
Information and Software Technology xxx (2011) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Controlled composition and abstraction for bottom-up integration and verification
of abstract components

Yunja Choi a,⇑, Moonzoo Kim b

a School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
b Department of Computer Science, KAIST, Daejeon, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 July 2010
Received in revised form 15 July 2011
Accepted 15 August 2011
Available online xxxx

Keywords:
Controlled composition
Abstraction
Verification
0950-5849/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.infsof.2011.08.001

⇑ Corresponding author.
E-mail addresses: yuchoi76@knu.ac.kr (Y. Choi

(M. Kim).

Please cite this article in press as: Y. Choi, M. Ki
nents, Inform. Softw. Technol. (2011), doi:10.10
This work proposes a method for improving the scalability of model-checking compositions in the bot-
tom-up construction of abstract components. The approach uses model checking in the model construc-
tion process for testing the composite behaviors of components, including process deadlock and
inconsistency in inter-component call sequences. Assuming a single processor model, the scalability issue
is addressed by introducing operational models for synchronous/asynchronous inter-component mes-
sage passing, which are designed to reduce spurious behaviors caused by typical parallel compositions.
Together with two abstraction techniques, synchronized abstraction and projection abstraction, that hide
verified internal communication behavior, this operational model helps to reduce the complexity of com-
position and verification.

The approach is supported by the MARMOT development framework, where the soundness of the
approach is assured through horizontal verification as well as vertical verification. Application of the
approach on a wireless sensor network application shows promising performance improvement with lin-
ear growth in memory usage for the vertically incremental verification of abstract components.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Model checking [17] has been actively used to identify hard-
to-identify problems, such as process deadlock, data race, and incon-
sistency between inter-component call sequences, using exhaustive
search techniques over the system state space. However, it suffers
from the notorious state-space explosion problem that the memory
and time requirements for the verification increase exponentially as
the size of the search space increases. Though recent technical ad-
vances have shown gradual improvements regarding the scalability
issue [15,2,8,42], model checking is still considered impractical to
routinely apply to real-life software applications.

As scalability improvement becomes a key factor for the applica-
bility of model checking in practice, integrating model-checking
techniques into the component architecture has been an active
research area, following the divide-and-conquer principle
[9,30,42,18,49,48]. Nevertheless, most of the existing approaches
do not address the scalability issue together with the communica-
tion overhead caused by compositions. We tackle this issue using
a systematic behavioral composition of components on a single
processor model.
ll rights reserved.

), moonzoo@cs.kaist.ac.kr

m, Controlled composition and
16/j.infsof.2011.08.001
This work proposes a systematic method for alleviating the
scalability issue in two ways. First, an operational model for the
behavioral composition of abstract components is defined. The oper-
ational model classifies the message passing mechanism into two
types, synchronous message passing and asynchronous message
passing. Synchronous message passing constrains the interaction
behavior in such a way that a message sender waits for the return
of its result from the message receiver, deactivating the currently
active configuration temporarily. The operational model reduces
spurious composition behaviors compared to those with typical
parallel composition, where processes are allowed to randomly
interleave with each other, but it does not change the original func-
tional behavior if the system works on a single processor – a typical
case for safety–critical embedded software where multi-threading
is not common. We call such a composition with the operational
model a controlled composition. Second, greater reduction is
achieved by abstracting verified component behavior using synchro-
nized abstraction, which leaves only the functional behavior of the
composite component, and projection abstraction, which removes
internal behavior that is not provided by the external service struc-
ture after composition.

Each abstract component resulting from the controlled compo-
sition and abstraction constitutes a representative of the set of
composed components. It is also considered as a unit of next-level
composition in the successive model construction process. We
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001
mailto: yuchoi76@knu.ac.kr
mailto: moonzoo@cs.kaist.ac.kr
http://dx.doi.org/10.1016/j.infsof.2011.08.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2011.08.001

Fig. 1. Environments for unit verification.

1 For notational convenience, we represent a set of parallel transitions in one
transition; e.g., ð1;3;5Þ !a?x=b!xð2;3;5Þ means ð1Þ !a?x=b!xð2Þ ^ ð3Þ !a?x=b!xð3Þ ^ ð5Þ !a?x=b!xð5Þ.

2 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
have formulated these abstraction techniques with respect to the
composition of abstract components in the process of bottom-up
composition of behavioral models. Though a number of techniques
are available for extracting low-level behavioral models from code
[5,26,37], our approach is new in that it provides systematic
bottom-up model extraction and verification up to the top-level
abstract components.

This approach was developed on top of the existing MARMOT

framework for component-based development of embedded soft-
ware [14]. The framework is equipped with supporting tools,
including automated environment generation for a verification
unit and translation into the back-end model checker SPIN. We
added automation for controlled composition in this framework,
but abstraction is done manually.

We note that this work neither aims at code verification nor at
providing a methodology for component-based development. If
appropriate, existing code verification tools [6,16,47,20] may be
used instead of SPIN in our verification framework. We assume that
information on unit components and their composition structure is
already available prior to applying our approach. Our ultimate goal
is to provide a systematic method for reverse-engineering models
from code to support high-level reuse in the existing component-
based development process. This work can be considered as a
preliminary step towards achieving this goal.

The main contribution of the work can be summarized as
follows:

1. A systematic compositional minimization method specifically
designed for single processor systems is introduced and the
effectiveness of the approach is demonstrated with a series of
experiments that showed linear growth of memory usage
instead of typical exponential growth.

2. An iterative behavioral model extraction technique is provided,
which enables bottom-up composition and localized verifica-
tion from physical unit components to the top-level abstract
component. A novel application of the technique on a TinyOS
application is demonstrated.

The novelty of the approach lies in the fact that the improve-
ment in model checking scalability becomes more pronounced as
the bottom-up behavioral composition is successively abstracted.
Once the verification of the controlled composition is done, the
detailed realization of each abstract component is hidden, leaving
only its specification behavior. In this way, the verification of a
higher-level abstract component involves only its immediate
sub-components, localizing the verification problem.

The effectiveness of the suggested approach is demonstrated
with a series of experiments on a wireless sensor network
application that is available with the distribution of TinyOS [1], an
open-source operating system for wireless sensor networks. The
experimental results show that the performance of the model check-
ing shows linear growth in memory usage as the level of abstraction
grows vertically – a promising improvement over the typical expo-
nential growth. To the best of our knowledge, this is the first case of
systematically applying bottom-up composition and verification
from physical operating system components to an application
component.

The remainder of this paper is organized as follows: Section 2
provides an overview of our approach. Section 3 defines our notions
of component. Sections 4 and 5 propose operational models for
controlled composition and abstraction techniques, respectively.
Section 6 describes our verification framework, followed by the
comparative experimental result on model checking a TinyOS appli-
cation using the suggested approaches (Section 7). We conclude
with a summary on related work in Section 8 and a discussion in
Section 9.
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
2. Overview of the proposed approach

Component-based verification approaches help to localize
problems and reduce verification complexity using the divide-
and-conquer strategy. However, typical software may consist of
dozens to hundreds of components, which results in complex
and intractable interaction behavior.

A similar difficulty may occur when model checking a unit
component, since we also have to consider its environment. As
illustrated in Fig. 1, the verification of a unit component may re-
quire creating stubs and test drivers; in the figure, the component
supports two provide ports, which are supposed to be used by its
drivers, and three use ports, which specify the required services
provided by external components. The stubs, acting as components
that process messages from the unit component, and the drivers,
acting as stimuli generators, connected to these ports may have
their own independent behavior. Regardless of how simple they
may be, composition of these independent processes may result
in complex interleavings, and, thus, lead to state-space explosion.

This work deals with this issue in three ways: First, the behavior
of a composite component is controlled by defining operational
models for synchronous/asynchronous inter-component message
passing mechanisms (see Section 4). Second, we reuse verified
components in higher-level compositions after abstracting internal
communication behavior and uninteresting behavior for the new
composition (see Section 5). Third, this verification-abstraction-re-
use process is performed iteratively, which supports a systematic
verification cycle (see Section 6).
2.1. Controlled composition

We introduce operational models for compositions of commu-
nicating components with the examples in Figs. 2 and 3. In
Fig. 2a, the structural composition of the two components A and
B is depicted in the center, while the behavioral model of each
component is specified in statecharts [31] on the left/right side.
The two components A and B are composed by connecting port b
of A and port e of B. In the statecharts, a transition is specified with
events and actions, where a?x represents a message arrival event
at port a and b!x represents a message sending action at port b.
We represent a transition from a source state s to a target state t
with a triggering event p and an action q as s!p=q

t.
If we apply typical parallel composition, the resulting composi-

tion behavior would look like the statechart in Fig. 2b. Note that
any combination of the three independent sets of transitions is
possible. For example, the sequence of transitions ð1;3;5Þ !a?x=b!x

ð2 ;3; 5Þ !c?u=d!uð2; 4; 5Þ ! . . . is possible, since the active configura-
tion of the composite component after the first transition is
{2,3,5}, meaning that any outgoing transitions from these three
states are possible for the next transition.1 However, this sequence
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Fig. 2. Typical composition.

Fig. 3. Controlled composition.

Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx 3
of transitions is not possible on a single processor if b!x (which is to be
bound with e?x) is a synchronous call, i.e., if component A sends out
message x through port b and waits for the return of the control. This
case limits the possible sequence of transitions; after the transition
ð1;3;5Þ !a?x=b!xð2;3;5Þ, the only possible transition should be
ð2;3;5Þ !e?x=rvþ¼xð2;3;6Þ !=e!rvð1;3;5Þ. In other words, the active configu-
ration after the first transition is {2,5}, since synchronous message
sending prevents state 3 from being active till it receives a return
message.

