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초 록

C++ 언어는 매우 많이 사용되는 언어임에도 불구하고, C++가 지원하는 매우 복잡한 기능때문에 C++

프로그램을 테스트하는 것은 매우 큰 과제로 남아있다. 예를 들어, 템플렛, non-public 함수, 복잡한 STL

데이터 타입, 등의 복잡한 기능이 존재한다. 현재 이런 복잡한 기능을 다룰 수 있는 자동화된 유닛 테스트

도구는 전무한 실정이다.

본 논문에서는 이러한 복잡한 기능을 다룰 수 있는 새로운 자동화 유닛 테스트 생성 도구인 CLEMEN-

TINE을 제시한다. CLEMENTINE은 기존 도구인 CITRUS의 3가지 제한점을 극복하고 더 많은 C++

기능을 지원하도록 확장되었다. 그 결과, CLEMENTINE은 기존의 CITRUS가 테스트 생성에 실패한 4

개의 실제 C++ 오픈 소스 프로그램을 효과적으로 테스트 할 수 있었다. 또한, 8개의 C++ 실제 오픈소스

프로그램에실험한결과, CLEMENTINE은 81.6%의구문커버리지, 60.1%의분기커버리지, 88.5%의함수

커버리지를 보이며, 15.0%p 더 낮은 구문 커버리지, 8.9%p 더 낮은 분기 커버리지, 24.4%p 더 낮은 함수

커버리지를 보인 CITRUS에 비해 월등한 테스트 성능을 보이는 것을 확인했다.

핵 심 낱 말 자동화 테스트 생성, 무작위 함수 호출 시퀀스 생성, C++ 유닛 테스팅

Abstract

C++ is a very popular programming language. However, testing C++ programs is a challenging task

due to the high complexity of C++ features (e.g., template, non-public member function, complex STL

types, etc.), and there are almost no automated unit testing tool that handles such highly complex

C++ features. I have developed CLEMENTINE, an automated unit testing tool for real-world C++

programs that handles complex C++ features. CLEMENTINE extends CITRUS by resolving three main

limitations in CITRUS and supports more C++ features (e.g., testing non-public member function,

handling global operator overloading, etc.). As a result, CLEMENTINE generates effective unit test

cases for four real-world C++ programs that CITRUS fails to test. Moreover, the experiment results on

eight real-world C++ open source programs show that CLEMENTINE could achieve 81.6% statement

coverage (15.0%p higher than CITRUS), 60.1% branch coverage (8.9%p higher than CITRUS), and

88.5% function coverage (24.4%p higher than CITRUS) on average, proving that CLEMENTINE has

better testing performance compared to CITRUS.

Keywords Automated test case generation, random method call sequence generation, C++ unit test-

ing.
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Chapter 1. Introduction

1.1 Background

1.1.1 Research Background

Software testing is one of the most important parts of software development. The main goal of

software testing is to ensure that the programs meet the desired requirements and function correctly.

Manual testing, while essential, can be a challenging and time-consuming task. It requires human testers

to manually write and execute test cases that cover various scenarios. As software systems become

more complex, the need for efficient and reliable test case generation techniqe has become increasingly

important.

In response to the challenges of manual testing, the research community has devoted considerable

effort to developing automatic software testing techniques to generate test cases. Various automated

software testing techniques have been developed for the past decade. Blackbox random testing [2, 3],

coverage-guided greybox fuzzing [4, 5, 6], symbolic execution [7, 8], and AI-driven search-based software

testing (SBST) [9, 10] are some software testing techniques that have been developed. Furthermore, the

usage of automated software testing has been proved for its practical usage like identifying security vul-

nerabilities in real-world systems[11, 12, 5, 13, 14]. Additionally, a recent study reported that automated

software testing achieve produces test cases with higher test coverage compared to manually-written test

cases [15].

However, many automated software testing techniques primarily focus on system-level testing [4, 5,

6, 16], which tests the software as a whole in its operational environment. While system-level testing is

important for evaluating the overall behavior and integration of components, it may struggle to uncover

vulnerabilities deeply embedded in the target code System-level testing often relies on high-level inputs

and configurations, which may not adequately exercise all code paths or corner cases. For example,

complex input combinations, subtle coding errors, or specific corner cases may go unnoticed during

system-level testing. Additionally, system-level testing typically operates at a higher level of abstraction,

making it difficult to isolate and pinpoint specific issues in individual units or components of the software.

This limitation of system-level testing can be overcome by unit-level testing. Unit-level testing

enables developers to test individual units or components of the software in isolation, allowing for precise

identification of defects and targeted testing There have been some recent works on automated software

testing techniques specifically designed for unit-level testing [2, 10, 8, 17]. Unfortunately, there is not

much work on automated software testing for C++ programs due to highly-complex C++ features.

This thesis focuses on automated software testing in unit-level test case generation for C++ pro-

grams. C++ stands as one of the most popular programming languages, renowned for its numerous

positive aspects that contribute to its widespread usage. One notable advantage is its high performance,

making it an ideal choice for resource-intensive applications. For instance, web browsers like Mozilla

Firefox and Google Chrome and game engines like Unreal Engine and Unity, which power many popu-

lar games, are built using C++ to harness its performance capabilities. However, those complex C++

features (e.g., STL library, template instantiation, member accessibility, etc.) also make testing C++

programs more challenging and the availability of automated testing tools in unit-level for C++ is low.

1



1.1.2 Previous Approach

Unit-level testing plays a crucial role in program development. Automated unit-level testing tool

is an important tool that generates test cases automatically. Randoop [2] and EvoSuite [10] are some

examples of automated unit-level testing tool for Java programs. Pynguin [17] is an automated unit-level

testing tool for Python programs. Unfortunately, there are only a few automated unit-level testing for

C++ programs due to complex C++ features.

Coverage-guided greybox fuzzing (e.g., AFL++ [16], libfuzzer [18], POWER [19]) and symbolic

executions (e.g., CUTE [20], KLEE [21], DeepState [22]) are automated testing technique for C++

programs that run in system-level. Coverage-guided greybox fuzzing generates various test cases by

performing bytes mutation. Symbolic execution generates various test cases that can explore diverse

paths in the target program by solving the symbolic path formula using an SMT solver. Although those

techniques can be used to test C++ in unit-level, there is a need to write a test driver for each function.

Recent work tries to mitigate the high cost of writing test drivers by automatically generating test

drivers for each function [23, 24, 25, 26, 27, 28]. FUDGE [25] and FuzzGen [26] automatically generate

a test driver for each function used in the target library consumer by utilizing the consumer code. These

works heavily rely on the consumer code and may fail to generate test drivers for rarely used functions

in the target library. Moreover, these works focus on testing C++ libraries and are not suitable for

testing an independent program. Meanwhile, UTBotCPP [28] generates a fuzz driver for each function

in the target program and then uses a symbolic execution tool, KLEE [21], to generate various test

input. Unfortunately, UTBotCPP still does not support many C++ complex features such as template

and C++ standard library.

1.2 Thesis Statement and Contribution

1.2.1 Thesis Statement

The thesis statement for this work is written as follows:

Automated C++ unit testing can improve its test coverage for a broad range of

target programs by handling complex object-oriented features in C++ programming

languages.

Thus, the core section in this thesis is Section 2.3

1.2.2 Contributions

The contributions of this thesis are as follows:

1. I have classified 20 types of C++ functions that are not properly handled by CITRUS [1] (an

automated C++ unit testing framework developed by KAIST SWTV group) due to the complex

C++ features and developed solutions for 16 of them (see Section 2.3 for the detail).

2. I have improved the applicability of an automated C++ unit testing framework by addressing the

three limitations in the design choices of CITRUS. As a result, CLEMENTINE successfully gener-
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ates valid test cases on the four new target subjects while CITRUS failed to do it (see Section 2.2

for the detail).

3. I have performed experiments to empirically demonstrate the advantage of CLEMENTINE on the

16 C++ target subjects. CLEMENTINE achieved 34.9% to 96.6% function coverage (75.4% on

average), 5.5% to 77.6% branch coverage (41% on average), and 11.9% to 95.3% statement coverage

(62.0% on average) (see Section 3.2 for the detail).

1.3 Structure of Thesis

The remainder of this thesis is structured as follows: Chapter 2 explains the CLEMENTINE frame-

work in detail. Chapter 3 describes the setup of the experiment and reports the experiment results to

show the testing performance of CLEMENTINE. Chapter 4 lists related work to automated software

testing for C++ programs and automated software testing that uses method call sequence generation

technique. Lastly, Chapter 5 concludes this thesis and lists future work.
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Chapter 2. CLEMENTINE Framework

2.1 Limitation of CITRUS

2.1.1 Improper Way of Writing Test Case Files

To call a function in the target subject, the test case is required to have at least the declaration

of the function. CITRUS includes all the header files in the test case in order to put as many function

declarations as possible in the test case. Although including all the header files in the test case may work

in some cases, it is not a good approach since it can cause uncompilable problems.

Figure 2.1 shows the example of an uncompilable error caused by including all header files in

the test case. Function toStringV is declared in header file stringutil.hpp at line A4 and is de-

fined in stringutil impl.hpp header file at line B2. Then, file stringutil impl.hpp is included in file

stringutil.hpp at line A8 and this makes file stringutil.hpp also contain the definition of function

toStringV. Finally, CITRUS includes all header files in the test case (i.e., test case.cpp) including

stringutil.hpp and stringutil impl.hpp. Thus, the test case contains two definitions of function

toStringV (i.e., one definition from stringutil.hpp and another one from stringutil impl.hpp) and it

causes uncompilable error (i.e., redefinition of ‘toStringV’). This is a severe problem since not being

able to compile the test case means the test case cannot be executed and become useless.

Additionally, including all header files in the test case limits the number of functions that can be

called in the test case. Consider the example code shown in Figure 2.2. There are 5 functions declared in

the header file (i.e., at lines A1, A4, A5, A6, and A9) and 4 functions not declared in the header file (i.e.,

at lines B2, B4, B8, and B9). Just including the header file in the test case limits the number of functions

that can be called in the test case to 5 functions that are declared in the header file. Thus, we miss

the opportunity to test the other 4 functions that are not declared in the header file. Subsection 2.2.4

explains how this problem is solved in CLEMENTINE.

2.1.2 Creating Executable File of The Test case

Creating an executable of the generated test case is one of the important processes during testing.

This process consists of 2 steps (i.e., compiling and linking). Without the correct compile command and

link command, the compile process and the linking process can fail. Failure to create the executable

from the generated test case will make the generated test case become useless since it cannot be run.

CITRUS utilizes a compilation database to get the correct compile command. The compilation

database contains the compilation flags used to preprocess and compile the target file and it is emitted

by C++ build tools like CMake [29] and BEAR [30]. Figure 2.3 shows the example of a compilation

database from clip

However, such compilation databases do not provide information about the linking configuration

(e.g., necessary object files to build an executable file). Thus, CITRUS needs its user to manually

specify the linking configuration. The linking configuration consists of (1) the build directory location

where the object files of the target subject are created, and (2) linking flags to additional external
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// file: stringutil.hpp

A1: class StringUtil {

A2: public:

A3: template <typename ... T>

A4: static std::vector <std::string > toStringV(T... values);

A5: ...

