively while FRIEND does 21.

3.2.5 RQ5. Runtime Cost of Function Relevance Related Metrics

The experiment results show that the runtime cost to calculate the dynamic function relevance
related metrics is negligible. Table 3.7 shows the execution time taken to compute the dynamic function
relevance related metrics (in minutes) and the ratio of the computation time to the total fuzzing time
(24 hours). For example, for readelf (see the fifth column of the fifth row), it takes only 2.1 minutes to
compute the dynamic function relevance metric, which is only 0.1% of the total fuzzing time.

On average over the 10 real-world subjects, the total time to compute the function relevance related
metrics is taken 14 minutes. re2 consumes the longest metric computation time (49.4 minutes), but it
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Table 3.7: Execution time (in minutes) taken to compute the dynamic function relevance metric and
the ratio of the execution time to the whole fuzzing time (i.e., 24 hours)

Targets Time (mins) Ratio(%) Targets Time (mins) Ratio(%)

bison 4.6 0.3% objdump 11.4 0.8%
bsdtar 2.2 0.1% pngfix 32.7 2.3%
cjpeg 6.4 0.4% re2 49.4 3.4%
exiv2 12.2 0.8% readelf 2.1 0.1%
nm 9.5 0.7% size 9.2 0.6%

Average 14.0 1.0%

is still only 3.4% of the total fuzzing time. FRIEND can compute the metrics fast because it only needs
to track which function is executed during the execution of a target program (this can be implemented
very efficiently by using a bit-vector whose bit is set to one if a corresponding function is invoked).
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Figure 3.1: The average unique path coverage achieved by the fuzzers for 10 runs, 24 hours.
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Chapter 4. Related Works

Coverage-guided fuzzing repeats the following three main steps within a given time budget:

1. to select/schedule a test input to mutate,

2. to select which input bytes to mutate in the selected test input, and

3. to put proper values for selected input bytes to generate new test inputs

I described related fuzzing works with respect to test input selection strategies, input byte selection
strategies, and dictionary-based mutation strategies which is a common value selecting strategy.

4.1 Fuzzing Techniques to Select/Prioritize Test Inputs

Test input schedule strategy is also named as test input selection or test input prioritization. Many
fuzzers prioritize test inputs by scoring each test input in terms of its byte size, execution speed, path
frequency and so on.

AFL [37] favors test inputs with new path coverage, small byte size, and less execution time. AFL-
Fast [5] favors test inputs that execute rarely executed paths. FairFuzz [25] and Vuzzer [31] favors test
inputs which execute rarely executed branches and which execute basic blocks located in deep control-
structure, respectively. CollAFL [15] favors test inputs whose execution paths have many uncovered
neighbor branches. Ankou [28] defines a distance between two different execution paths and it scores
each test input according to its execution path’s “uniqueness” which is measured using the distances to
other paths.

TortoiseFuzz [34] favors test inputs which execute many functions, loops, and basic blocks that have
many memory access operators. SAVIOR [9] statically label suspicious basic blocks which contain (or
which can reach) operators that could lead to undefined behaviors, and it scores each test input in terms
of a number of the suspicious basic blocks visited by the test input.

Angora [7] selects only test inputs which execute uncovered branches without prioritization among
the selected test inputs.

Unlike the above fuzzers that try to achieve high coverage or to find many crashes, some fuzzers
select test inputs to satisfy their own objectives such as detecting memory bugs and/or performance bugs.
For example, MemLock [35] focuses to detect memory consumption bugs by selecting and mutating test
inputs that consume huge memory. PerfFuzz [24] targets to generate test inputs that reveal performance
issues by selecting and mutating the test inputs with high total execution path length. AFLGo [4] aims
to generate test inputs which execute given target locations of program; it defines a distance between a
test input and target locations using static analysis, and favors test inputs with low distance.

4.2 Fuzzing Techniques to Select Input Bytes to Mutate

Since the size of execution search space for fuzzing increases exponentially to the length of the input
bytes to mutate, fuzzers identify few important input bytes using various techniques and mutate only
those important bytes.
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Dynamic Taint Analysis (DTA) BuzzFuzz [16], Dowser [18], Vuzzer [31], Angora [7] and Ma-
tryoska [8] use DTA to determine which bytes to mutate for covering a target branch. Angora selects
and mutates only input bytes on which a target branch has data dependency. Matryoska uses both DTA
and a heuristic that it mutates an input byte inj such that mutating inj does not change a previous
execution path that reaches a target branch condition.

Dynamic Inference on Input Bytes Some fuzzers avoid DTA due to DTA’s high runtime over-
head, and they select input bytes to mutate by analyzing dynamic execution information. FairFuzz [25],
Profuzzer [36], and GreyOne [14] try byte-level mutation to discover “interesting ” bytes that show inter-
esting symptoms. If a test input obtained by mutating an input byte executes a rarely-execute branch,
FairFuzz marks the input byte as an interesting one to mutate. Profuzzer tries to identify a type (e.g.,
int, long, structure) of a byte segment in input bytes by trying byte-level mutation on every input byte.
Once a type of input bytes is identified, it applies mutation strategies adequate to the type of the input.
GreyOne records each program variable’s value changes to infer which input bytes have dependency with
the program variables in uncovered branches on the pilot fuzzing stage. Although FRIEND does not
explicitly make inference on inputs bytes like these fuzzers, it still obtains valuable information on input
bytes through function relevance information.

4.3 Dictionary-based Mutation in Fuzzing Techniques

Although select proper bytes can significantly increase probability to generate new meaningful test
inputs, new value to put in mutated bytes is also important. Dictionary-based mutation was developed
for effective fuzzing for simply structured input files (to complexly-structured input files, grammar-based
fuzzing [38, 39, 40] are applied). It puts word values in its dictionary into input bytes to generate new
test inputs that contains meaningful values.

The dictionary consists of tokens provided by users or automatically extracted from target programs’
source code and/or documents. Dictionary-based mutation adds or deletes a token and mutates one token
into another to effectively generate test inputs that satisfy the input constraints of the target programs.
To guide fuzzing an input file, AFL [37] provides an API to use either a user-provided dictionary or
an automatically extracted one. Superion [39] is also an example of dictionary-based mutation fuzzing.
It proposed an improvement on AFL’s dictionary-based mutation to align with their grammar-aware
fuzzing.
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Chapter 5. Concluding Remark

This dissertation presented FRIEND which outperforms the state-of-the-art fuzzers in terms of test
coverage and crash bug detection. A core idea of FRIEND is to utilize “dynamic function relevance”
to select test inputs and input bytes to mutate, which is a salient method to improve test coverage and
crash bug detection ability cost-effectively. The evaluation on the four LAVA-M benchmark programs
and 10 popular real-world programs showed that FRIEND achieves significantly higher test coverage and
detected more crash bugs than the state-of-the-art fuzzers (AFLFast, Angora, FairFuzz, and RedQueen).

As future work, I will make a more general version of the test input and input byte selection
strategies based on dynamic function relevance , which can be applied to any of the coverage-guided
fuzzers. Also, I will refine the function relevance metric by utilizing various dynamic and static code
features with machine learning techniques. Finally, I will apply FRIEND to multi-million LoC programs
such as Apache and PHP to show that FRIEND can detect crash bugs in an extremely large program.
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