The behavior anticipating synchronous message passing can be
modeled as in Fig. 3: Initial states of a component can be either in
an active state or in a passive state, depending on whether the
component itself is active or not. A component in an active state
can send out a synchronous message call together with the activa-
tion message activate, and then deactivates itself by setting the
active flag false. This forces the component to be in a passive state
until the return message comes with an activation message from
the same port used to send the message. If we impose such a con-
trol sequence, the transition from state 3 to state 4 is not possible
when the state (2,5) is the current state because the component is
not in an active state.
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
We combine this operational model with the verification model
depicted in Fig. 1. Initially, the only active component is the driver,
which generates external stimuli infinitely. However, we assume
that the unit component handles an external stimulus infinitely
faster, adopting the synchrony hypothesis; in other words, the
computational speed of each component is faster than the speed
of stimuli generation by the external environment. The stubs and
unit components are passive components that are ready to receive
messages together with the activation signal. Note that the opera-
tional model serializes the flow of control for synchronous message
passing, removing spurious behavior. This is valid for a single pro-
cessor system, which is the typical case for most safety–critical
embedded software; typical parallel composition is an over-
approximation in such systems.

2.2. Abstraction

The controlled composition removes spurious behaviors but
retains the actual behaviors of the composite components, includ-
ing internal communications. After verification of the controlled
composition, further abstraction can be performed focusing on
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

4 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
the functional behavior; synchronized abstraction removes internal
communication behaviors, replacing them with local value assign-
ments. Projection abstraction hides uninteresting internal behavior
of a composite component with respect to its externally provided
services.

Fig. 3b illustrates the synchronized abstraction of the controlled
composition in Fig. 3a. Based on the structural information that
ports b and e are connected, we can combine the sending action
b!x, activate; active = false in the transition ð1Þ ! ð2;5Þ and the trig-
gering event e?x, activate in the transition ð2;5Þ ! ð6Þ into one. A
similar reduction is possible for the sending action e!rv, activate
in the transition ð6Þ ! ð2;5Þ and the triggering event b?y, activate
in the transition ð2;5Þ ! ð1Þ.

Fig. 3c shows projection abstraction applied after the synchro-
nized abstraction; assuming that the composite component AkcB
needs to provide the services specified in port a only (and the sys-
tem is not interested in the services provided by port c), the inter-
nal behavior related to port c, the transition ð3Þ ! ð4Þ, can be
removed. The state 4 and its outgoing transitions are also removed,
since there are no more incoming transitions to the state, and, thus,
it is not reachable from the initial state.
2.3. Verification

We first verify unit components composed with their drivers
and stubs. Controlled composition of unit components replaces
the stubs with unit components incrementally, where the compo-
sition is determined by the composition structure and the type of
inter-component communication. A set of components may be
composed to build an abstract component using controlled compo-
sition, producing the realization behavior of the abstract compo-
nent. Synchronized abstraction and projection abstraction are
applied after the controlled composition is verified, producing
the specification behavior of the abstract component. Synchro-
nized abstraction is an effective way to reduce the complexity of
the behavior model, but it removes communication details. There-
fore, this technique is applied only after the communication aspect
has been verified in controlled composition.

Fig. 4 illustrates a typical composition structure of a system
where the bottom-level boxes represent physical components
and the upper-level boxes represent abstract components
composed of lower-level components. For example, an abstract
component A is composed of the abstract components B, C, and
D, with each of them being composed of other components (e.g.,
the abstract component B is composed of E, F, and G). Assuming
that the composition structure is known, our verification approach
can be summarized as follows:
Fig. 4. Checking commun

Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
1. Perform functional verification of each unit component at the
leaf level, say level n. Examples are E, F, G, and H. Let i = n � 1.

2. For each abstract component at level i, verify its realization
behavior using controlled composition, e.g., the realization
behavior of B is the controlled composition of E, F, and G.

3. Generate the specification behavior of each abstract component
at level i using synchronized abstraction and projection. The
specification behavior is the representative behavior of the
abstract component.

4. Repeat from Step 2 with i = i � 1 if i > 0. In the example, A is the
next target abstract component.

Note that this approach systematically generates high-level
composition behavior and localizes verification problems. For
example, component G is verified as a unit component and used
in all three of the abstract components B, C, and D. Once the veri-
fication of the controlled composition is done, however, the de-
tailed realization of each abstract component is hidden, leaving
only its specification behavior. In this way, the verification of a
higher-level abstract component involves only its immediate
sub-components, which localizes the verification problem. This ap-
proach reduces the complexity of behavior models and systemizes
the verification process.

3. Components

In this section, we define the component model used through-
out this paper and introduce the notion of abstract component,
which is the basis for the component-based development and ver-
ification methodology named MARMOT [14].

3.1. Component model

A component is defined as a typical labeled transition system,
but with an emphasis on the role of ports and interfaces.

Definition 1. A component M ¼ ðS;R;N; P; I; E;A;G;Attr;
P
Þ is

defined as follows:

� S is a set of states.
� R # S � P � E � G � A � S is a set of transitions.
� N is a set of names.
� P # N � I � T is a set of ports where N is an identifier and T =

{provide,use} is a type of port. In other words, a port is a named
set of events that is either provided or used by the component.
� I # 2E is a set of interfaces. In other words, an interface is a set

of events.
ication consistency.

abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx 5
� E is a set of events. Events can be signals or method calls, and
are classified into sync events and async events.
� A # ½P� �

P
is a set of pairs consisting of an action and a port. P is

optional.
� G = {gjg :¼ lval [op rval], eval(g) 2 {true, false} or g :¼ true} is a set

of Boolean expressions, where lval, rval 2 Attr and op 2 {==,
<=,<,>=,>,!=}.
� Attr is a set of attributes of the component.
�
P

is a set of actions. Actions can be calling methods, sending
signals, or internal actions such as value assignments.

P
\E is

not necessarily empty.

For example, an action is optionally paired with a port to specify
actions as outgoing messages. An attribute, whose type is assumed
to be one of the basic data types, such as bool, int, char, and string,
holds representative values of the component. We note that the
definition emphasizes the role of communication ports. For exam-
ple, component A in Fig. 2 contains two ‘‘use’’ ports named b and d
(denoted with a circled end), and two ‘‘provide’’ ports named a and
c (denoted with a half-circled end). Though the details are not
shown in the figure to save space, port c supports the interface Init
and d supports the interface Alarm, which is a set of operation sig-
natures and/or signals.

fvoid startðunsigned dtÞ; void stopðÞ; void firedðÞ;
bool isRunning; void startAtðunsigned t0; unsigned dtÞ;
unsigned getAlarmðÞ; unsigned getNowðÞg:

The port with the ‘‘provide’’ type publishes services provided by
the component and the port with the ‘‘use’’ type declares the ser-
vices the component requires. Several ports can support the same
interface in one component, with each port being uniquely identi-
fied with its name and interface. It is assumed that each port is bi-
directional for sending and receiving messages.

According to the notation explained above, the set of ports of
component A in Fig. 2 can be specified as

P ¼fða; Init;provideÞ;
ðc;Alarm;prov ideÞ;
ðb;Msp430Timer;useÞ;
ðd;Msp430TimerControl;useÞg

Actions are classified into three types; For each action a 2
P

,
we denote the type of action as a.type 2 {sync,async, internal},
where sync represents synchronous method calls, async represents
asynchronous event sending, and internal represents internal value
assignments. Events are classified into two types, synchronous
events and asynchronous events; synchronous events require an
explicit return of the result after the event processing.

A transition r = (s,p,e,g,a, t) 2 R specifies that the current state
s 2 S transits to the next state t 2 S after performing the action
a 2 A when an event e 2 E is received at port p 2 P and the guarding
condition g is evaluated as true. For notational convenience, a
transition r = (s,p,e,g,a, t) is also alternatively written as

r : s !p?e½g�=a
t. Here, s and t are called the source state and the target

state of the transition r, respectively. We denote them with sour-
ce(r) = s and target(r) = t. A trace of an abstract component is a se-
quence of transitions r1r2r3 . . . rk. . ., where the target state of ri is
the source state of ri+1.

3.2. Abstract component

An abstract component [14] is a conceptual functional unit of a
system that can be executed independently when it is realized. An
abstract component is a black box with explicitly specified and
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
externally visible behavior that acts as a contract. This external
behavior can be realized internally and independently from other
components, or it can use the functionality of other abstract
components. The process of realizing an abstract component may
involve decomposition or reuse of existing components, depending
on whether the realization requires defining a new abstract com-
ponent or whether it can reuse functionality of existing abstract
components. Therefore, each abstract component is a root of a
decomposition tree whose leaves are physical components. An
abstract component is said to be physically implemented if all of
its leaf components are concretized. A service of an abstract
component can only be accessed through its port, which provides
the specific service.

An abstract component can be specified in terms of the compo-
nent model defined in the previous section as follows:

Definition 2. A port binding map BMap: P1 ! P2 is a map binding
a port in P1 to a port in P2 with the same type and the same
interface, i.e., BMap = {(p1,p2)jp1 = (n, i, t) 2 P1, p2 = (n0, i0, t0) 2 P2

with i = i0 ^ t = t0}.
Definition 3. An abstract component Mabs consists of a specification
component Mspec ¼ ðS;R;N; P; I; E;A;G;Attr;

P
Þ and a set of

realization components Mreal ¼ Mi ¼ Si;Ri;Ni; Pi; Ii; Ei;Ai;Gi;ðf
Attri;

P
iÞgi2N that satisfies the following conditions:

� $ a port binding map BMap : P !
S

i2N Pi that maps each port in
P to a port in

S
i2N Pi.

� I #
S

i2N Ii; E #
S

i2N Ei;A #
S

i2NAi, and Attr #
S

i2NAttri

� For each r = (s,p,e,g,a, t) 2 R, there exists p0 2
S

i2N Pi and r0 2 Ri

such that BMap(p) = p0 and r0 = (s0,p0,e,g,a0, t0).