A6: }

A7: ...

A8: #include "stringutil_impl.hpp"

// file: stringutil_impl.hpp

B1: template <typename ... T>

B2: std::vector <std::string > StringUtil :: toStringV(T... values) {

B3: ...

B4: }

B5: ...

// file: test_case.cpp

C1: #include "stringutil.hpp"

C2: #include "stringutil_impl.hpp"

C3: #include "..." // include other header files

C4: int main () {

C5: ...

C6: return 0;

C7: }

// Uncompilable Error Message

error: redefinition of 'toStringV '

std::vector <std::string > StringUtil :: toStringV(T... values) {

ˆ

...

Figure 2.1: Example of uncompilable error in clip

libraries (if any, e.g. -lfmt to use the fmtlib library and -lz to use zlib library). Providing incorrect

linking configurations would degrade the testing effectiveness since the test case cannot be executed

and become useless. Therefore, specifying the correct configuration is very important. Subsection 2.2.4

explains how CLEMENTINE solves this problem.

2.1.3 Many Non-Properly-Handled Functions

The third limitation of CITRUS is it has many non-properly-handled functions due to complex

C++ features. Failure to properly handle function may result in generating uncompilable test cases or

unlinkable test cases and hinder the testing performance. Thus, it is important to properly handle various

types of functions. Section 2.3 explains 20 non-properly-handled function types and how CLEMENTINE

solves them.
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// file: header.hpp

A1: void f(); // global function

A2: class PublicClass {

A3: public:

A4: PublicClass(int x); // constructor

A5: void setValue(int x); // public member function

A6: int getValue (); // public member function

A7: private:

A8: int value

A9: void incrementValue (); // non -public member function

A10: ...

A11: };

// file: implementation.cpp

B1: #include "header.hpp"

B2: static void h() {...} // static function

B3: namespace {

B4: void func_anonnamespace () {...} // function inside anonymous namespace

B5: }

B6: class internal { // class that not declared in header files

B7: public:

B8: void func1() {...} // member function of class not declared in header files

B9: void func2() {...} // member function of class not declared in header files

B10: }

B11: ... // definition of functions declared in the header file

Figure 2.2: Example of functions not targeted by CITRUS

2.2 Architecture of CLEMENTINE

2.2.1 Overview of CLEMENTINE

CLEMENTINE is an automated unit-level testing tool based that generates test drivers using ran-

dom method call sequence generation. CLEMENTINE the next version of CITRUS [31, 1] and it was

developed by addressing limitations explained in section 2 and supporting more complex C++ features.

Figure 2.4 1 illustrates the overview CLEMENTINE’s process.

2.2.2 Definition of CLEMENTINE’s Test Case

A test case generated by CLEMENTINE consists of a sequence of method call statements and

statements to instantiate objects for the method call’s arguments. The test case does not have branching

statements (e.g.,if statements). There are only two types of statements. Those two types are:

1. Primitive type variable declaration and initialization. For example, the statement “bool bool1 =

false;” declares a variable named bool1 with the primitive type (i.e., bool1) and initializes its

value with false.

1This figure is directly taken from CITRUS [1, 31].
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[

{

"directory": "/.../ clip/build_temp",

"command": "/usr/bin/clang++ -I/usr/include/cairo -I/usr/include/freetype2

-I/usr/include/harfbuzz -I/usr/include} -I/.../ clip/src -I/.../ clip/src/utils

-I/.../ clip -I/.../ clip/build_temp -g -O0 -fsanitize=fuzzer -no-link

--coverage --save -temps -fPIC -std=gnu ++17 -o

CMakeFiles/clip.dir/src/api.cc.o -c /.../ clip/src/api.cc",

"file": "/.../ clip/src/api.cc"

},

{

"directory": "/.../ clip/build_temp",

"command": "/usr/bin/clang++ -I/usr/include/cairo -I/usr/include/freetype2

-I/usr/include/harfbuzz -I/usr/include} -I/.../ clip/src -I/.../ clip/src/utils

-I/.../ clip -I/.../ clip/build_temp -g -O0 -fsanitize=fuzzer -no-link

--coverage --save -temps -fPIC -std=gnu ++17 -o

CMakeFiles/clip.dir/src/arrows.cc.o -c /.../ clip/src/arrows.cc",

"file": "/.../ clip/src/arrows.cc"

},

...

]

Figure 2.3: Example of Compilation Database

2. Method invocation. For example, the statement “ClassA obja1;” invokes a constructor ClassA

without any argument.

The test case generated by CLEMENTINE has the following characteristics:

1. Every statement has a type and the type modifier if any.

2. Every statement has a variable with a distinct name, except a method invocation statement that

returns void.

3. The value of every variable never changed (i.e., assigned only once).

2.2.3 CLEMENTINE’s Process

This section explains the process of test case generation in detail. There are three main steps in the

CLEMENTINE’s process. Those three main steps are as follows:

1. Pre-processing Phase

2. Test Case Generation

3. Post-Processing The Generated Test Cases

(1) Pre-processing Phase

There are four things to do in the pre-processing phase. Those are (1) creating program represen-

tation, (2) creating test case template, (3) getting compile command, and (4) getting link command.
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Figure 2.4: Overview of CLEMENTINE’s process*

* This figure is directly taken from CITRUS [1, 31]

Creating Program Representation

To create program representation, CLEMENTINE collects the below information from the target

program source code (i.e., preprocessed file .ii):

• Lists of classes, structs, enums, and global functions declared in the target program.

• Type used to specialize the templated function and class. This will be used in the template

instantiation (subsection 2.2.4).

Next, CLEMENTINE creates a type system TS for classes, structs, enums, and functions in the

target program. Algorithm 1 2 describes how the type system TS of the target program is created.

CLEMENTINE also creates an inheritance tree model (ITM) to utilize inheritance relationships for

subclass instantiation (i.e., CLEMENTINE may construct an instance of the derived class to invoke a

member function of the parent class).

CLEMENTINE differentiate functions into two types, “object creators” and regular functions. Sev-

eral works on method sequence generation techniques [10, 32] also use a similar approach. In CLEMEN-

TINE, Object creator is defined as a function that can provide an instance of a class type. Any function

f that has public accessibility is considered an object creator of a class type X if the function satisfies

one of the following conditions:

1. The function is a constructor of a class X (Note that, copy constructor, move constructor, and

assignment operator (i.e., operator=) are not considered as object constructor)

2. The function is a global function and returns a non-primitive type X where X /∈ ArgTypes(f)

3. The function is a member function of a class Y and returns a non-primitive type X where X /∈
ArgTypes(f) and X ̸= Y

2This algorithm is directly taken from [1, 31] since CLEMENTINE uses the same algorithm.
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Algorithm 1: Creating Program Representation*
* This algorithm is directly taken from CITRUS [1, 31]

Data: classes, enums, glob fns from AST traversal

Result: Inheritance tree model ITM and initialized type system TS

1 TS← ∅; ITM← ∅;
2 foreach cls in classes do

3 if cls has parent then

4 par ← Parent(cls);

5 ITM← ITM ∪ {cls, par}
6 end

7 TS.RegisterClass(cls);

8 foreach m in Methods(cls) do

9 if m has public access then

10 TS.RegisterFunc(m)

11 end

12 end

13 end

14 foreach e in enums do TS.RegisterEnum(e);

15 foreach fn in glob fns do TS.RegisterFunc(fn);

16 TS.ExcludeNotTargettedFunctions();

17 repeat

18 TS.ExcludeUnsatisfiableFunctions();

19 until All fn in TS have satisfiable arguments;

4. The function is a static member function of a class Y and returns a non-primitive type X where

X /∈ ArgTypes(f)

Figure 2.5 show an example of how CLEMENTINE recognizes a function as an object creator. There

are 4 object creators in Figure 2.5. Those 4 object creators are:

1. function FromCartesion at line 3 (because it satisfies the third condition)

2. function RandomPosition at line 10 (because it satisfies the second condition)

3. function getPoint1 at line 13 (because it satisfies the fourth condition)

4. implicit constructor of class Line (because it satisfies the first condition)

Function setX at line 4 is not recognized as an object creator of class Point because the return type

of the function and its function owner is the same (i.e., class Point) and it is not a static member

function. Function mirror at line 5 is not recognized as an object creator of class Point because X where

Point ∈ ArgTypes(mirror). While the constructor of class Point declared in line 8 is not recognized as

an object creator because its accessibility is not public.

CLEMENTINE filter out not targeted function and unsatisfiable function from the list of the func-

tion. CLEMENTINE defines a function as unsatisfiable if the function requires an instance of a type

which CLEMENTINE cannot construct. For example, a function that requires an instance of a class
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1: class Point {

2: public:

3: static Point FromCartesian(double x, double y) { return Point(x, y); } //

object creator

4: Point * setX(double _x) { x = _x; return this; } // NOT an object creator

5: static Point mirror(Point pt) { return FromCartesian(pt.y, pt.x); } // NOT

an object creator

6: double x, y;

7: private:

8: Point(int _x, int _y) { x = _x; y = _y; } // NOT an object creator

9: };

10: Point RandomPosition (); // object creator

11: class Line { // HAS object creator

12: public:

13: Point * getPoint1 () { return &pt1; }; // object creator

14: Point pt1 , pt2;

15: };

Figure 2.5: Example of Object Creators*
* This code example is directly taken from CITRUS [1, 31] and has been modified

type with no detected object creators. Also, CLEMENTINE intentionally does not target several types

of functions, for example, the constructor of non-instantiable class, deleted function, etc. Section 2.3

explains some types of functions that are not targeted by CLEMENTINE and unsatisfiable functions.

Creating Test Case Template

CLEMENTINE creates a test case template by copying the content of the preprocessed input file.

CLEMENTINE also added some “driver” functions in the test case template. The “driver” function

is explained in the subsection 2.3.10. This test case template will be included in the test case file.

Subsection 2.2.4 explains how CLEMENTINE uses the test case template.

Getting Compile Command

CLEMENTINE utilizes the compilation database generated by the target program’s build tool to

get the compile command. The compilation database is generated in JSON (i.e., JavaScript Object

Notation) format. Figure 2.3 shows an example of a compilation database. It contains a list of files

compiled in the target program, the compile command used to compile the file, and the directory where

the compilation occurred. CLEMENTINE utilizes this information to construct compile command for

the test case file.

Getting Link Command

CLEMENTINE utilizes the build commands used to build the target program to get the linking

command for the test case file. Figure 2.6 shows an example of list build commands that are used to build

clip. CLEMENTINE distinguishes the linking command from the list of build commands by recognizing

the tool used in the command. So far, there are two tools that are considered as linking commands.