According to the definitions, the set of components {A,B,AkB} in
Fig. 2 can be considered as an abstract component, AkB being a
specification component and B, C being its realization components
with a binding map BMap(a) = a. The transition relation R is defined
in such a way that each triggering event that appeared in the
specification component is also a triggering event for a transition
in one of the realization components, i.e., all the published services
are realized internally.

Note that an abstract component can be a physical component if
the set of realization components is empty. We also note that an
abstract component may be recursively defined, since the realiza-
tion components themselves can also be abstract components.

For notational convenience, we represent an abstract compo-
nent only with its specification component throughout this paper
if it is not necessary to consider its realization details. Therefore,
abstract components and their specification components are used
interchangeably from now on.
4. Controlled composition

Controlled composition constrains the possible sequence of
transitions depending on the type of components (active or pas-
sive) and on the type of message passing mechanism (synchronous
or asynchronous). We define operational models for controlled
composition using the following definitions:

Definition 4. A set of states in an abstract component is a union of
a set of active states Sa and a set of passive states Sp, where Sa \
Sp = ;.

1. An active state is a state where all outgoing transitions are
enabled without receiving an external activation signal.
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Fig. 5. Control models of drivers and stubs.

Fig. 6. Operational rules for asynchronous message passing.

Fig. 7. Operational rules for synchronous message passing.

6 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
2. A passive state is a state where all outgoing transitions are
enabled only when an external activation signal is received.

An abstract component can be classified into two types: an ac-
tive component and a passive component.

Definition 5. Classification of abstract components

1. An active component is a component where all initial states are
active states and for any trace p from a passive state sp, there
exists an active state sa in the trace.

2. A passive component is a component where all initial states are
passive states and for any trace p from an active state sa, there
exists a passive state sp in the trace.

For active (passive) components, there is no cyclic transition
that makes the component stay in the passive (active) state indef-
initely. An active component reacts to its environmental stimuli
actively and independent of other components. Fig. 5 shows repre-
sentative examples of active and passive components; the environ-
ment of a component actively generates events, while stubs of a
component passively process external messages.

Definition 6. Operational model

1. An operational model for asynchronous message passing is
defined by the rules in Fig. 6.

2. An operational model for synchronous message passing is
defined by the rules in Fig. 7.

In Figs. 6 and 7, the predicates above the bar indicate typical
transitions in the behavioral model and the predicates below the
bar indicate possible transitions in the controlled model, induced
from the conditions above the bar.2 For example, Rule 1 says that
if there is a transition s !p?e½g�=a

t where e is an asynchronous event, a
is an asynchronous call action, and s is an active state, then the tran-
sition s !p?e½g^active�=a

t belongs to the controlled model. This means that
asynchronous call actions are maintained as they are except for add-
ing a guarding condition to check whether the source state is cur-
rently active or not. This is necessary since previous synchronous
call actions may have deactivated the active state temporarily. Rule
2 specifies the same case for a passive source state. In this case, the
resulting transition requires receiving the activate message along
with the triggering event to activate a currently passive state. Tran-
sitions with internal actions only are treated in a similar manner. On
the other hand, transitions with synchronous call actions are chan-
ged so that the synchronous call action is concatenated with the acti-
vate signal that activates the receiver of the message and the
active = false action that deactivates the currently active configura-
2 These rules are mainly for receiving messages. Rules for message sending actions
are excluded since they only require adding a guarding condition [active] for each
sending action without triggering events.

Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
tion (Rule 5 and Rule 6). Rule 7 and Rule 8 are for those cases where
the incoming event is a synchronous call and the corresponding ac-
tion returns the result through the same port. These cases require
activating the caller, and, thus, the transition action is concatenated
with the activate signal.

We note that a triggering event may cause a sequence of ac-
tions, i.e., s !p?e½g�=a1 ;a2 ;...an t. Such cases can be covered by generalizing
the operational rules. For example, Rule 5 can be generalized as

s !p?e½g�=a1 ;a2 ;...an
t; 9i; ai ¼ p0!x; x:type ¼ sync

s !p?e½g^active�=a1 ;a2 ;...p0 !x;activate;...an ; active¼false
t

s 2 Sa:

A controlled composition is defined w.r.t. this operational
model.

Definition 7. A controlled composition of two components
M ¼ S;R;N; P; I; E;G;A;Attr;

P
ð Þ and M0 ¼ S0;R0;N0; P0; I0; E0;G0;

�
A0;Attr0;

P0Þ is an abstract component MjM0 ¼ ðeS; eR; eN; eP ;eI; eE; eG;eA; gAttr;fPÞ, where eS # S� S0; eN ¼ N [N0; eP ¼ P [P0;eI ¼ I [I0; eE ¼
E [E0; eG ¼ G [G0; eA ¼ A [A0; gAttr ¼ Attr [Attr0, and eR # R� R0 is
defined by the rules in Fig. 8.
Rules 9–12 are slight variations of typical parallel composition;
transitions in each component are preserved with interleavings.
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Fig. 8. Rules for controlled composition.

Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx 7
Rule 13 and Rule 14 specify that active transitions without trigger-
ing events have priority over transitions caused by external events.

5. Abstraction

As will be shown in our experiments, controlled composition
greatly helps to reduce the complexity of verification, but only up
to a certain point. Abstractions are effective techniques for further
reducing the complexity of models, and thus their verification costs.
In this section, we introduce two abstraction techniques specialized
for abstracting internal communications and unnecessary services
for a given abstract component: Synchronized abstraction simpli-
fies detailed communication behavior among abstract components
by removing unnecessary information w.r.t. the functionality of the
component. Projection abstraction extracts a higher-level abstract
behavior relevant to its published services defined in its ports.

5.1. Synchronized abstraction

Synchronized abstraction is used to compose abstract compo-
nents into one higher-level abstract component, based on the
dependencies specified in the port connection. The idea is illus-
Fig. 9. Synchronize

Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
trated in Fig. 9. In Fig. 9a, A and B are two abstract components
where the use port b of A is connected to the provide port c of B.
It is assumed that the two ports b and c support the same interface.

The external behavior of the two abstract components and their
parallel composition are illustrated as statemachines in Fig. 9a and
b, respectively. Fig. 9c shows the reduction of the parallel compo-
sition using the port dependency; the port connection can be ab-
stracted by replacing the name of the provide port with the
name of the use port, e.g., c with b, resulting in a natural reduction
of transitions. After the reduction, the transition from the state la-
beled (1,3) and the state (1,4) is removed because the composition
of A and B results in hiding port b of A. Fig. 9d is the result of
removing the unreachable state (1,4) from the initial state (1,3).

Definition 8. A synchronized reduction of an abstract component
M ¼ S;R;N; P; I; E;G;A;Attr;

P
ð Þ w.r.t a pair of dependent ports

p1,p2 2 P, where p1 is a use port and p2 is a provide port, is an

abstract component Msyncðp1 ! p2Þ ¼ bS; bR;N; bP ; I; E;G;A;Attr;
P� �

,

where bS # S; bP ¼ P � fp1; p2g, and bR # R is recursively constructed
by applying the following rules:

1. Initially, 8s 2 S; s 2 bS.
2. For each consecutive transition ri : si !

p?e½g�=a
siþ1 and riþ1 :

siþ1 !p0?e0 ½g0 �=a0
siþ2 in R,

(a) if p = p1, a = hãii p2!x, x = e0, and p0 = p2, where hãii is a

sequence of assignment actions, then ri; riþ1 R bR and

r0i : si !p?e½g^g0 �=h ~aiia0 siþ2 is in bR.
(b) if p = p1, a = p2!x; hãii, x = e0, and p0 = p2, where hãii is a

sequence of assignment actions, then ri; riþ1 R bR and

r0i : si !p?e½g^g0 �=a0 h~aii siþ2 is in bR.
(c) Otherwise, ri; riþ1 2 bR.
3. Remove s from bS if there is no incoming transition to s in bR.

The reduction is repeated for each pair of dependent ports. For
example, Fig. 9c shows the result of the synchronized reduction of
Fig. 9b. First, the port name c is replaced with b according to the
port connection information. Second, all the consecutive transi-
tions that need communication through the same port are reduced
d abstraction.

abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

8 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
to local actions; e.g., ð1;3Þ !a?x=b!yð2;3Þ !b?x=rvþ¼xð2;4Þ is replaced with

ð1;3Þ !a?x=rvþ¼xð2;4Þ and ð2;4Þ !=b!rvð2;3Þ!b?yð1;3Þis replaced with

ð2;4Þ !=y¼rvð1;3Þ.
This process hides communications among internal compo-

nents that comprise an abstract component, replacing internal
message passings with local actions. Note that each pair of con-
nected ports is now hidden from the external view of the newly
constructed abstract component.

After the synchronized reduction, all the transitions triggered by
events through the hidden ports can be removed because they are

impossible transitions. For example, the transitions ð1;3Þ !b?x=rvþ¼x

ð1;4Þ and ð2;4Þ!b?yð1;4Þ are not possible because b is a use port that
sends a message first and receives its return value; since sending a
message through port b has already been reduced, there cannot be
any more receiving messages through that port. After removing
these transitions from (c), the state (1,4) is also removed because it
does not have any incoming transitions anymore. As a consequence,

the transition ð1;4Þ !a?x=b!xð2;4Þ is also removed. The synchronized
abstraction is finalized by removing all those transitions and states
that are unreachable from the initial states.