Those two tools are ar (i.e., command to create, modify, and extract archives [33]) and c++ tool (e.g.,

gcc, g++, clang).
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1: ...

2: make [2]: Entering directory '/.../ clip/build_temp '

3: /usr/bin/clang++ -I/usr/include/cairo -I/usr/include/freetype2

-I/usr/include/harfbuzz -I/usr/include} -I/.../ clip/src -I/.../ clip/src/utils

-I/.../ clip -I/.../ clip/build_temp -g -O0 -fsanitize=fuzzer -no-link --coverage

--save -temps -std=gnu ++17 -MD -MT CMakeFiles/clip -cli.dir/src/cli.cc.o -MF

CMakeFiles/clip -cli.dir/src/cli.cc.o.d -o CMakeFiles/clip -cli.dir/src/cli.cc.o

-c /.../ clip/src/cli.cc

4: /home/irfanariq/local_tool/bin/cmake -E cmake_link_script

CMakeFiles/clip -cli.dir/link.txt --verbose =1

5: /usr/bin/clang++ -g -O0 -fsanitize=fuzzer -no-link --coverage --save -temps

"CMakeFiles/clip -cli.dir/src/cli.cc.o" CMakeFiles/clip.dir/src/api.cc.o

CMakeFiles/clip.dir/src/arrows.cc.o ...

CMakeFiles/clip.dir/src/utils/stringutil.cc.o

CMakeFiles/clip.dir/src/utils/wallclock.cc.o CMakeFiles/clip.dir/src/vmath.cc.o

-o clip /usr/lib/x86_64 -linux -gnu/libcairo.so

/usr/lib/x86_64 -linux -gnu/libfreetype.so

/usr/lib/x86_64 -linux -gnu/libharfbuzz.so /usr/lib/x86_64 -linux -gnu/libpng.so

/usr/lib/x86_64 -linux -gnu/libz.so /usr/lib/x86_64 -linux -gnu/libfontconfig.so

/usr/lib/libfmt.a

Figure 2.6: Example of a file containing build commands to build clip

(2) Test Case Generation

Algorithm 2 3 shows the main loop of CLEMENTINE. By default, CLEMENTINE operates in

two stages: (1) deterministic stage, and (2) random stage. In the deterministic stage, CLEMENTINE

generates a test case for each function by iterating the list of functions. The deterministic stage will

be done once CLEMENTINE is finished iterating the list of functions (see algorithm 3). The purpose

of iterating the list of functions during the deterministic stage is so CLEMENTINE generates at least

one test case for each function. CLEMENTINE also does not perform test case mutation during the

deterministic stage.

CLEMENTINE generate a test case by executing function LoadOrGenerateTestCase at line 5. Next,

CLEMENTINE performs test case mutation by calling MutateTC at line 7 if the deterministic stage is

done. Then, CLEMENTINE builds the test case executable exe by compiling and linking the test case

file. CLEMENTINE executes the executable exe if the compilation and linking are successful. The test

case is considered as crashing a test case if the execution did no terminates normally. In such case,

CLEMENTINE re-executes the test case using gdb to get the stack trace of the test case. If the obtained

stack trace has never been seen before, CLEMENTINE will save the test case in Qcrash. However, if

the execution terminates normally, CLEMENTINE will measure the coverage of the target program.

CLEMENTINE will save the test case in Qeffective if the coverage is increased, otherwise the test case

will be discarded. CLEMENTINE will stop these processes if the given timeout is reached.

Algorithm 3 4 (LoadOrGenerateTestCase) shows how CLEMENTINE creates a new test case. During

the deterministic stage, CLEMENTINE iterates the list of functions and generates a test case from scratch

for the target function (i.e., L2–L7). The random stage will start if CLEMENTINE finishes iterating

3This algorithm is taken from [1, 31] and modified since the algorithm of CLEMENTINE and CITRUS is similar
4This algorithm is taken from [1, 31] and modified in CLEMENTINE.
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Algorithm 2: Main Loop*
* This algorithm is directly taken from CITRUS [1, 31]

Data: Initialized type system TS and time budget TMAX

Result: Qeffective and Qcrash: queues of effective and crashing test cases, respectively

1 Qeffective ← ∅;Qcrash ← ∅;Cov← ∅;STraces← ∅;
2 DeterministicStage← true;

3 Tstart ← Now();

4 while ElapsedTime(Tstart) < TMAX do

5 tc← LoadOrGenerateTestCase(TS, Qeffective, DeterministicStage);

6 if not DeterministicStage then /* Do not mutate TC during deterministic stage */

7 tc← MutateTC(tc);

8 end

9 exe, err ← BuildTempExe(tc);

10 if err = ∅ then /* Build successful */

11 retcode ← Execute(exe);

12 if retcode = 0 then /* Exited normally */

13 covtc ← MeasureCoverage(tc);

14 covnew ← covtc − Cov;

15 if covnew ̸= ∅ then
16 Cov← Cov ∪ covtc;
17 Qeffective ← Qeffective ∪ {tc};
18 end

19 else /* Crash detected */

20 outgdb ← ExecuteInGDB(tc);

21 sttrace ← ParseStackTrace(outgdb);

22 if sttrace not in STraces then

23 STraces← STraces ∪ {sttrace};
24 Qcrash ← Qcrash ∪ {tc};
25 end

26 end

27 end

28 end

the list of functions (L5 and L6). In the random stage, CLEMENTINE has two options to create a new

test case: (1) generate a test case from scratch for a random target function, or (2) mutate previously

generated test case from Qeffective. The probability of performing the first and second options is 50%.

Test Case Generation from Scratch. Algorithm 4 5 shows how CLEMENTINE generates a test

case from scratch for a target function. First, CLEMENTINE constructs an empty list of statements

for the test case. Then, CLEMENTINE creates the test case by resolving all arguments in the target

function. Function ResolveType at line 3 returns a variable oparg with the requested type typearg given

as the argument. CLEMENTINE has two following options to resolve a type:

5This algorithm is taken from [31] since CLEMENTINE uses the exact same algorithm as CITRUS.
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Algorithm 3: LoadOrGenerateTestCase*
* This algorithm is directly taken from CITRUS [1, 31]

Data: Type system TS, queue of effective TCs Qeffective, and information of the current stage

DeterministicStage

Result: A candidate test case tc to be executed

1 if DeterministicStage then /* Deterministic stage */

2 funcs← AllFunctions(TS);

3 ftarget ← sequentially get a function from list of functions funcs;

4 tc← GenTCForMethod(ftarget);

5 if ftarget = EndOfList(funcs) then /* end of deterministic stage */

6 DeterministicStage← false;

7 end

8 else /* Random stage */

9 bgen new ← RandInt(0, 1); /* 50% prob */

10 if Qeffective is empty or bgen new == 0 then

11 funcs← AllFunctions(TS);

12 ftarget ← random function selected from funcs;

13 tc← GenTCForMethod(ftarget);

14 else

15 tc← RoundRobinSelection(Qeffective);

16 end

17 end

18 return tc

Algorithm 4: GenTCForMethod*
* This algorithm is directly taken from CITRUS [1, 31]

Data: A target function f

Result: A test case tc that calls f

1 stmts← ⟨⟩; args← ⟨⟩;
2 foreach typearg in ArgTypes(f) do

3 oparg ← ResolveType(typearg, stmts);

4 args← args · ⟨oparg⟩;
5 end

6 if f needs invoking object then

7 clsf ← ClassOwner(f);

8 opinv ← ResolveType(clsf , stmts);

9 scall ← CallWithInvokingObj(f, opinv, args);

10 else

11 scall ← Call(f, args);

12 end

13 stmts← stmts · ⟨scall⟩;
14 return MakeTC(stmts)
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1. Constructing a new variable. To construct a new variable, CLEMENTINE will create a new state-

ment s which can be primitive variable type declaration (e.g., int int1 = 39;) or method invocation

of object creator (e.g., ClassA classa1 = ClassA::CreateObj();). CLEMENTINE resolves the

argument of the invoked method by recursively calling ResolveType. The new statement will be

appended to stmts.

2. Reusing an existing variable. CLEMENTINE selects a statement that has a matching type with

the required type from the existing statement in stmts.

If the target function f is a non-static member function of a specific class, CLEMENTINE will construct

an instance of that specific type to call the target function. Lastly, CLEMENTINE appended the method

call statement of target function f to stmts.

Algorithm 5: MutateTC*
* This algorithm is directly taken from CITRUS [1, 31]

Data: A CLEMENTINE test case tc to mutate, MAX: a maximum number of mutations to tc

Result: The mutated test case tc′

1 tc′ ← tc;

2 n← RandInt(0,MAX);

3 for i← 1 to n do

4 switch RandInt(0, 2) do

5 case 0 do

6 tc′ ← Randomly insert a random method call at a random position in tc′

7 case 1 do

8 tc′ ← Randomly mutate a statement in tc′

9 case 2 do

10 tc′ ← Delete unused variables in tc′

11 end

12 end

13 return tc′

Test Case Mutation. Algorithm 5 6 (MutateTC) shows how CLEMENTINE creates a new test

case by mutating an existing test case. There are 3 test case mutations in CLEMENTINE: (1) insert a

random function call at a random position in tc′, (2) mutate a random statement in tc′, and (3) delete

unused variables in tc′. CLEMENTINE randomly select one of those options to create a new test case.

CLEMENTINE uses six mutation operators for mutating a random statement in tc′.

1. CGCR (Constant Replacement using Global Constant),

2. VLSR (Mutate Scalar References using Local Scalar References),

3. VLTR (Mutate Structure References using only Local Structure References),

4. CLSR (Constant for Scalar Replacement using Local Constants),

5. OAAN (Arithmetic Operator Mutation), and

6This algorithm is taken from CITRUS [1, 31] since CLEMENTINE uses the same algorithm.
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6. OANG (Arithmetic Operator Negation).

Crash Deduplication. As shown in the Algorithm 2 at lines 21-25, CLEMENTINE does not save

duplicate crashes. CLEMENTINE determines whether a crashing test case is unique from other crashing

test cases by using the stack trace information [34]. CLEMENTINE compares the sequence of source

code locations (i.e., file names + line number) obtained from the function call stack of the gdb stack

trace. CLEMENTINE ignores the source code locations located outside the target program to avoid

duplicate crashes caused by external libraries.

(3) Post-processing the generated test cases

The last step of CLEMENTINE is writing the effective test cases Qeffective and crashing test cases

Qcrash. CLEMENTINE writes the effective test cases Qeffective in two different formats as follows:

1. libfuzzer test drivers.

2. Google Test test cases format.

CLEMENTINE also writes the unique crashing test cases in Qcrash including the stack trace obtained

from gdb to help the user analyze the crash without re-executing the test case.

2.2.4 Implementation Details

CLEMENTINE is implemented using C++ programming language. It uses LLVM’s LibTooling

framework to parse C++ source code files and traverse the abstract syntax tree (AST). The current ver-

sion of CLEMENTINE uses LLVM 11.0.1 and has been tested on Ubuntu 18.04 LTS versions. CLEMEN-

TINE uses a modified version of LCOV [35] to get the coverage information of the target program.