Definition 9. A synchronized abstraction of a component
M ¼ S;R;N; P; I; E;G;A;Attr;

P
ð Þ w.r.t. a hidden port ph R P, denoted

as MabsðphÞ ¼ bS; bR;N; P; I; E;G;A;Attr;
P� �

, is a synchronized reduc-
tion of M with the following rules:

s; s0 2 S; s !p?e½g�=a
s0 in R;p–ph

s; s0 2 bS; ðs !p?e½g�=a
s0Þ 2 bR ð15Þ

8s 2 bS; 9r 2 bR; such that s ¼ targetðrÞ ð16Þ
The rule says that all the transitions triggered through hidden

ports do not belong to the abstract behavior model, while transi-
tions triggered through other ports are preserved, and all the states
in the abstract model have incoming transitions into the states
after abstraction.
5.2. Projection abstraction

In embedded systems development, hardware components are
often assembled into one abstract component that represents a
collective functionality. Oftentimes, the sub-components assem-
bled to form the abstract component contain implementation de-
tails that are unnecessary for the abstract component. For
example, the Msp430TimerC component in our case example Tiny-
OS [40] contains dozens of ports supporting 10 virtual timers. On
Fig. 10. Projection

Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
the other hand, Msp430Timer32khzC, an abstraction of Msp430Tim-
erC, supports only three ports that are necessary for providing a
timer, and, thus, the behaviors related to the seven other timers
are irrelevant to the behavior of Msp430Timer32khzC. Projection
abstraction is used to abstract out such irrelevant behaviors after
synchronized abstraction has been applied. These abstractions
are based on a port binding map that associates a pair of ports with
the same interface type and the same port type.

Definition 10. Projection abstraction: Given an abstract compo-
nent M ¼ S;R;N; P; I; E;G;A;Attr;

P
ð Þ, a set of ports Pabs, and a port

binding map BMap: Pabs ! P, the projection abstraction

MðBMapÞ ¼ bS; bR; bN; Pabs;
bI; bE;G;A;Attr;

P� �
is an abstract compo-

nent where the triggering events are restricted to only those events
supported by ports in Pabs.
1. bN is a set of port names for Pabs.
2. bI ¼ fi 2 Ij9p 2 Pabs;n 2 bN; t 2 Tin such that p ¼ ðn; i; tÞg, i.e., a set

of interfaces that are supported by the ports in the abstract
component.

3. bE ¼ fe 2 Ej9p 2 Pabs;n 2 bN; t 2 Tin such that p ¼ ðn; i; tÞ ^ e 2 ig,
i.e., a set of events that are supported by the ports in the
abstract component.

4. bS ¼ fs; t 2 Sjr ¼ ðs; p; e; a; tÞ 2 R ^ p 2 BMapðPabsÞ ^ e 2 bEg, i.e.,
all the source and target states in a transition in R whose trig-
gering events are supported by Pabs belong to bS.

5. bR ¼ fr 2 Rjr ¼ ðs; p; e; a; tÞ ^ p 2 BMapðPabsÞ ^ e 2 bEg, i.e., all the
transitions in R with the triggering events supported by Pabs

belong to bR.

Fig. 10 illustrates a simple example of a projection abstraction:
A component A with two provided ports named IO1 and IO2 is ab-
stracted to a component with one provided port named Led0,
where IO1, IO2, and Led0 all support the same interface type Led
and Bmap assigns the abstract port named Led0 to IO1.

6. Verification

The proposed controlled composition and abstraction tech-
niques play a key role in our systematic compositional verification
approach illustrated in Fig. 11. For a given unit component, a unit
verification model consists of the target component behavior, the
drivers derived from its provide ports, and stubs derived from its
use ports. This unit verification model is translated into PROMELA, the
input language of SPIN, by translating each model as independent
processes that communicate with each other only through port
connections. Using the model checker SPIN, we can comprehensively
abstraction.

abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Fig. 11. Verification framework.

Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx 9
test the existence of process deadlock and/or incorrect call
sequences of the unit component. The verification of composite
components is performed by simply replacing drivers and/or stubs
of a unit component with the actual components.

In this verification framework, all the structural and behavioral
specifications for each physical component as well as those of ab-
stract components are assumed to be maintained in a component
repository. Therefore, abstractions are applied in the construction
of abstract components rather than during verification. Controlled
composition is applied during the translation of the unit/composite
verification model. This translation process is automated for the
abstract components specified in UML2.0 notation as an extension
of the MARMOT verification framework [14].
6.1. Generation of verification model

Each verification model consists of three elements: (1) one or
more target components, (2) a mock component acting as a driver,
and (3) mock components acting as stubs. By default, the target
components and the stubs are passive components unless specified
otherwise.3 The driver is an active component that continuously
generates external stimuli to the target component. These three ele-
ments are generated from the structural and behavioral models of
the target unit component.

Given a unit component, a driver is generated from the informa-
tion on its provide ports; a provide port specifies the services pro-
vided by the component and the component is designed to react
to external service calls. Therefore, the probable user of the compo-
nent, i.e., the driver, is supposed to generate service calls specified
in the ‘‘provide’’ port. The default driver generates events and ser-
vice calls randomly and infinitely.

For example, if an abstract component A has two provide ports
p0 and p1, where p0 supports {init} and p1 provides {start, stop,
get}, a driver continuously generates the init event and the other
driver continuously generates one of the {start, stop, get} events.
Fig. 12a illustrates the behavior of the driver that generates events
for p0 assuming that all the operations require a synchronous call.
In the figure, any of the three transitions, from s0 to s1, from s00 to s01,
and from s000 to s001, is possible in the initial state; one of them is ran-
domly selected. Since the driver is an active component, the guard-
ing condition [active] for the transitions is initially true. After the
3 Hardware components are generally active components.

Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
first transition, say, the transition from s0 to s1, all other initially ac-
tive states become deactivated temporarily until the return mes-
sage arrives for the synchronous call message.

On the other hand, a default stub is generated from the informa-
tion on each use port. Recall that the use port specifies the signa-
tures of services regardless of which component provides them. A
default stub acts as a component that provides services without real
implementation; it just consumes the request message and returns
a random value corresponding to the return type. Each default stub
is also considered as a passive component that waits for external
activation, processes a request after it is activated, and returns to
the passive state after processing the request. For example, if the
abstract component has one use port p3, where p3 supports two
operations {set, reset}, then a default stub is generated as a passive
component that receives external calls. Fig. 12b shows the behavior
of the default stub that consumes messages from port3 (connected
to p3), assuming that all the messages are synchronous calls.

In this way, both drivers and stubs are over-approximated,
allowing all possible communication behaviors.
6.2. Verification of a unit component

The three elements of the unit verification model are composed
using controlled composition. The purpose of unit verification is to
ensure the correctness of the component behavior, which can be
independently verified regardless of the detailed behavior of its
service providers. For example, we can verify the consistency of
the call signature, the correctness of call sequences in the compo-
nent, and the freedom from process deadlock. Due to its use of for-
mal language, model checking can also identify an incorrect
number of parameters in message sending, which might not be de-
tected by simulation or testing.

Note that any verification activity at this stage may detect only
relatively simple errors and generates false negatives since the ver-
ification environment is not accurately modeled. Nevertheless, the
effectiveness of model checking increases as drivers and stubs are
incrementally replaced with actual components.
6.3. Incremental composition and verification

Two unit components can be composed by connecting their
ports according to the following port connection rules:
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Fig. 12. Verification environment.

10 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
Definition 11. Port connection rules. Two ports p1 of component
C1 and p2 of component C2 can be connected if and only if

1. The two ports support the same interface, i.e., p1jI = p2jI.
2. The two ports are of different types, i.e., p1jT – p2jT.

For example, port b of component A in Fig. 2 can be connected to
port e of component B because they support the same interface, but
with different port types; b is the use type, whereas e is the provide
type.

Note that composition in our context is a simple replacement of
drivers or stubs with actual components. Given two unit compo-
nents C1 and C2, some possible compositions are:

1. If a use port p1 of C1 is connected to a provide port of C2, then C2

replaces the stub that was connected to p1.
2. If a provide port p1 of C1 is connected to a use port of C2, then C2

replaces the driver that was connected to p1.

This is a systematic process and no extra work is required to
modify the control model. As components are incrementally com-
posed, we can perform verification with more realistic models.

6.4. Verification problems

The abstraction techniques hide communication details focusing
on the functional behavior, systematically generating high-level
behavior models of abstract components. Nevertheless, we first
need to verify interaction consistency among components before
applying abstractions to assure that the abstraction does not result
in overlooking communication-related problems. This is called hor-
izontal verification. We also show that the specification behavior
constructed by synchronous abstraction is a sound abstraction of
the realization behavior. This is called vertical verification.

6.4.1. Horizontal verification
When composing several abstract components, it is important

to assure that the communication behavior is safely defined,
without any possibility of system failures caused by communica-
tion mismatches. For example, a component may send a synchro-
nous call to another component and wait for the return while the
other component is busy processing other signals and ignores the
call. This may result in a communication deadlock situation.
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
Definition 12. Communication consistency.Let M be a controlled
composition of two abstract components M1 and M2, and let
Dmap:P1 ? P2 be a dependency relation between ports in M1 and
M2. Then M (with all dependent ports connected) is said to be
consistent in its communication behavior if it runs infinitely under
the infinite sequence of events generated from its drivers through
external ports.

This communication consistency can be checked using model
checking [17,33]. For example, the SPIN model checker [33] is
equipped with a verification option – invalid end-state checking
– that can be used to check communication consistency.

6.4.2. Vertical verification
Once horizontal verification succeeds, the next step is to verify

that the specification model is an abstract representation of the
realization model. We prove this by using the notion of trace
refinement; M0 is a trace refinement of M w.r.t. a set of ports Pabs

if for all traces of M triggered by an external event through Pabs,
there is an equivalent trace in M0 processing the same external
event with the same action.

Definition 13. Given two components M ¼ S;R;N; P; I; E;G;A;ð
Attr;

P
Þ and M0 ¼ S0;R0;N0; P0; I0; E0;G0;A0;Attr0;

P0� �
;M0 is a trace

refinement of M with respect to a set of ports Pabs if the following is
satisfied:
� For any transition r = (s,p,e,g,a, t) in M, where p 2 Pabs, there
exists a finite trace r01r02r03 . . . r0k in M0, where r0i ¼ s0i; p

0
i; e
0
i;

�
g0i; a

0
i; t
0
iÞ such that

1. s ¼ s01,
2. p ¼ p01,
3. e ¼ e01,
4. 8i 2 f1; . . . ; kg; g) g0i,
5. a ¼ ha0ji, where a0j represents an action in a01; a

0
2; . . . ; a0k

� �
and

ha0ji represents a sequence of actions from a01; a
0
2; . . . ; a0k

� �
,

6. attrðsÞ ¼ attr s01
� �

and attrðtÞ ¼ attr s0k
� �

. Here, attr(s) denotes
a set of attribute values on s.
Theorem 1. If M ¼ S;R;N; P; I; E;G;A;Attr;
P

ð Þ is a synchronized
abstraction of M0 ¼ S0;R0;N0; P0; I0; E0;G0;A0;Attr0;

P0� �
, then M0 is a

trace refinement of M with respect to P.
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx 11
Proof. Each r = (s,p,e,g,a, t) in M has two possible cases; (1) r is
the result of the synchronized abstraction of r01r02r03 . . . r0k in M0, or
(2) r 2 R0. For case 1, s ¼ s01; p ¼ p01; e ¼ e01, and a ¼ ha0ji by the def-
inition of synchronized abstraction. 8i 2 f1; . . . ; kg; g) g0i is true
since g ¼ g01 ^ g02 ^ . . . ^ g0k. attrðsÞ ¼ attr s01

� �
is true because the

abstraction maintains the first state s01. attrðtÞ ¼ attr s0k
� �

is also
true since all the assignment actions from r01 to r0k are sequen-
tially performed at the incoming transition to s0k, and, thus, the
valuation of attribute values on t is the same as the valuation
of attribute values on s0k. Therefore, r01r02r03 . . . r0k is the finite trace
that refines r. For case 2, let r0 = r. Obviously, r0 is the finite trace
that refines r. j

If we consider only the values of attributes for each state, we
can define a bisimulation relation between the abstract compo-
nents before and after synchronized reduction.

Definition 14. Given two components M ¼ S;R;N; P; I; E;G;A;ð
Attr;

P
Þ and M0 ¼ S0;R0;N0; P0; I0; E0;G0;A0;Attr0;

P0� �
, a relation

H # S � S0 is defined as H(s,s0) if and only if attr(s) = attr(s0).

The proof that H defines a bisimulation relation on S � S0 uses
the fact that a transition with a sequence of actions can be ex-
pressed in a semantically equivalent way by expanding the transi-
tion with a sequence of transitions with null triggering events; for

example, s !
p?e½g�=haiii¼1::n t is equivalent to s !p?e½g�=a1 s1 !

s=a2 s2 !
s=a3 s3 . . . !s=an t,

where s means the transition can occur without any events or con-
ditions. In order to facilitate a intuitive understanding of the proof,
we introduce two auxiliary definitions; for a transition r, rjA repre-
sents the action part of the transition and rjS represents the target
state of the transition, i.e., rjA = a and rjS = t for r = (s,p,e,g,a, t).

Theorem 2. Let M be a synchronized reduction of M0. Then H is a
bisimulation relation on S � S0. Thus, M and M0 are bisimulation
equivalent.
Proof. We need to prove that (1) Hðs0; s00Þ where s0 and s00 are ini-
tial states of S and S0, respectively, (2) if H(s,s0), then for each next
state s1 of s, there exists a next state s01 of s0 such that H s1; s01

� �
, and

(3) if H(s,s0), then for each next state s01 of s0, there exists a next state
s1 of s such that H s1; s01

� �
.

First, H s0; s00
� �

holds since the synchronized abstraction reduces
only transitions and does not change the initial states.

Second, suppose H(s,s0), then each outgoing transition r from s is
either the result of synchronized reduction from r01r02r03 . . . r0k or r 2

R0. For the former case, rephrase r ¼ s !p?e½g�=<ai>i¼1::n t as r1r2 . . . rk

where r1 ¼ s !
p?e½g�=<a1 ...a1j

>

t1; ri ¼ ti�1 !
s=<ai�1j

...aij
>

ti with
i ¼ 2::k; rijA ¼ r0ijA, and tk = t. Note that such a trace r1r2 . . . rk is
unique for each r01r02r03 . . . r0k by the construction of synchronized
reduction. Let s1 = t1 and s01 ¼ r01jS, then H s1; s01

� �
holds. H si; s0i

� �
holds for i = 2..k by induction where si = ti and s0i ¼ r0ijS. For the latter
case, let s01 ¼ s1. Then H s1; s01

� �
holds and s01 ¼ s1 is a next state of s0.

Third, suppose H(s,s0), then each outgoing transition r0 from s0

has two possible cases; r0 is a part of a sequence of transitions

r01r02r03 . . . r0k in M0 which is reduced to r ¼ s !p?e½g�=<ai>i¼1::n t in M or
r0 2 R. For the former case, we can find a unique sequence of
transitions r1r2r3 . . . rk in M such that H rijS; r0ijS

� �
for each i = 1. . .k

with the same argument as in the second proof. Let’s say r0 ¼ r0i in
this sequence of transitions, then s1 = rijS satisfies H s1; s01

� �
for

s01 ¼ r0ijS. For the latter case, let s1 = r0jS, then H s1; s01
� �

holds and s1 is
a next state of s. j
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
Therefore, state properties verified after synchronized abstrac-
tion are also valid before the abstraction if we assume that transi-
tions do not cost time. We note that the abstraction does not
introduce false negatives for state properties. However, false nega-
tives are possible for path properties such as ‘‘X happens at least
two transitions after Y becomes true’’ after the abstraction.

Theorem 3. Let M be an abstract component after applying con-
trolled composition, synchronized abstraction, and/or projection
abstraction on M0. Then any state properties verified on M are valid
on M0 if the external events are limited to those published in M.
Proof. It follows from Theorem 2 and the fact that (1) the projec-
tion abstraction removes behavior from M0 only when they are not
triggered by the published external events, and (2) controlled com-
position removes impossible behaviors on serial machines, but
retains all sequential behaviors of M0. j
7. Experiments

In order to see the effect of the proposed controlled composition
and abstraction, we have conducted a series of experiments on a
sensor network application running on top of TinyOS.

7.1. TinyOS components

TinyOS [1] is an open-source operating system for wireless sen-
sor networks developed at the University of California at Berkeley.
Its core code consists of less than 4000 bytes of codes, which con-
sume less than 256 bytes of data memory. It supports event-based
multi-tasking, aiming at low-cost embedded operating systems
suitable for embedded networking. The programming language of
TinyOS, called nesC [27], is a C dialect with component-based con-
structs. The size of the program code is relatively small, but it still
contains most of the complex behavior of generic operating systems.

Fig. 13 shows the top-level structure of the abstract compo-
nents of a TinyOS application, RadioCountToLeds, which is released
with TinyOS as a case example. The application maintains a 4 Hz
counter, broadcasts the value of the counter when it is updated,
and displays the bottom three bits of the counter on the LEDs. As
shown in Figs. 13 and 14, the application structure including its
underlying TinyOS is modeled using the notion of abstract compo-
nents from the top level to the bottom physical component. At the
top level, the application consists of seven abstract components as
illustrated in Fig. 13, where each abstract component is labeled in
alphabetical order and is refined into an internal structure. Each
abstract component at the top level is successively refined; for
example, one of the abstract components, TimerMilliC (labeled with
D) is refined into two physical components D31, D32, and one ab-
stract component D33, which is further refined (Fig. 14). Fig. 15 is
a simplified internal model of D33.

This structural modeling process is rather straightforward,
since the organization of TinyOS components is well matched
with our notion of abstract component. However, we need to
construct the behavioral model of each abstract component,
since it is not explicitly specified in the abstract-level TinyOS
components. We reverse-engineered the behavioral model from
the bottom-level components by applying composition and
abstraction successively.

7.2. Experimental settings

The goal in this series of experiments is to see the effect of con-
trolled composition and abstraction in the verification of TinyOS
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Fig. 13. Top-level structure of a TinyOS application.

Fig. 14. The internal structure of the abstract component D.

12 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
components as bottom-up behavioral composition is performed.
To compare the performance, we conducted three sets of verifica-
tions at the initial step (for the verification of composition behavior
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
at the bottom level) as follows, where the verification purpose of
each experiment was to show the communication consistency as
stated in Definition 12.
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

a

b c f

e d g h

Fig. 15. The internal structure of D33.

Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx 13
1. Composite components are verified with conventional parallel
composition and no abstraction is applied to generate specifica-
tion behavior.

2. Composite components are verified with controlled composi-
tion and no abstraction is applied to generate specification
behavior.

3. Composite components are verified with controlled composi-
tion and specification behavior is generated and used for the
verification of the next-level composite components.

The target component for the comparative verification is D33 in
Fig. 14, whose internal composition structure is shown in Fig. 15.
All the experiments were performed on a PC with a 2-Gigahertz
Pentium II processor and 2 Gigabytes of memory; the maximum
allocable memory during SPIN verification was set to one Gigabyte
and the verification time threshold was set to 1 h. Two verification
options were used in the experiments with SPIN: the exhaustive
search option by default and the bit-state space hashing option,
based on partial search, for the cases when exhaustive search does
not scale up. Though verification using the bit-state space hashing
option can be unsound, we can judge the verification coverage
from the hash factor reported by the model checker.
7.3. Verification with parallel composition

Verification with parallel composition required much effort and
a lot of resources. First, it generated a large number of false nega-
tives, reporting unrealistic errors in the communication model.
Second, when all the unrealistic errors were finally dismissed,
the model checker SPIN succeeded in verifying each unit verification
model, but failed to verify composite components due to an out-of-
memory error – a typical state-space explosion problem in model
checking.

A counterexample identified in the verification of component E
is stated below:
Table 1
Experiments on parallel composition.