CLEMENTINE has a command-line interface and it requires five command-line options. Those five

required command-line options are as follows:

1. A preprocessed C++ source code file mii.

2. A path to a target program directory.

3. A path to the output directory.

4. A file containing all compile and link commands used to build the target program.

5. A path to an executable/library generated in the target program.

CLEMENTINE assumes the target program directory contains the compilation database of the target

program (i.e., compile command.json). The compilation database in the target program directory is

used to get the information of necessary compilation flags to compile mii. CLEMENTINE will store the

generated test cases in the output directory.

Types and Statements

As shown in Table 2.1, there are seven types in CLEMENTINE internal systems. The type may

have zero or type modifier such as �const or pointer (i.e., *). For FunctionType, CLEMENTINE will

extract the function return’s type and all its argument’s type and make it as its type. For example, “int

addition(int a, int b);” is a int ()(int, int) type.

Table 2.2 shows the five statement types in CLEMENTINE implementations. As mentioned in

Subsection2.2.2, each statement has a type and might have a variable name.
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Table 2.1: Type Categories*

* This table is directly taken from CITRUS [1, 31]

Type Name Representation Examples

PrimitiveType Primitive types int, void, bool

ClassType C++ records (class/struct) class JsonValue

EnumType enum variants Color::Red

STLType STL classes std::tuple, std::map

TemplateTypenameType Free template type variable T, K, V

TemplateTypeSpcType Specialization of template class std::vector<int>,

Parser<std::string>

FunctionType Function type void (∗)(),
int (∗)(int, int)

Table 2.2: Statement Variants*

* This table is directly taken from CITRUS [1, 31]

Statement Name Representation Examples

PrimitiveStmt Simple assignment int int1 = 39;

ArrayInitStmt Array initialization char[2] char2 {‘i’,‘q’};
CallStmt Function/constructor call ClassC classc3{char2};

int int4 = class3.Invoke(int1);

STLStmt STL object construction std::vector<int,int> vec5 {{1, 2}};
std::array<int,2> {0, 0};

DynAllocStmt Dynamic memory allocation void * void1 = malloc(32);
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Figure 2.7: Difference between CITRUS and CLEMENTINE on writing test case

Writing Test Cases

As explained in subsection 2.1.1, including all header files is not a good way to write the test case.

CLEMENTINE solved this problem by changing the input type from a cpp file into a preprocessed

file and converting the preprocessed input file into a test case template. Figure 2.7 shows the difference

between CITRUS and CLEMENTINE on writing the test case. Since the input type is changed (i.e., from

a .cpp file to a preprocessed file .ii), the user needs to preprocess the cpp file first to get the preprocessed

file using C++ preprocessor. Then, CLEMENTINE converts the preprocessed input file into a test case

template by adding “driver” functions in the preprocessed input file. The test case template also contains

functions that are not declared in the header file and including the test case template will allow the test

case to call those functions.

Compile and Link

As explained in the Subsection 2.1.2, CITRUS requires the user to manually set up the linking

configuration to test the target program and misconfiguration of this linking command will lead to in-

effective testing performance. To avoid such linking configuration, CLEMENTINE utilizes the compile

and link command used to build the target program. In exchange for linking configuration, CLEMEN-

TINE requires 2 new inputs. The first new input is a text file that contains all commands (i.e., compile

command and linking command) used to build the target program and the second new input is a path to

an executable/library from the target program. The user can obtain the file that contains all commands

from C++ build tools. For example, if the target subject’s build script is using Makefile, we can perform

“dry run” (i.e., make -n >> buildcmdfile) to dump all commands used to build the target subject to

a file named buildcmdfile. Figure 2.6 shows an example of such file. give an example of the build

command file CLEMENTINE reads all commands in the file and recognizes the compile command and

linking command. Then, CLEMENTINE will select the linking command that is used to generate the

executable specified by the user in the second new input. This approach enables CLEMENTINE to ob-
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1: template <typename T>

2: void templateFunc1(T x) { ... };

3:

4: template <typename T>

5: void templateFunc2(T x) { ... };

6:

7: int use_templateFunc1 (bool cond) {

8: if (cond) {

9: bool x = false;

10: templateFunc1 <bool >(x);

11: } else {

12: int x = 10;

13: templateFunc1 <int >(x);

14: }

15: }

Figure 2.8: Challenge in Instantiating Template Classes in C++

tain the linking configuration automatically to reduce user effort and the possibility of misconfiguration

of the linking configuration

Testing C++ Template Classes/Functions

Testing templated classes and functions in C++ is difficult because it can be specialized with any

type and it is not possible to test with all the possible types. However, some templated classes and

functions also need to be specialized with a type that satisfies some specific characteristic. To solve this,

CLEMENTINE binds a free template type to a concrete type based on the template specialization in

the target program (if any). For example, consider the example in Figure 2.8. There are two templated

functions in Figure 2.8, function templateFunc1 at line 2 and function templateFunc2 at line 5. In this

example, there are two specializations for function templateFunc1. Function call at line 10 specialized

function templateFunc1 with bool type and function call at line 13 specialized function templateFunc1

with int type. Therefore, CLEMENTINE randomly binds free template T with either int type or bool

type when generating a test case for function templateFunc1. On the other hand, there is no specialization

for function templateFunc2. In such case, CLEMENTINE randomly binds the free template T with int

or double type.

Handling C++ STL Classes

STL, which stands for standard template library, is a collection of various data structures imple-

mented using templated classes in C++. It is important to support STL classes because most of the

C++ uses STL classes. However, handling STL classes is challenging since some STL classes have dif-

ferent ways to construct than others. Some STL classes have more complicated building methods than

just the standard constructor-calling approach. For example, std::tuple should be constructed using

function std::make tuple rather than directly calling its own constructor.

To overcome such issues, CLEMENTINE has special treatment for each STL class. CLEMENTINE

will not randomly select “object creator” of the STL class to construct an instance of STL class, in-

stead CLEMENTINE has different treatment for each STL class. For example, CLEMENTINE uses
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// file: header.hpp

1: class A{

2: public:

3: A() {};

4: private:

5: ˜A() {}; // non -public destructor

6: };

Figure 2.9: Example of non-instantiable class

std::make pair to construct an instance of std::pair. Meanwhile for std::ostream, CLEMENTINE

simply gives std::cout.

There are 26 supported STL classes in this current version of CLEMENTINE. Those 26 supported STL

classes can be divided into the following five categories:

• Containers (e.g., vector, set, map.

• Utility (e.g., pair and tuple).

• Strings (e.g., basic string, string, wstring).

• Memory (e.g., unique ptr and shared ptr).

• Stream (e.g., basic outputstream, outputstringstream).

2.3 Handling Complex C++ Features

I have analyzed functions that are not properly handled by CITRUS and classified them into 20

classes. I also grouped the 20 classifications into 4 groups based on their similarity. The first group is the

“member function” group where the not-properly-handled function is a member function. The second

group is the “scope/accessibility issue” group where functions are not properly handled due to scope or

accessibility issues. The third group is the “unsupported type” group where functions are not properly

handled due to unsupported type in CITRUS. The last group is “other” where the function did not meet

the specific criteria of the previous groups Table 2.3 shows the 20 classifications of not-properly-handled

functions and each status. “Solved” means CLEMENTINE is able to generate a test case to test such

function. “Not necessary” means CLEMENTINE does not need to test such function. “Partial” means

there are still some cases where CLEMENTINE can not handle. “Not yet” means CLEMENTINE still

cannot handle such functions.

2.3.1 Constructor of Non-instantiable Class

In C++, there are some classes that cannot be instantiated directly. Figure 2.9 shows an example

of non-instantiable classes. Class A is a non-instantiable class because it has a private destructor.

Constructing an instance of Class A by calling its constructor like in Figure 2.10 at line 3 will cause

a compilation error. Figure 2.11 shows the error message of compiling main.cpp in Figure 2.10. Thus,

CLEMENTINE does not target the constructor of non-instantiable classes.

Figure 2.10 also shows another way of constructing an instance of Class A at line 4, that is creating

a pointer to Class A using new operator. This way of constructing an instance of Class A does not cause
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Table 2.3: Classification of Not-Properly-Handled Functions in CITRUS

Class

ID

Class Group Class Name Status

1

Member Function

Constructor of non-instantiable class Not

necessary

2 Copy constructor of a class Solved

3 Desctructor of a class Solved

4 Implicit member function Not

necessary

5 Move constructor of a class Solved

6 Pure virtual member function Not

necessary

7

Scope/Accessibility

Issue

Function inside anonymous namespace Solved

8 Function that is not declared in the header file Solved

9 Function that requires enum type that declared inside

anonymous namespace

Solved

10 Non-public member function Solved

11 Static function Solved

12

Unsupported Type

Function related to unrecognized class type Not yet

13 Function that has void pointer argument type Solved

14 Function that has function pointer argument type Solved

15 Function that has unhandled clang type Not yet

16 Unhandled STL Partial

17

Other

Functions related to a class whose “object

constructors” were not detected

Not yet

18 Global operator overloading Solved

19 Inline function without definition Not

necessary

20 Template function without definition Not

necessary
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// file: main.cpp

1: #include "header.hpp"

2: int main() {

3: A a; // compile error

4: // A *ptr_a = new A(); // successfully compiled

5: }

Figure 2.10: Example of constructing an instance non-instantiable class

main.cpp :4:4: error: variable of type 'A' has private destructor

A a;

ˆ

./ header.hpp :6:5: note: declared private here

˜A();

ˆ

1 error generated.

Figure 2.11: Error message of constructing a non-instantiable class

// file: testcase_template.hpp

1: class A {

2: public:

3: A(int x) { value = x; };

4: A(const A &x) { value = x.value; }; // copy constructor

5: private:

6: int value;

7: };

Figure 2.12: Example of copy constructor function

// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main () {

3: int int1 = 10;

4: A a2(int1);

5: A a3(a2); // copy constructor is called here

6: return 0;

7: }

Figure 2.13: Example of test case that tests copy constructor function

a compilation error. This can be an alternative way to construct an instance of non-instantiable class in

the next version of CLEMENTINE.

2.3.2 Copy Constructor Function

Copy constructor is a member function that is used to create a new class instance and initialize its
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// file: testcase_template.hpp

1: class A {

2: public:

3: A(int x) { value = x; };

4: ˜A() { }; // destructor of class A

5: int getValue () { return value; };

6: private:

7: int value;

8: };

Figure 2.14: Example of destructor function

// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main () {

3: int int1 = 10;

4: A a2(int1); // instantiate object of class A

5: return 0; // return statement to immediately exit the main function

6: // destructor of class A will be called when a2 goes out of scope

7: }

Figure 2.15: Example of a test case to test destructor function

value with an existing object of the same class. The compiler will always generate copy constructor for

a class, struct, and union if there is no user-defined copy constructor [36]. Figure 2.12 shows an example

of a user-defined copy constructor. Previously, CITRUS did not target copy constructor of a class.