Name Type Depth States

e U 39,146 20,245,676
d U 8361 162,844
b (d + e) C OM OM
b (d + e) C 214,157 26,404,801

Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
1. The environment of E calls the service start.
2. The start operation calls getNow internally.
3. The environment calls the service start again, but this call is pend-

ing, since E is now in the middle of processing the previous call.
4. The service provider of getNow sends a return message, but it is

pending, since the previous start message should be processed
first.

5. The environment can send messages until the message buffer
becomes full, and eventually, no more progress is possible.

This situation can be an actual process deadlock situation if the
service call start from its environment is an asynchronous call; the
environment may send messages indefinitely without waiting for
the result of its prior calls. For the case of synchronous calls, how-
ever, this type of counterexample is not possible, since the environ-
ment does not send the next message before receiving the result of
its prior message. In fact, start is defined as a synchronous call, and
thus, this counterexample is a false negative.

Table 1 shows the verification results after dismissing all such
false negatives. The first column of the table indicates the names
of the abstract components in Fig. 15. The second column is for
the type of the component, which can be either a unit component
(U) or a composite one (C). The performance and the cost of verifi-
cation are shown in columns three to seven; starting from the third
column, the columns represent the search depth, the number of
states searched, the number of transitions searched, the amount
of memory consumed in Mega bytes, and the amount of time re-
quired for the verification in seconds, in that order. The last column
indicates the hash factor when the bit-state hashing option was
used. The default verification option was exhaustive search.

The verification of unit components performed well with a
moderate amount of time and memory. For example, SPIN

consumed 162.47 Mbytes of memory and 115 s to model-check
component e exhaustively. However, the verification of composite
components performed quite poorly; SPIN failed to exhaustively
verify b, which is the composition of d and e, exceeding the allowed
Transitions Memory Time H/F

24,523,053 162.47 115.00
238,969 8.85 0.17
OM OM OM
40,635,277 523.77 48.10 150.91

abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

14 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
memory limit. The last row of the table shows the verification
performance on b when the bit-state hashing option was used.
Any further composition with b spaced out of memory.
7.4. Verification with controlled composition

Table 2 shows the experiment results of the verification using
controlled composition. The use of controlled composition reduced
verification time and memory for each unit component, but a more
drastic improvement can be seen in the verification of composi-
tions. For example, when controlled composition was used for b,
which is a composition of d and e, the search depth required for
the verification decreased to about one tenth of the search depth
required for parallel composition. The number of states and the
number of transitions required for the verification decreased to
about one fourth, respectively half, of those for parallel composi-
tion. Due to the successive reduction in verification complexity, S
PIN was able to verify all unit component models and their
compositions, except for the top-level component a, which is, in
fact, a composition of seven components. SPIN failed to verify a
exhaustively with 1 Gigabyte of memory. It required over 1 h
38 min using the bit-state hashing option, and its expected cover-
age was only 2.08%. Therefore, we conclude that SPIN fails to scale
up to a.

A successive composition without abstraction is subject to
state-space explosion in the end.
7.5. Verification with controlled composition and abstraction

In the third experiment, each verified composite component
was abstracted using synchronized abstraction and projection
abstraction. Table 3 shows the result; the verification result of each
unit component is the same as that of the second experiment, since
both used controlled composition for unit verification models. Each
composite component, however, was abstracted after controlled
Table 2
Experiments on controlled composition.

Name Type Depth States

e U 2715 101,694
d U 34 167
b (d + e) C 25,531 2,575,743
g U 43 111
h U 25,760 904,690
f (g + h) C 32,289 1,330,836
c U 4399 2,699,048
a (b + c+f) C OM OM
a (b + c + f) C 52,616 2.14e + 09

Table 3
Experiments on controlled composition and abstraction.

Name Type Depth States

e U 2715 101,694
d U 34 167
b_real C 25,531 2,575,743
b_spec C 763 12,227
g U 43 111
h U 25,760 904,690
f_real C 32,289 1,330,836
f_spec C 1331 30,163
c U 4399 2,699,048
c_f_real C 88,204 21,246,200
c_f_spec C 19,509 372,043
a_real C 28,414 74,525,803
a_spec C 689 7,964,500

Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
composition and verification. For example, the row for b_real in
Table 3 shows the verification result of b using controlled compo-
sition only, whereas the row for b_spec shows the verification re-
sult after applying abstractions on b_real, which reveals a drastic
improvement in performance. Similarly, f_spec is the verification
result after applying abstractions on f_real, which is a controlled
composition of g and h. c_f_real is a controlled composition of c
and f_spec and c_f_spec is its abstracted version. In this way, SPIN

succeeded in verifying all composite components up to a.
When an abstract component is composed of a number of com-

plex components, it may be impossible to verify the realization
component using exhaustive verification methods. For example,
c_f_real and a_real required more than 1 Gbyte of memory for
exhaustive verification. In such a case, the bit-state hashing option
is used to save verification time and cost, trading the exhaustive-
ness of verification for efficiency. The results could be unsound,
but their hash factors reported by the SPIN verifier show high ex-
pected state coverage: over 79% for c_f_real and 103% for a_real,
respectively.

Fig. 16 compares the scalability of memory consumption for
the second and the third experiments. We note that memory
consumption for compositions with a control model and abstrac-
tion grows linearly if we consider only the specification models.
7.6. Verification up to the application component

Once the effectiveness of controlled composition and abstrac-
tions had been shown through the comparative experiments up
to the abstract component D33, we continued the same controlled
composition and abstraction process up to the top-level applica-
tion component A. Table 4 shows the result; D31, D32, and D33_spec,
which is the same as a_spec in Table 3, are independently verified
first and then composed into D2_real. The verification of D2_real is
performed using the bit-state hashing option, since it fails with an
out-of-memory error when the exhaustive search option is used.
Transitions Memory Time H/F

135,115 95.70 0.35
320 4.50 0.00
4,323,539 107.64 20.70
215 2.19 0.00
1,611,177 58.04 4.36
2,409,953 99.82 6.41
3,700,386 78.30 16.30
OM OM OM
3.18e + 09 515.80 5890.00 2.08

Transitions Memory Time H/F

135,115 95.70 0.35
320 4.50 0.00
4,323,539 107.64 20.70
19,379 3.58 0.02
215 2.19 0.00
1,611,177 58.04 4.36
2,409,953 99.82 6.41
68,204 33.58 0.15
3,700,386 78.30 16.30
48,395,531 546.63 54.90 79.10
1,971,796 124.63 7.53
55,306,400 546.63 69.00 103.34
12,382,052 248.75 46.90

abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Table 4
Experiments on high-level abstract components.

Name Type Depth States Transitions Memory Time H/F

D_31 U 13,826 10,760,942 20,504,583 528.12 96.90
D_32 U 670 114,512 131,953 16.86 0.20
D_33_spec C 689 7,964,500 12,382,052 248.75 46.90
D_2_real C 11,692 354,676,100 997,864,410 515.63 2220.00 6.05
D_2_spec C 9833 12,903,757 28,985,781 397.65 77.30
C_1 U 254 5290 8718 35.35 0.04
C_real C 2240 226,844 250,943 44.23 1.12
C_spec C 425 23,155 27,464 3.09 0.08
B_spec C 66 95 111 2.50 0.00
A_real C 170,886 43,300,574 103,316,890 519.36 131.00 49.59
A_spec C 159,947 10,544,618 24,503,674 497.41 122.00

700
800
900

Controlled composition

400

500

600
Controlled composition and abstraction

200
300
400
500
600

100

200

300

0
100

e d b g h f c a

0

Fig. 16. Scalability of memory consumption.

Fig. 17. Memory usage for model checking abstract components of the RadioCountToLeds application.

Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx 15
After applying synchronous abstraction and projection, however,
the abstract model D2_spec of D2_real is verified using the exhaus-
tive search option with about 400 Mbytes of memory. A_real is the
realization model of the top-level application component, which is
composed of the abstract components B, C, D, E, F, and G using par-
allel composition. It also results in an out-of-memory error with
the exhaustive search option, but its controlled and abstracted ver-
sion A_spec was verified within 500 Mbytes of memory and 122 s.

Fig. 17 illustrates the memory usage graph when successively
composing and verifying abstract components bottom-up; the left-
most side shows the bottom-level components, and successive com-
posite components are shown going towards the right side. It is clear
that each composition results in a local peak in memory usage (e.g.,
c_f_real, a_real,D2_real, and A_real), but this is alleviated after apply-
ing controlled composition and abstractions (e.g., c_f_spec, a_spec,
D2_spec, and A_spec). We note that the growth of memory usage is
linear when we consider only the specification models.
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
8. Related work

Formal methods are frequently used for quality assurance in the
development of component-based systems [36,46,25]. This section
summarizes existing approaches related to this work in four cate-
gories; (1) interface theories for defining the semantics of compo-
sitions, (2) approaches for improving the scalability of model
checking, (3) approaches for modeling and adaptation, and (4) do-
main-specific verification approaches for TinyOS. We also discuss
some of the existing program verification tools and their possible
roles in our approach.

8.1. Interface theories

There have been numerous studies on interface theories for mod-
el checking components [34,35,28,22,7,21]. [35] proposed an opera-
tional model for the coordination language Reo for specifying
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

16 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
component connectors. It provides a composition operator that joins
two connectors, which corresponds to parallel composition, and de-
fines port hiding, which is similar to projection abstraction in this
work. Their work is focused on defining semantics for the Reo con-
nectors, which are classified into synchronous channels for simulta-
neous sending and receiving of messages and FIFO channels for
asynchronous connection. Contrary to this, our work deals with syn-
chronous message passing at the application level, depending on
whether an operational call requires a response or not from the ser-
vice provider, regardless of the type of connectors used.