To test copy constructor, CLEMENTINE generates a test case that creates an instance of a class by

calling the constructor and creates a copy of the instance by calling copy constructor. CLEMENTINE

does not consider copy constructor as an “object creator”7 because it requires an object with the same

class and it may cause infinite recursion. Figure 2.13 shows the example of a test case that tests copy

constructor.

2.3.3 Destructor Function

In C++, the destructor of a class is implicitly called when an instance of a class goes out of scope.

Although it is implicitly called, there is no guarantee that the destructor function will be called. For

example, the destructor of a class is not called if the test case is crash before an instance of a class goes

out of scope. Thus, it is better to test the destructor of a class individually. However, CITRUS did not

target such function. Figure 2.14 shows the example of a destructor function.

To test the destructor function, CLEMENTINE generates a test case that creates an instance of a

class and immediately exits the main function. Immediately exiting the main function after instantiating

an object of a class is to make sure the destructor of the class is called unless there is an error or crash

in the constructor. Figure 2.15 shows an example of a test case that tests the destructor of class A.

7Function that is used to provide an instance of a class. See Subsection 2.2 for the detail.
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// file: testcase_template.hpp

1: class A {

2: public:

3: int x;

4: // The compiler implicitly generates several special member functions for

class A

5: };

Figure 2.16: Example of implicit function

// file: main.cpp

1: #include "testcase_template.cpp"

2: int main() {

3: A a; // successfully compiled

4: return 0;

5: };

Figure 2.17: Example of calling implicit function

// file: testcase_template.hpp

1: class A {

2: public:

3: A(int x) { value = new int; *value = x; };

4: A(A &&x) : A{ *x.value } { x.value = nullptr; }; // move constructor

5: private:

6: int * value;

7: };

Figure 2.18: Example of move constructor function

2.3.4 Implicit Member Function

C++ compiler implicitly generates a definition for several special member functions if they are

not explicitly defined in the source code. Those special member functions are default constructor,

destructor, copy constructor, move constructor, and assignment operator (i.e., copy assignment and

move assignment) [37]. Figure 2.16 shows an example of a class in which the compiler will implicitly

generate several special member functions for it. Figure 2.17 shows an example of a test case that

calls a default constructor of Class A which is an implicit function at line 3. Although the main.cpp

is compilable, testing the implicit function does not increase the test coverage. Moreover, the implicit

function does not have actual source code written by the developer. Thus, CLEMENTINE intentionally

does not target implicit function since the implicit function.

2.3.5 Move Constructor Function

Move constructor is a member function that is used to create a new class instance by transferring

the ownership of resources from an existing object with the same class. By transferring the ownership

of resources, move constructor avoids unnecessarily copying data in the memory. Figure 2.18 shows an
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// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main () {

3: int int1 = 10;

4: A a2(int1);

5: A a3(std::move(a2)); // move constructor is called here

6: return 0;

7: }

Figure 2.19: Example of test case that tests move constructor function

// file: testcase_template.hpp

1: class Parent {

2: public:

3: virtual void fun() = 0; // pure virtual member function

4: int getX() {return x};

5: private:

6: int x;

7: };

Figure 2.20: Example of pure virtual function

// file: main.cpp

1: #include "testcase_template.hpp"

2: int main() {

3: Parent x; // not allowed to construct abstract class (i.e., Parent)

4: x.fun(); // not allowed to call pure virtual function (i.e., fun)

5: return 0;

6: }

Figure 2.21: Example of calling pure virtual function

example of a user-defined move constructor. Previously, CITRUS did not target the move constructor

of a class.

To test the move constructor, CLEMENTINE generates a test case that creates an instance of a

class and then calls the move constructor. CLEMENTINE uses the standard C++ library function (i.e.,

std::move) to convert an object to an rvalue reference to that object. Figure 2.19 shows the example of

a test case that tests the move constructor. Similar to copy constructor, CLEMENTINE also does not

consider move constructor as an “object creator” because it requires an object with the same class and

it may cause infinite recursion.

2.3.6 Pure Virtual Member Function

In C++, a class that has pure virtual function is called an abstract class and it cannot be instanti-

ated [38]. A member function is a pure virtual function if it is declared with “virtual” and followed by

“=0” Figure 2.20 shows the example of a pure virtual function at line 3(i.e., fun). A pure virtual function

cannot have a definition and it has to be overridden in the derived class. Constructing an abstract
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main.cpp :3:10: error: variable type 'Parent ' is an abstract class

Parent x;

ˆ

./ header.hpp :3:18: note: unimplemented pure virtual method 'fun' in 'Parent '

virtual void fun() = 0;

ˆ

1 error generated.

Figure 2.22: Error message of calling pure virtual function

// file: target_file.hpp (header file)

1: namespace { // anonymous namespace or unnamed namespace

2: void anonymousNamespaceFunction (); // only declaration

3: }

// file: target_file.cpp (implementation/cpp file)

1: #include "target_file.hpp"

2: namespace { // anonymous namespace or unnamed namespace

3: void anonymousNamespaceFunction () { // function inside anonymous namespace

4: }

5: }

Figure 2.23: Example of function inside anonymous namespace

// file: main1.cpp

1: #include "target_file.hpp" // include the header file

2: int main () {

3: anonymousNamespaceFunction (); // not allowed , since function

anonymousNamespaceFunction scope is limited to target_file.cpp

4: return 0;

5: }

// command to build main1.cpp

clang++ -c target_file.cpp -o target_file.o -O0 -g --save -temps --coverage

clang++ -c main1.cpp -o main1.o -O0 -g --save -temps --coverage

clang++ -o exemain main1.o target_file.o -g -O0 --save -temps --coverage

Figure 2.24: Incorrect way of testing function inside anonymous namespace

class and calling its pure virtual function like in Figure 2.21 at line 3 and line 4 respectively, will cause

a compilation error. Figure 2.22 shows the error message obtained while trying to compile main.cpp.

Thus, CLEMENTINE does not target pure virtual function because calling pure virtual function will

hinder the testing performance.

2.3.7 Function Inside Anonymous Namespace

Namespace is a C++ feature that can be used to avoid naming conflicts in a large project. A

namespace that is defined without an identifier is called an anonymous namespace (a.k.a., unnamed
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main1.o: In function 'main':

main1.cpp:3: undefined reference to '(anonymous

namespace):: anonymousNamespaceFunction ()'

clang -11: error: linker command failed with exit code 1 (use -v to see invocation)

Figure 2.25: Error message of calling a function inside anonymous namespace

// file: main2.cpp

1: #include "target_file.cpp" // include the implementation/header file

2: int main () {

3: anonymousNamespaceFunction (); // allowed , since main1.cpp include

target_file.cpp , thus main1.cpp also has definition of

anonymousNamespaceFunction

4: return 0;

5: }

// command to build main2.cpp

clang++ -c main2.cpp -o main2.o -O0 -g --save -temps --coverage

clang++ -o exemain main2.o -g -O0 --save -temps --coverage

Figure 2.26: Correct way of testing function inside anonymous namespace

namespace [39]). The anonymous namespace is used to make sure everything defined in the namespace

has internal linkage (i.e., the scope is limited to one translation unit). Figure 2.23 shows an example

of a function inside anonymous namespace at line 3(i.e., anonymousNamespaceFunction). The scope of

anonymousNamespaceFunction is limited to target file.cpp and cannot be called from other transla-

tion unit files. Therefore, anonymousNamespaceFunction cannot be called from main1.cpp like in the

Figure 2.24 at line 3. Figure 2.25 shows the error message obtained during linking the main1.cpp.

CLEMENTINE solves this by changing the way of writing test cases (i.e., create a test case tem-

plate from the preprocessed file and include it in the test case file). Figure 2.26 shows the correct

way of testing functions inside anonymous namespace. anonymousNamespaceFunction can be called from

main2.cpp because main2.cpp includes the implementation file (i.e., target file.cpp) not the header

file. Thus, main2.cpp also has the definition of anonymousNamespaceFunction. Note that the linking com-

mand need to be changed since main2.cpp cannot be linked with target file.cpp. Linking main2.cpp

with target file.cpp will cause “multiple definition problem”. Figure 2.26 also shows the linking

command to build main2.cpp.

2.3.8 Function That is not Declared in The Header File

In C++, declarations of a class or a function are not always located in the header file. The developer

of C++ programs may write class declarations in the implementation file (i.e., cpp file). Classes and func-

tions whose declarations are written in the implementation file are intended to be used locally not globally

(i.e., cannot be used from other implementation files). Function funcDeclaredInImplFile at line B2 in

Figure 2.27 is the example of such function. Therefore, calling function funcDeclaredInImplFile at line 3

in the Figure 2.28 is not possible since main1.cpp does not have declaration of funcDeclaredInImplFile

(i.e., main1.cpp includes only the header file target file.hpp and it does not contain declaration of

funcDeclaredInImplFile). Figure 2.29 shows the error message during the compilation of main1.cpp.
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// file: target_file.hpp (header file)

A1: // no declaration of funcDeclaredInImplFile

// file: target_file.cpp (implementation/cpp file)

B1: #include "target_file.hpp"

B2: void funcDeclaredInImplFile () { }

Figure 2.27: Example of function that is not declared in the header file

// file: main1.cpp

1: #include "target_file.hpp" // include the header file

2: int main () {

3: funcDeclaredInImplFile (); // not allowed , since main1.cpp does not have

declaration of funcDeclaredInImplFile

4: return 0;

5: }

// command to build main1.cpp

clang++ -c target_file.cpp -o target_file.o -O0 -g --save -temps --coverage

clang++ -c main1.cpp -o main1.o -O0 -g --save -temps --coverage

clang++ -o exemain main1.o target_file.o -g -O0 --save -temps --coverage

Figure 2.28: Incorrect way of testing function that is not declared in the header file

main1.cpp :3:3: error: use of undeclared identifier 'funcDeclaredInImplFile '

funcDeclaredInImplFile ();

ˆ

1 error generated.

Figure 2.29: Error message of calling function that is not declared in the header file

// file: main2.cpp

1: #include "target_file.cpp" // include the implementation/header file

2: int main () {

3: funcDeclaredInImplFile (); // allowed , since main1.cpp include target_file.cpp ,

thus main1.cpp also has declaration of funcDeclaredInImplFile

4: return 0;

5: }

// command to build main2.cpp

clang++ -c main2.cpp -o main2.o -O0 -g --save -temps --coverage

clang++ -o exemain main2.o -g -O0 --save -temps --coverage

Figure 2.30: Correct way of testing function that is not declared in the header file

Therefore, the way of CITRUS writes the test case (i.e., includes all header files in the test case) cannot

test such functions.