Ref. [28] proposed a theoretical framework for modeling com-
ponent-based systems by formally defining the notions of compo-
nents, connectors, and the important properties of interaction
systems. They emphasize the necessity of concepts and tools for
integrating synchronous and asynchronous components as well
as different communication mechanisms, such as communication
via shared variables, signals, or rendezvous. Among the three mod-
els composing their framework for component-based modeling – a
behavioral model, an interaction model, and an execution model –
the execution model deals with synchronous and asynchronous
executions, where high-level abstract layers adopt asynchronous
interaction, while strong synchronous execution with priority is
assumed in the lower-level abstract layers. In comparison, our ap-
proach treats synchronous and asynchronous execution semantics
at the same level.

Giese et al. [22] used the notion of connectors to define domain-
specific patterns for real-time UML designs. Their approach is
based on the synchronous communication assumption that send-
ing and receiving happens within the same time step. We elimi-
nate this assumption in our approach, allowing messages to be
buffered and processed in different time steps.

8.2. Scalability improvement

There are two major approaches to improving scalability in
model checking components: one is compositional minimization
[11,13,29,51], and the other is compositional model checking
[9,30,42,18].

Compositional minimization tries to minimize the composition
itself before applying model checking; given a parallel composition
of two components C1kC2, these approaches reduce each compo-
nent Ci either by using property-based model extraction [13], pred-
icate-based input-restricting minimization [51], or a bisimulation
equivalence relation [11,29] with respect to the composition inter-
face. Our work is closest to the last approach, but we added transi-
tion reduction using the information about the communication
mechanism and systemized the reduction process.

In compositional model checking, the verification problem p,
AjB �q of a composition of two components A and B is divided into
two problems of verifying p, A�r and r, B�q. Assuming that the nec-
essary and sufficient premise r satisfies both problems, the compo-
sitional verification problem can be reduced to the verification
problem for one component. Nevertheless, finding such premises
is known to be difficult [18] and most recent related research activ-
ities have focused on automatically finding good assumptions
[9,30,42].

Automatic generation of verification environments for model
checking components has also been an important issue for efficient
model checking [19,50], but the focus is on finding the smallest
environment of a component based on its interface specification
without considering a specific composition case.

8.3. Modeling and adaptation

It is worth noting a couple of existing model-based adaptation
techniques for assembling mismatching components. Nejati et al.
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
[43] presented heuristics and/or a systematic algorithm for match-
ing and merging statecharts. Canal et al. [12] proposed synchro-
nous products and reordering of messages to resolve mismatched
communication behavior between two components. Ziadi et al.
[52] defines an algebraic framework for composing statecharts
and then shows how to synthesize a statechart from UML 2.0 se-
quence diagrams. These can be adopted in our framework for more
sophisticated composition, but our current work does not consider
mismatching component behaviors; mismatched behaviors are
identified in the verification process as counterexamples of com-
munication consistency.

Pelliccione et al. [45] proposed an automatic and verifiable
component assembly method using CHARMY [44]. Their approach
first verifies and refines the software architecture with respect to
a set of properties using the CHARMY tool, and then locally assembles
the actual components into the verified architecture by automati-
cally generating adaptor code that addresses behavioral mis-
matches. The CHARMY approach deals with a framework for
model-driven component development and verification that has
a similar goal as the MARMOT framework [14]. Their approach for-
mally defines relationships among components, state diagrams,
and sequence diagrams. However, it does not deal with refine-
ments and abstractions. The scalability issue of model checking,
the main concern of our work, is not treated either.

Baresi et al. [4] proposed a domain-specific model checker
equipped with an underlying communication infrastructure that
has been overlooked by general-purpose model checkers. This in-
cludes mechanisms for message ordering, filtering, subscription
delay, replies, queue size, and queue drop policy. In comparison,
our control model is concerned with the application-level message
passing mechanism; we adopt the communication constructs pro-
vided by the model checker SPIN for the underlying communica-
tion infrastructure.

8.4. Model checking TinyOS

A couple of modeling and analysis techniques specific to TinyOS
are available, but none of them mentions performance issues. Ar-
cher et al. [3] proposed interface contracts for TinyOS to reduce
programming errors caused by misunderstanding interfaces, and
Basu et al. [5] presented a model construction methodology ap-
plied to TinyOS-based networks, which focuses on how to con-
struct component models for TinyOS modules. It is a good
reference for constructing an abstract component model from the
code, but higher-level abstraction is not considered. Völgyesi
et al. [48] suggested a verification approach based on interface
automata for component compositions, especially targeting TinyOS
components; it proposed an interface language that specifies the
external behavior of a component, and checks interface compati-
bility using interface automata and their composition rules. As
the authors noted in the paper, most of the TinyOS components
do not interact asynchronously, and, thus, their approach to mod-
eling TinyOS components in PROMELA was not efficient in verifica-
tion. Our approach addresses exactly this issue by introducing a
control model for synchronous message passing.

8.5. Tools for program verification

Model-checking software programs have been supported by
numerous tools [16,47,20,6]. Most notably, CBMC [16] takes ANSI
C/C++ programs, converts them into formal models in a conjunc-
tive normal form, and verifies basic properties, such as pointer mis-
use and array bound checking, as well as user-defined properties
specified as assertions, using SAT-solver. Java PathFinder [47] is a
model checker for programs written in Java, which is based on
an explicit model-checking technique. VCC [20] supports modular
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx 17
verification of C programs using SMT-solver as its underlying
verifier.

These are quite useful tools that can be applied in various appli-
cation domains [10,24,23] if the purpose is code verification. Nev-
ertheless, program verifiers do not play a major role when the goal
is bottom-up verification and composition for reverse-engineering
abstract components where behavioral model extraction is re-
quired. Moreover, existing code verifiers cannot handle embedded
software directly due to several reasons: (1) they cannot directly
handle hardware-dependent code written in inline assembly code,
(2) they need environment models to construct a closed verifica-
tion model, which requires manual modeling [39], and (3) each
code verifier has its own limitation. For example, infinite loops
cannot be handled without manual intervention in CBMC, analysis
of arrays is not precise in BLAST [38], and VCC requires manual
annotations on pre- and post-conditions for each function to be
verified, which is not a trivial task. Therefore, abstraction and mod-
el extraction is a necessary process before applying code verifiers.
It is possible to use those tools as the back-end verifier in our ap-
proach instead of SPIN, but a model extraction process is required
anyway and the extracted model has to be expressed in a specific
implementation language such as C. We chose the SPIN modeling
language since it makes more sense to make the model lan-
guage-independent.
9. Discussion

This work introduced a method for the systematic construction
of verification models using controlled composition and abstrac-
tion. A control model for the inter-component message passing
mechanism is proposed together with abstraction methods for sys-
tematically extracting a higher-level abstract component from the
composition of lower-level components. Two abstraction tech-
niques, synchronized abstraction and project abstraction, are
adopted from process algebra [32,41], but the novelty of the tech-
nique lies in the systematic application of the operations in the
bottom-up construction of abstract components with respect to
port bindings and port dependencies.

As demonstrated with the experiments, the proposed approach
is effective in reducing verification cost while retaining the com-
prehensiveness of the model checking technique. We note that
abstraction techniques are applied to a composition only after
the successful verification of the composite components, which re-
duces the risk of overlooking the important behavior of a compo-
nent, especially its communication behavior.

Though improving model checking scalability is the most
important theme of this work, one of the major motivations is to
extract reusable and verified components from code that can be re-
used in model-driven development processes. Verified underlying
components, such as operating system components, with their ab-
stract representations, can be reused in the top-down modeling
and verification process for any applications on top of the operat-
ing system. Therefore, our approach emphasizes the successive
model extraction process as well as the verification aspect.

The main contribution of the suggested approach is twofold:
First, a systematic compositional minimization method specifically
designed for single processor systems is introduced. Second, an
iterative behavioral model extraction technique is provided. The
approach is demonstrated on a TinyOS application showing the
reduction of memory consumption in model checking; a linear
growth of memory usage is observed instead of the typical expo-
nential growth. However, it also shows that controlled composi-
tion alone does not make model checking scale up to the
verification of the top-level abstract component; as shown in the
experiment result, a couple of realization compositions required
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
memory and time beyond our experimental setting, which resulted
in using a non-exhaustive search option. Though overall perfor-
mance is promising, further investigation for improving the verifi-
cation performance, especially for the realization composition, is
necessary. We also showed that our approach guarantees the
exactness of the verification result for state properties, but false
negatives are possible for path properties. Therefore, the suggested
abstraction techniques are not suitable for path properties such as
hard realtime issues.

The approach is generally applicable to the verification of func-
tional correctness and interaction consistency for each composi-
tion. Once this bottom-up composition and verification is done,
the constructed composition tree with behavioral specifications
can be used for checking system-level properties. This may require
top-down decomposition of global properties and/or a systematic
identification of physical components related to the system-level
errors. We leave these issues to future work.
Acknowledgments

This work was supported by National Research Foundation of
Korea Grant funded by the Korean Government (2010-0017156)
and the Engineering Research Center of Excellence Program of the
Korean Ministry of Education, Science and Technology(MEST)/
National Research Foundation(NRF) (Grant 2011-0000978).
References

[1] TinyOS website. <http://www.tinyos.net/>.
[2] S. Anand, C.S. Pasareanu, W. Visser, Symbolic execution with abstraction,

Software Tools for Technology Transfer 11 (1) (2008) 53–67.
[3] Will Archer, Philip Levis, John Regehr, Interface contracts for tinyOS, in:

Information Processing in Sensor Networks, April 2007, pp. 158–165.
[4] L. Baresi, C. Ghezzi, L. Mottola, Loupe: verifying publish–subscribe architecture

with a magnifying lens, IEEE Transactions on Software Engineering 37 (2)
(2010) 228–246.

[5] A. Basu, L. Mounnier, M. Poulhies, J. Pulou, J. Sifakis, Using BIP for modeling and
verification of networked systems – a case study on tinyOS-based networks,
in: 6th IEEE International Symposium on Network Computing and Application,
July 2007, pp. 257–260.