CLEMENTINE solves this by changing the way of writing test cases (i.e., create a test case template

from the preprocessed file and include it in the test case file). Calling function funcDeclaredInImplFile
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// file: target_file.hpp (header file)

A1: namespace { // anonymous namespace

A2: enum class A { // enum type that declared in anonymous namepsace

A3: kOne = 0,

A4: kTwo ,

A5: };

A6: }

A7: void useEnumA(A x); // function that need enum type that declared inside

anonymous namespace

// file: target_file.cpp (implementation/cpp file)

B1: #include "target_file.hpp"

B2: #include <iostream >

B3: void useEnumA(A x) {

B4: std::cout << "useEnumA" << "\n";

B5: }

Figure 2.31: Example of function that requires enum type that declared inside anonymous namespace

// file: main1.cpp

1: #include "target_file.hpp" // include the header file

2: int main() {

3: useEnumA(A::kOne); // not allowed , since it requires enum type "A" that

declared inside anonymous namespace in target_file.cpp

4: return 0;

5: }

// command to build main1.cpp

clang++ -c target_file.cpp -o target_file.o -O0 -g --save -temps --coverage

clang++ -c main1.cpp -o main1.o -O0 -g --save -temps --coverage

clang++ -o exemain main1.o target_file.o -g -O0 --save -temps --coverage

Figure 2.32: Incorrect way of testing function that requires enum type that declared inside anonymous

namespace

at line 3 in the Figure 2.30 is fine because main2.cpp includes target file.cpp which contains definition

of funcDeclaredInImplFile. Note that the linking command need to be changed since main2.cpp cannot

be linked with target file.cpp. Figure 2.30 also shows the linking command to build main2.cpp.

2.3.9 Function That Requires enum Type That Declared Inside Anonymous

Namespace

As explained in subsection 2.3.7, everything defined inside anonymous namespace has internal link-

age. Thus, the scope of the enum defined in the anonymous namespace is limited to one translation

unit file Figure 2.31 shows the example of an enum that is declared inside anonymous namespace at line

A2 (i.e., enum A) and a function that uses the enum type at line A7 (i.e., useEnumA). Function useEnumA

cannot be called at line 3 in Figure 2.32 because main1.cpp does not have definition of function useEnumA.

Figure 2.33 shows the error message of compiling main1.cpp.
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In file included from main1.cpp:1:

./ target_file.hpp :7:6: error: function 'useEnumA ' is used but not defined in this

translation unit , and cannot be defined in any other translation unit because

its type does not have linkage

void useEnumA(A x);

ˆ

main1.cpp :3:3: note: used here

useEnumA(A::kOne);

ˆ

1 error generated.

Figure 2.33: Error message of calling function that requires enum type that declared in anonymous

namespace

// file: main2.cpp

1: #include "target_file.cpp" // include the implementation file

2: int main() {

3: useEnumA(A::kOne); // not allowed , since it requires enum type "A" that

declared inside anonymous namespace in target_file.cpp

4: return 0;

5: }

// command to build main2.cpp

clang++ -c main2.cpp -o main2.o -O0 -g --save -temps --coverage

clang++ -o exemain main2.o -g -O0 --save -temps --coverage

Figure 2.34: Correct way of testing function that requires enum type that declared inside anonymous

namespace

CLEMENTINE solves this by including the preprocessed input file in the test case to make sure

the test case has the definition of the enum type and the function that requires the enum type. Calling

function useEnumA at line 3 in the Figure 2.34 is fine because main2.cpp has the definition of useEnumeA

and enum type A since it includes target file.cpp. Note that the linking command need to be changed

since main2.cpp cannot be linked with target file.cpp. Figure 2.34 also shows the linking command

to build main2.cpp.

2.3.10 Non-public Member Function of a Class

C++ has access specifiers to control the visibility and accessibility of a class, struct, or union member

(both variable and function). There are 3 access specifiers [40], which are: (1) public, (2) protected, and

(3) privateṖublic members are accessible from anywhere in the program even outside of the class. Private

members are accessible only within the class and cannot be accessed directly from outside the class and

the derived class. Protected members are accessible within the class and the derived class. Figure 2.35

shows the example of non-public member functions.

Testing public member functions is not difficult since they can be accessed publicly (i.e., accessible

from anywhere in the program). However, testing non-public (i.e., private and protected) member

functions is not as simple as testing public member functions since non-public member functions can only
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// file: target_file.hpp (header file)

1: class A {

2: public:

3: void publicFunc ();

4: private:

5: void privateFunc (); // private function

6: };

// file: target_file.cpp (implementation/cpp file)

1: #include "target_file.hpp"

2: void A:: publicFunc () {}

3: void A:: privateFunc () {}

Figure 2.35: Example of non-public member function

// file: main1.cpp

1: #include "target_file.hpp"

2: int main () {

3: A a1;

4: a1.privateFunc ();

5: return 0;

6: }

// command to build main1.cpp

clang++ -c target_file.cpp -o target_file.o -O0 -g --save -temps --coverage

clang++ -c main1.cpp -o main1.o -O0 -g --save -temps --coverage

clang++ -o exemain main1.o target_file.o -g -O0 --save -temps --coverage

Figure 2.36: Incorrect way of testing non-public member function

main1.cpp :4:5: error: 'privateFunc ' is a private member of 'A'

a.privateFunc ();

ˆ

./ target_file.hpp :5:10: note: declared private here

void privateFunc ();

ˆ

1 error generated.

Figure 2.37: Error message of calling non-public member function in the test case file

be accessed within the class. Calling non-public functions directly in the test case like in Figure 2.36 at

line 4 will cause a compilation error. Figure 2.37 shows the compile error message of compiling main1.cpp.

CLEMENTINE solves this accessibility problem by writing the “driver” function for each non-public

member function in the test case template 8. A “driver” function is a public function that calls only a

non-public member function. The return type and argument type of the ”driver” function are exactly

the same as the return type and argument type of the non-public member function. Figure 2.38 shows

8Note that CLEMENTINE converts preprocessed input file into test case template by copying the preprocessed input

file and writing “driver” function. See subsection 2.1.1.
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// file: testcase_template.hpp

1: class A {

2: public:

3: void publicFunc ();

4: private:

5: void privateFunc ();

6: public:

7: void __driver_privateFunc () { return privateFunc (); }; // "driver" function

8: };

Figure 2.38: Example of test case template that contains “driver” function

// file: main2.cpp

1: #include "testcase_template.hpp"

2: int main () {

3: A a1;

4: a1._bypass_privateFunc ();

5: return 0;

6: }

// command to build main2.cpp

clang++ -c main2.cpp -o main2.o -O0 -g --save -temps --coverage

clang++ -o exemain main2.o -g -O0 --save -temps --coverage

Figure 2.39: Example of test case that tests non-public member function

// file: target_file.hpp (header file)

static function funA();

// file: target_file.cpp (implementation/cpp file)

1: #include "target_file.hpp"

2: static function funA() {}

Figure 2.40: Example of static function

the example of “driver” functions written by CLEMENTINE. Since the “driver” function is a public

function, it can be called directly in the test case file and it is used as a proxy to test non-public member

function. Figure 2.39 shows the example of a test case that tests non-public member function generated

by CLEMENTINE. Note that the linking command to build main2.cpp should be changed because

main2.cpp cannot be linked with target file.cpp. Figure 2.39 also shows the linking command to build

main2.cpp.

2.3.11 Static Function

In C++, a function can be declared as a static function using a “static” keyword like the code in

Figure 2.40. Previously, CITRUS did not target static function because the scope of static function is

limited to one translation unit (i.e., cpp file) where the static function is located. Function funA cannot

be called in the main1.cpp at line 3 in the Figure 2.41 because the scope of funA is limited to one
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// file: main1.cpp

1: #include "target_file.hpp" // include the header file

2: int main() {

3: funA(); // not allowed , because funA scope is limited to 1 translation unit

(i.e., target_impl.cpp)

4: return 0;

5: }

// command to build main1.cpp

clang++ -c target_file.cpp -o target_file.o -O0 -g --save -temps --coverage

clang++ -c main1.cpp -o main1.o -O0 -g --save -temps --coverage

clang++ -o exemain main1.o target_file.o -g -O0 --save -temps --coverage

Figure 2.41: Incorrect way of testing static function

main1.o: In function 'main':

main1.cpp:3: undefined reference to 'funA()'

clang -11: error: linker command failed with exit code 1 (use -v to see invocation)

Figure 2.42: Error message of calling static function in main1.cpp

// file: main2.cpp

1: #include "target_file.cpp" // include the implementation file

2: int main() {

3: funA(); // allowed , because main2.cpp includes the impl.cpp , thus it contains

the definition of funA

4: return 0;

5: }

// command to build main2.cpp

clang++ -c main2.cpp -o main2.o -O0 -g --save -temps --coverage

clang++ -o exemain main2.o -g -O0 --save -temps --coverage

Figure 2.43: Incorrect way of testing static function

translation unit (i.e., target file.cpp). Thus, build process of main1.cpp will fail due to “undefined

reference” error as shown in the Figure 2.42.

CLEMENTINE solves it by changing the way it writes the test case (see subsection 2.1.1 for the

explanation). Including the preprocessed input file in the test case will make the test case has the defini-

tion of static function. Thus, calling funA in main2.cpp at line 3 in the Figure 2.43 is fine. However, the

command to build main2.cpp should be changed since main2.cpp cannot be linked with target file.cpp.

Figure 2.43 also shows the command to build main2.cpp.

2.3.12 Function Related to Unrecognized Type

Before starting the method sequence generation, CLEMENTINE creates the program representation

of the target subject. In this stage, CLEMENTINE collects information of classes, structs, enums, and

functions declared in the target program. CLEMENTINE also removes all unsatisfiable functions from
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// file: target_file.cpp

1: #include <cstdio >

2: void writeToFile(FILE* f, std:: string message) {}

3: class OuterClass {

4: private:

5: class NestedClass { // private nested class

6: public:

7: int x;

8: };

9: void useNestedClass(NestedClass& nestedObj) {} // function that requires an

instance of private nested class

10: };

Figure 2.44: Example of function related to unrecognized type

// file: testcase_template.hpp

1: void funcWithVoidPtr(void * x) { // function that requires void pointer type

argument

2: int *int_ptr = (int *) x;

3: std::cout << "funcWithVoidPtr: " << *int_ptr << "\n";

4: }

Figure 2.45: Example of function that has void pointer type argument

the list of functions. A function is unsatisfiable if the function required an instance of a type which

CLEMENTINE cannot construct. One of the reasons CLEMENTINE cannot construct an instance of a

type is when CLEMENTINE does not recognize the type.

So far, there are 2 known reasons why CLEMENTINE does not recognize a type. The first reason

is that the unrecognized type is a C++ standard library type which CLEMENTINE does not support.

Function writeToFile at line 2 in Figure 2.44 is an example of such a function. The second reason is that

the unrecognized type is a non-public nested class. Currently, CLEMENTINE does handle non-public

nested classes 9. Function useNestedClass is at line 10 an example of such function.

2.3.13 Function That Has Void Pointer Type Argument

In C++, void pointer (i.e., “void *”) is a pointer that points to an object of an unknown type. Void

pointer is useful to deal with memory addresses without information on the actual data type. Thus, it

is hard to automatically generate a test case to test a function with void pointer argument type since it

can be cast to any other pointer type. Lisitng 2.45 shows the example of a function that has void pointer

type argument. CLEMENTINE tests such function by allocating a random-sized memory and passing

it to the function as an argument. Lisitng 2.46 shows the example test case that tests function with void

pointer type argument.

2.3.14 Function That Has Function Pointer Type Argument

9A future version of CLEMENTINE will support more standard C++ library types and C++ complex features.
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// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main() {

3: void * void1 = malloc (20); // allocate random -sized memory

4: funcWithVoidPtr(void1);

5: free(void1);

6: return 0;

7: }

Figure 2.46: Example of test case that test function with void pointer type argument

// file: testcase_template.hpp

1: int add(int a, int b){

2: return a + b;

3: }

4: int addOne(int a){

5: return a + 1;

6: }

7: void funcWithFuncPtr(int (*arg1)(int , int) ) { // function that requires

function pointer as argument

8: std::cout << arg1 (5,2) << "\n";

9: }

Figure 2.47: Example of the function that has function pointer argument type

// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main() {

3: funcWithFuncPtr(add);

4: return 0;

5: }

Figure 2.48: Example of test case that test function with function pointer argument type

Besides void pointer, C++ also has another special pointer type which is function pointer. A

function pointer is a pointer that holds the address of a function (i.e., point to a function). Function

pointer gives the ability to store and invoke functions dynamically at runtime. It is usually used in the

callbacks mechanism. Figure 2.47 shows the example of a function with function pointer type argument.

Previously, CITRUS did not target such a function because it did not support function pointer type.

CLEMENTINE solves it by supporting function pointer type. CLEMENTINE will search for a

function in the target subject that has a matching function signature with the function pointer argument.

For example in Figure 2.47, there is a function with function pointer argument type at line 7 (i.e.,

function funcWithFuncPtr). That function requires a pointer to a function that takes two integers and

returns an integer. Then, CLEMENTINE will search for a function in the target subject that takes two

integers and returns an integer, and give it as an argument to function funcWithFuncPtr. In this example,

CLEMENTINE will give function add as an argument since it has a matching signature with the function
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// file: target_file.hpp

1: class BasicClass {

2: public:

3: BasicClass(int x) {value = x;};

4: private:

5: int value;

6: };

7: template <typename T>

8: class TmplClass {

9: public:

10: TmplClass(T x) {value = x;};

11: private:

12: T value;

13: };

14: void func1(BasicClass x) { // clang:: CXXRecordDecl

15: };

16: void func2(TmplClass <int > x) { // clang:: ClassTemplateSpecializationDecl

17: };

18: template <typename T>

19: void func3(T x) { // clang:: TemplateTypeParmType

20: };

21: template <typename T>

22: void func4(TmplClass <T> x) { // clang:: TemplateSpecializationType

23: };

24: void func5(int BasicClass ::* pointerToMember) { // clang:: MemberPointerType

25: };

Figure 2.49: Example of function that has unhandled clang class type

pointer and will not give function addOne since the function signature is different. Figure 2.48 shows the

example of the generated test case that tests function with function pointer argument type.

2.3.15 Function That Has Unhandled Clang Class Type

CLEMENTINE uses clang [41] to parse the source code of the target subject and traverse the

AST (i.e., abstract syntax tree). It also utilizes clang class type to recognize function parameter type.

Figure 2.49 shows the example of how CLEMENTINE utilizes clang class type to recognize the type of

function arguments. clang::CXXRecordDecl represents a class or struct type. A templated class that

has been specialized is represented using clang::ClassTemplateSpecializationDecl. In this example,

the templated class is TmplClass and it has been specialized with int. clang::TemplateTypeParmType

represents template type.

There are 2 known unhandled clang class types by CLEMENTINE. Those 2 known unhandled clang

class types are (1) clang::TemplateSpecializationType and (2) clang::MemberPointerType. Clang

class clang::TemplateSpecializationType represents a templated class that has not been specialized

as shown in the example in Figure 2.49 at line 25. clang::MemberPointerType represents a pointer

that points to a variable member or member function. In the example shown in Figure 2.49, function

func5 requires a pointer to (variable) member of BasicClass that has type int. This type of function is
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// file: testcase_template.hpp

1: #include <iostream >

2: #include <sstream >

3: #include <functional >

4: void printToOstream(std:: ostream& outStream , std:: string msg) {

5: outStream << msg;

6: }

7: void printToOstringstream(std:: ostringstream& stringStream , std:: string msg) {

8: stringStream << msg;

9: }

10: void needSTDFunction(std::function <int (int , int)> stlarg) {

11: std::cout << "needSTDFunction: " << stlarg (2,3) << "\n";

12: }

Figure 2.50: Example of function that has unsupported STL type argument

// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main() {

3: std:: ostream& x = std::cout;

4: printToOstream(x, "message");

5: return 0;

7: }

Figure 2.51: Example of test case that test function that need std::ostream argument

considered an unsatisfiable function and is removed from the target function by CLEMENTINE.

2.3.16 Unsupported STL

There are several STL types that are still not supported by CITRUS. So far, there are 6 known

unsupported STL types 10. Those 6 known unsupported STL types are: (1) std::basic ostream /

std::ostream, (2) std::basic istream / std::istream, (3) std::function, (4) std::initializer list,

(5) std::ostringstream, and (6) std:: List iterator. Figure 2.50 shows some examples of functions

that require unsupported STL types. Among 6 known unsupported STL types, CLEMENTINE adds sup-

port to 3 STL types. Those 3 newly supported STL types are: (1) std::basic ostream / std::ostream,

(2) std::basic istream / std::istream, and (3) std::ostringstream. CLEMENTINE pass std::cout,

std::cin, and an instance of std::ostringstream to std::basic ostream, std::basic istream, and

std::ostringstream respectively. Figure 2.51 shows an example of a test case that tests a function that

has std::ostream argument.

2.3.17 Functions Related to a Class whose “Object Creator” functions were

not detected

As mentioned in subsection 2.3.12, CLEMENTINE removes all unsatisfiable functions from the list of

functions and an unsatisfiable function is a function that requires instance of type which CLEMENTINE

10These known unsupported STL types are obtained by applying CITRUS on 16 target subjects.
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// file: tinyxml2.ii

1: class TINYXML2_LIB XMLElement : public XMLNode {

2: friend class XMLDocument;

3: public:

4: const char* Name() const;

5: void SetName( const char* str , bool staticMem=false );

6: ...

7: private:

8: XMLElement(XMLDocument* doc); // non -public constructor

9: virtual ˜XMLElement (); // non -public destructor

10: ...

11: }

12: ...

13: class TINYXML2_LIB XMLDocument : public XMLNode {

14: ...

15: friend class XMLElement;

16: public:

17: XMLElement* NewElement(const char* name);

18: XMLElement* RootElement ();

19: ...

20: }

Figure 2.52: Example of class whose “object creator” functions were not detected

cannot construct. Another reason CLEMENTINE cannot construct an instance of a type is when

CLEMENTINE failed to recognize “object creator” of the type. Previously, CITRUS considers only

public constructor and static factory method (i.e., public functions that are static and return a particular

class type) as “object creator”. At Figure 2.52, the constructor of XMLElement is not considered as “object

creator” by CITRUS because it is not a public function. Function NewElement and function RootElement

at line 17 and 18 are also not considered as “object creator” because those functions are not static

functions. Therefore, CITRUS did not detect any “object creator” for class XMLElement. As a result,

all member functions of XMLElement and all functions with XMLElement argument type are removed from

the list of functions.

CLEMENTINE tries to solve this by redefining the definition of “object creator”. The new definition

of “object creator” is explained in Subsection 2.2. Based on the new definition, function NewElement

and function RootElement are considered as “object creator” of XMLElement by CLEMENTINE. Thus,

all member functions of XMLElement and all functions with XMLElement argument type are not removed

from the list of functions.

2.3.18 Global Operator Overloading

Customizing operators for operands of user-defined types is called operator overloading. Operator

overloading allows the developers to write intuitive syntax for operations on the user-defined type making

the code more readable. Figure 2.53 shows an example of an operator overloading function. Operator

overloading can be declared as member functions of a class and non-member functions depending on

the operator. There are four operators that should be overloaded as member functions (i.e., operator=,

operator[], operator(), and operator->)[42]. While the other operators (e.g., operator+, operator-,
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// file: testcase_template.hpp

1: class Number {

2: private:

3: int val;

4: public:

5: Number(int x) { val = x; };

6: int getVal () { return val; };

7: };

8: Number operator +( Number& v1, Number& v2) { // global operator overloading

9: int new_val = v1.getVal () + v2.getVal ();

10: return Number(new_val);

11: }

Figure 2.53: Example of global operator overloading function

// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main () {

3: Number number1 (3);

4: Number number2 (9);

5: Number number3 = number1 + number2;

6: return 0;

7: }

Figure 2.54: Example of global operator overloading function

// file: testcase_template.hpp

1: inline void nodefInlineFunc ();

Figure 2.55: Example of inline function without definition

// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main() {

3: nodefInlineFunc (); // not allowed since there is no definition of

"nodefInlineFunc"

4: return 0;

5: }

Figure 2.56: Example of calling inline function without definition

operator*, etc.) can be declared globally (i.e., as non-member functions). Previously, CITRUS did

not target global operator overloading functions. Now, CLEMENTINE targets the global operator

overloading and Figure 2.54 shows the generated test case that test global operator overloading.

2.3.19 Inline Function without Definition
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test_case.o: In function 'main':

test_case.cpp:3: undefined reference to 'nodefInlineFunc ()'

clang -11: error: linker command failed with exit code 1 (use -v to see invocation)

Figure 2.57: Error message of calling inline function without definition

// file: testcase_template.hpp

1: Template <typename T>

2: void templateFuncWODefintion(T x);

Figure 2.58: Example of template function without definition

// file: test_case.cpp

1: #include "testcase_template.hpp"

2: int main() {

3: templateFuncWODefintion <int >(10); // not allowed , since there is no definition

of "templateFuncWODefintion"

4: return 0;

5: }

Figure 2.59: Example of calling template function without definition

test_case.o: In function 'main':

test_case.cpp:3: undefined reference to 'void templateFuncWODefintion <int >(int)'

clang -11: error: linker command failed with exit code 1 (use -v to see invocation)

Figure 2.60: Error message of calling template function without definition

Inline function is a C++ feature used to reduce the execution time [43]. The “inline” keyword

is used to declare a function as an inline function. Every function call to an inline function will be

replaced with its function definition during compile or linking time. Figure 2.55 shows an example of an

inline function without definition. Calling an inline function that does not have a definition like in the

Figure 2.56 will cause a linking error (i.e., undefined reference). Figure 2.57 shows the error message of

building test case.cpp. Therefore, CLEMENTINE intentionally does not test inline function without

definition.