[6] Dirk Beyer, Thomas A. Hensinger, Ranjit Jhala, Rupak Majumdar, The software
model checker blast: applications to software engineering, International
Journal on Software Tools for Technology Transfer 9 (5) (2007).

[7] Simon Bliudze, Joseph Sifakis, The algebra of connectors – structuring
interaction in BIP, IEEE Transactions on Computers (2008).

[8] Mihaela Gheorghiu Bobaru, Dimitra Giannakopoulou, Corina S. Pasareanu,
Refining interface alphabets for compositional verification, in: 13th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2007, pp. 292–307.

[9] Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, Dimitra Giannakopoulou.
Automated assume-guarantee reasoning by abstraction refinement, in: 20th
International Conference on Computer Aided Verification, 2008, pp. 135–148.

[10] Doina Bucur, Marta Z. Kwiatowska. Poster abstract: software verification for
TinyOS, in: 9th ACM/IEEE International Conference on Information Processing
in Sensor Networks, 2010.

[11] D. Bustan, O. Grumberg. Modular minimization of deterministic finite-state
machines, in: Proceedings of the 6th International Workshop on Formal
Methods in Industrial Critical Systems, 2001, pp. 163–178.

[12] Carlos Canal, Pascal Poizat, Gwen Salauen, Model-based adaptation of
behavioral mismatching components, IEEE Transactions on Software
Engineering 34 (4) (2008) 546–563.

[13] M. Chiodo, T.R. Shiple, A.L. Sangiovanni-Vincentelli, R.K. Brayton, Automatic
compositional minimization in CTL model checking, in: Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 1992.

[14] Yunja Choi, Christian Bunse, Design verification in model-based l-controller
development using an abstract component, Software and Systems Modeling
10 (1) (2011) 91–115.

[15] Edmund Clarke, Armin Biere, Richard Raim, Yunshan Zhu, Bounded model
checking using satisfiability solving, Formal Methods in System Design 19 (1)
(2001).

[16] Edmund Clarke, Daniel Kroening, Flavio Lerda, A tool for checking ANSI-C
programs, in: 10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2004.

[17] Edmund M. Clarke, Orna Grumberg, Doron Peled, Model Checking, MIT Press,
1999.
abstraction for bottom-up integration and verification of abstract compo-

http://www.tinyos.net/
http://dx.doi.org/10.1016/j.infsof.2011.08.001

18 Y. Choi, M. Kim / Information and Software Technology xxx (2011) xxx–xxx
[18] Jamieson M. Cobleigh, George S. Avrunin, Lori A. Clarke, Breaking up is hard to
do: an evaluation of automated assume-guarantee reasoning, ACM
Transactions on Software Engineering and Methodology (2008).

[19] C. Colby, P. Godefroid, L.J. Jagadeesan, Automatically closing open reactive
programs, ACM SIGPLAN Notices (1998).

[20] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, W. Shulte, VCC: contract-based
modular verification of concurrent C, in: 31st International Conference on
Software Engineering, 2008.

[21] Luca de Alfaro, Thomas A. Henzinger, Interface theories for component-based
design, in: Proceedings of the First International Workshop on Embedded
Software, 2001.

[22] Holger Giese, et al., Towards the composition verification of real-time UML
designs. In Proceedings of the 9th European Software Engineering Conference/
11th ACM SIGSOFT Symposium on Foundations of Software Engineering, 2003.

[23] J. Penix et al., Verifying time partitioning in the DEOS scheduling kernel,
Formal Methods in Systems Design Journal 26 (2) (2005).

[24] Lucas Cordeiro, et al., Semiformal verification of embedded software in
medical devices considering stringent hardware constraints, in: International
Conference on Embedded Software and Systems, 2009.

[25] Luis Gomes, et al., Towards usage of formal methods within embedded
systems co-design, in: 10th IEEE International Conference on Emerging
Technologies and Factory Automation, September 2005.

[26] Gerald C. Gannod, Betty H.C.Cheng, A suite of tools for facilitating reverse
engineering using formal methods, in: 9th International Workshop on
Programming Comprehension, 2001, pp. 221–232.

[27] D. Gay, P. Levis, R. Behren, et al., The nesC language: a holistic approach to
networked embedded systems, in: Conference on Programming Language
Design and Implementation, June 2003, pp. 1–11.

[28] Gregor Goessler, Sussane Graf, Mila Majster-Cederbaum, M. Martens, Joseph
Sifakis, An approach to modelling and verification of component based
systems, in: SOFSEM 2007, LNCS, vol. 4362, 2007, pp. 295–308.

[29] S. Graf, B. Steffen, G. Luttgen, Compositional minimization of finite state
systems using interface specifications, Formal Aspects of Computing 8 (1996)
607–616.

[30] A. Gupta, K.L. McMillan, Z. Fu, Automated assumption generation for
compositional verification, Formal Methods in System Design 32 (2008)
285–301.

[31] D. Harel, Statecharts: a visual formalism for complex systems, Science of
Computer Programming 8 (3) (1987) 231–274.

[32] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[33] Gerard J. Holzmann, The SPIN Model Checker: Primer and Reference Manual,

Addison-Wesley Publishing Company, 2003.
[34] Graham Hughes, Tevfik Bultan, Interface grammars for modular software

model checking, IEEE Transactions on Software Engineering 34 (5) (2008) 614–
632.

[35] Mohammad Izadi, Marcello M. Bonsangue, Dave Clarke, Modeling component
connectors: Synchronisation and context-dependency, in: 6th IEEE
International Conference on Software Engineering and Formal Methods, 2008.
Please cite this article in press as: Y. Choi, M. Kim, Controlled composition and
nents, Inform. Softw. Technol. (2011), doi:10.1016/j.infsof.2011.08.001
[36] Steven D. Johnson, Formal methods in embedded design, IEEE Computer 36
(11) (2003) 104–106.

[37] M.U. Khan, K. Geihs, et al., Model-driven development of real-time systems
with UML 2.0 and C, in: Proceedings of the 3rd International Workshop on
Model-based Methodologies for Pervasive and Embedded Software at the 13th
IEEE International Conference on Engineering, 2006.

[38] M. Kim, Y. Kim, H. Kim, A comparative study of software model checkers as
unit testing tools: an industrial case study, IEEE Transactions on Software
Engineering 37 (2) (2011).

[39] Moonzoo Kim, Yunja Choi, Yunho Kim, Hotae Kim. Formal verification of a
flash memory device driver – an experience report, in: 15th International SPIN
Workshop on Model Checking Software, 2008.

[40] Philip Levis, David Gay, TinyOS Programming, Cambridge University Press,
2009.

[41] Robin Milner, Communicating and Mobile Systems: The p-calculus, Cambridge
University Press, 1999.

[42] Wonhong Nam, P. Madhusudan, Rajeev Alur, Automatic symbolic
compositional verification by learning assumptions, Formal Methods in
System Design 32 (3) (2008) 207–234.

[43] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook,
Parmela Zave, Matching and merging of statecharts specifications, in: 29th
International Conference on Software Engineering, 2007.

[44] P. Pelliccione, Paola Inveradi, Henry Muccini, CHARMY: a framework for
designing and verifying architectural specifications, IEEE Transactions on
Software Engineering 35 (3) (2009) 325–346.

[45] P. Pelliccione, M. Tivoli, A. Bucchiarone, A. Polini, An architectural approach to
the correct and automatic assembly of evolving component-based systems,
The Journal of Systems and Software 81 (12) (2008) 2237–2251.

[46] Oscar R. Ribeiro, Joao M. Fernandes, Luis F. Pinto, Model checking embedded
systems with PROMELA, in: 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, 2005.

[47] W. Visser, K. Havelund, G. Brat, S. Park, Model checking programs, in: 15th IEEE
International Conference on Automated Software Engineering, September
2000.

[48] P. Völgyesi, M. Maróti, S. Dóra, E. Osses, Á. Lédeczi, Software composition and
verification for sensor networks, Science of Computer Programming 56 (2005)
191–210.

[49] Fei Xie, James C. Browne, Verified systems by composition from verified
components, in: Proceedings of Joint Conference ESEC/FSE, 2003.

[50] Haiqiong Yao, Hao Zheng, Automated interface refinement for compositional
verification, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28 (3) (2009) 433–446.

[51] F. Zaraket, J. Baumgartner, A. Aziz, Scalable compositional minimization via
static analysis, in: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, 2005.

[52] Tewfik Ziadi, Loïc Helouët, Jean-Marc Jezequel. Revisiting statechart synthesis
with an algebraic approach, in: 26th International Conference on Software
Engineering, 2004.
abstraction for bottom-up integration and verification of abstract compo-

http://dx.doi.org/10.1016/j.infsof.2011.08.001

	Controlled composition and abstraction for bottom-up integration and verification of abstract components
	1 Introduction
	2 Overview of the proposed approach
	2.1 Controlled composition
	2.2 Abstraction
	2.3 Verification

	3 Components
	3.1 Component model
	3.2 Abstract component

	4 Controlled composition
	5 Abstraction
	5.1 Synchronized abstraction
	5.2 Projection abstraction

	6 Verification
	6.1 Generation of verification model
	6.2 Verification of a unit component
	6.3 Incremental composition and verification
	6.4 Verification problems
	6.4.1 Horizontal verification
	6.4.2 Vertical verification

	7 Experiments
	7.1 TinyOS components
	7.2 Experimental settings
	7.3 Verification with parallel composition
	7.4 Verification with controlled composition
	7.5 Verification with controlled composition and abstraction
	7.6 Verification up to the application component

	8 Related work
	8.1 Interface theories
	8.2 Scalability improvement
	8.3 Modeling and adaptation
	8.4 Model checking TinyOS
	8.5 Tools for program verification

	9 Discussion
	Acknowledgments
	References