2.3.20 Templated Function without Definition

Template is a C++ feature that allows the developer to write generic code. Template can be

attached with function and class to create templated function and templated class. Then, templated

function and templated class can be specialized with various data types. Figure 2.58 shows an example

of a templated function without definition. Calling templated function that does not have a definition

like in the Figure 2.59 will cause a linking error (i.e., undefined reference) Figure 2.60 shows the error

message of linking test case.cpp. Therefore, CLEMENTINE intentionally does not test templated

function without definition.
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Chapter 3. Empirical Evaluation

3.1 Experiment Setup

3.1.1 Research Question

The research questions for this thesis are as follows:

RQ1: How is the general applicability of CLEMENTINE compared to CITRUS? To what

extent CLEMENTINE are able to generate test cases for real-world C++ programs in various domains?

I applied CITRUS and CLEMENTINE on 8 real-world C++ programs in various domains. Table 3.1

shows 8 real-world C++ programs used to answer this research question.

RQ2: How effective is CLEMENTINE compared to CITRUS in terms of test coverage

To what extent does CLEMENTINE achieve code coverage on real-world C++ programs compared to

CITRUS? I applied CLEMENTINE for 3 hours on test case generation and performed fuzzing using

libfuzzer for 1 minute for each test case generated. Then, I compared the code coverage result obtained

by CLEMENTINE and CITRUS. Also, I compared the code coverage result reported in the CITRUS’s

paper [1].

3.1.2 Target Subjects

To show the general applicability of CLEMENTINE (i.e., RQ1), I applied CLEMENTINE and

CITRUS on 8 real-world C++ programs that have different domains. Those 8 real-world C++ programs

are shown in Table 3.1. clip is a command-line program for creating charts and illustrations from a given

data. Exiv2 is a library and command-line program to read, write, delete, and modify image metadata

such as Exif, IPTC, XMP, and ICC. gflags is a C++ library for command-line flags processing glog is

an implementation of the Google logging module in C++ programming language. guetzli is a JPEG

encoder that provides high visual-quality compression for an image. PcapPlusPlus is a C++ library

whose purpose is capturing, parsing, and crafting network packets. SQL-parser is a C++ library that

parses SQL query into C++ objects. Xpdf is a PDF utility program that can be used to view a PDF file,

extract text from a PDF file, convert a PDF file into HTML, and many more. gflags and glog were

selected because those 2 are famous C++ libraries 1. The other target programs were selected because

they have been extensively tested in OSSFuzz [44] or other software testing papers [19].

I also applied CLEMENTINE on 8 target programs used in CITRUS’s paper [1]. Table 3.2 shows

the target programs and their size in terms of lines of code (LoC). These target programs are used to

answer RQ2, that is comparing the testing performance of CLEMENTINE and CITRUS in terms of test

coverage.

1gflags has 2.6k stars and glog 6.1K stars in Github.
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Table 3.1: Target Subjects in CLEMENTINE Experiment

Name Size (LoC) Commit Hash / Version URL

clip 17,600 5fca358e github.com/asmuth/clip.git

exiv2 83,011 ad5484c / 0.27.5 github.com/Exiv2/exiv2.git

gflags 3,954 986e8ee github.com/gflags/gflags.git

glog 9,510 c525e1a github.com/google/glog.git

guetzli 8,029 214f2bb github.com/google/guetzli.git

pcapplusplus 64,805 4b1d0554 github.com/seladb/PcapPlusPlus.git

sql-parser 13,332 44f66fd github.com/hyrise/sql-parser.git

xpdf 125,529 4.0.3 dl.xpdfreader.com/xpdf-4.03.tar.gz

Table 3.2: Target Subjects Used in CITRUS [1] Experiment

Name Size (LoC) Commit Hash URL

hjson 2,911 0c40199 github.com/hjson/hjson-cpp.git

jsonbox 1,477 6f86f81 github.com/anhero/JsonBox.git

jsoncpp 5,420 c39fbda github.com/open-source-parsers/jsoncpp.git

json-voorhees 8,614 046083c github.com/tgockel/json-voorhees.git

jvar 4,860 e2a6a43 github.com/YasserAsmi/jvar

re2 20,373 bc42365 github.com/google/re2.git

tinyxml2 3,606 1dee28e github.com/leethomason/tinyxml2.git

yaml-cpp 8,800 b591d8a github.com/jbeder/yaml-cpp.git
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Table 3.3: Experiment Setup Information for Subject in Table 3.1

Name # of preprocessed

file

Timeout per

function (second)

Time Taken

(hour)

Target File of

CITRUS

clip 81 3 3 cli.cc

exiv2 78 3 11 exiv2.cpp

gflags 3 52 3 gflags.cc

glog 6 14 3 logging.cc

guetzli 21 21 3 guetzli.cc

pcapplusplus 79 3 8 PcapFilter.cpp

sql-parser 10 42 3 SQLParser.cpp

xpdf 91 3 18 pdftohtml.cc

1: vector <ObjCreator > cls_obj_creators = class_type.getObjectCreators ();

2: int idx = RandInt ((int) cls_obj_creators.size());

3: ObjCreator selected_creator = cls_obj_creators[idx]; // CITRUS CRASH HERE

Figure 3.1: Pseudocode of CITRUS’s crash location

3.2 Experiment Results

3.2.1 RQ1: How is the general applicability of CLEMENTINE compared to

CITRUS?

To answer this research question, I applied CLEMENTINE and CITRUS to eight target programs in

Table 3.1. This experiment is performed on SWTV-Lab’s server that is powered by Intel Core i5-10600

CPU (3.3GHz), 16 GB of RAM, and running Ubuntu 18.04 LTS 64-bit versions. For this experiment, I

run CLEMENTINE and CITRUS for only one repetition.

Both CLEMENTINE and CITRUS can only take one input source code file at each run. However,

all the target programs in Table 3.1 consist of multiple source code files. Thus for the CLEMENTINE

experiment, I run CLEMENTINE on each preprocessed file generated after building the target program,

except the test file 2 or example file 3. I set the timeout for each preprocessed file depending on the

number of functions defined in each file. Initially, I set the timeout for 3 seconds for all target programs.

However, for some programs that have only a few functions, the total time taken is only a few minutes

(e.g., 3 seconds per function for sql-parser takes only 12 minutes in total). Therefore, I increase the

timeout per function for some target programs so that the total time taken is at least 3 hours. For

the CITRUS experiment, I run CITRUS on one file that represents the target program the most. The

timeout for the CITRUS experiment is the same as the total time taken for each subject. Table 3.3

shows the number of preprocessed files found in each target, timeout per function in seconds, total time

taken in hours, and target file of CITRUS experiment.

Table 3.4 shows the result obtained by CLEMENTINE and CITRUS. CITRUS failed to generate

2Source code that used to test the target program, such as unit-test
3Source code that contains an example of how to use the target program
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Table 3.4: Comparison of Coverage Achieved by CLEMENTINE and CITRUS on Subject in Table 3.1

Subject
% Statement Coverage

CLEMENTINE CITRUS

clip 37.9 UNCOMPILABLE

exiv2 29.7 CRASH

gflags 48.7 49.0

glog 65.6 53.7

guetzli 39.0 9.6

pcapplusplus 58.4 CRASH

sql-parser 34.4 29.7

xpdf 11.9 CRASH

Average 40.6 35.5

Subject
% Branch Coverage

CLEMENTINE CITRUS

clip 15.3 UNCOMPILABLE

exiv2 8.4 CRASH

gflags 30.5 33.4

glog 39.6 32.7

guetzli 24.9 5.4

pcapplusplus 25.5 CRASH

sql-parser 11.8 8.2

xpdf 5.5 CRASH

Average 20.1 19.9

Subject
% Function Coverage

CLEMENTINE CITRUS

clip 59.1 UNCOMPILABLE

exiv2 38.3 CRASH

gflags 79.4 77.0

glog 76.8 68.4

guetzli 63.3 15.3

pcapplusplus 72.4 CRASH

sql-parser 71.0 65.7

xpdf 34.9 CRASH

Average 61.5 56.6
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Table 3.5: Statistics of Generated Test Case by CLEMENTINE (CLE) and CITRUS (CIT) on Subject

in Table 3.1

Subject
# of Total At-

tempts

# of Effective

TC

# of Uncompi-

lable TC

# of Unlink-

able TC

# of Unique

Crash TC

CIT CLE CIT CLE CIT CLE CIT CLE CIT CLE

clip 7014 1553 0 824 7014 353 0 72 0 14

exiv2 - 6571 - 2796 - 1803 - 406 - 132

gflags 6499 4173 53 181 239 359 319 58 40 34

glog 6560 7132 72 607 516 1445 45 72 55 118

guetzli 9148 4643 29 429 1551 1166 0 0 11 56

pcapplusplus - 8629 - 3042 - 2015 - 682 - 115

sql-parser 7400 2566 56 315 876 287 0 0 0 79

xpdf - 64144 - 2954 - 7703 - 45592 - 51

effective test case 4 for four target programs (i.e., clip, exiv2, pcapplusplus, and xpdf). For clip, all the

test cases generated by CITRUS are uncompilable due to the first limitation explained in Subsection 2.1.1

(i.e., method redefinition problem occurred due to including all header files in the test case file). While for

the other target programs (i.e., exiv2, pcapplusplus, and xpdf), CITRUS crash due to an internal bug

in the implementation. CITRUS removes all unsatisfiable functions (i.e., the function whose arguments

can not be resolved by CITRUS) from the target function. However, due to an internal bug, CITRUS

failed to remove some unsatisfiable functions and tried to generate a test case to test such functions.

Thus, CITRUS crashed while trying to resolve arguments for such functions. To be specific, CITRUS

crashed when selecting the “object creator” function to construct an instance of a class whose “object

creator” function is not detected. Figure 3.1 shows the pseudocode of location where CITRUS crash.

At line 1, CITRUS get the list of “object creator” of a class. However, CITRUS failed to detect the

“object creator” of the required class, thus the size of list cls obj creators is zero (i.e., empty list).

Then, segmentation-fault error occurred at line 3 because CITRUS tried to access the element of an

empty list (i.e., cls obj creators) using index.

On the other hand, CLEMENTINE success to generate effective test cases for all the target programs.

This shows that CLEMENTINE’s applicability is better than CITRUS since CLEMENTINE can generate

effective test cases for four subjects that CITRUS failed. Moreover, CLEMENTINE also achieves higher

function coverage in 75% (3/4) of the target programs (i.e., glog, guetzli, and sql-parser) proving

CLEMENTINE has better testing performance compared to CITRUS.

Answer to RQ1: On the eight real-world C++ programs with different domains, CLEMENTINE

is able to generate effective test cases for all target programs while CITRUS is able to generate

effective test cases for only four target programs.

Table 3.5 shows the number of test cases generated by CLEMENTINE (i.e., “CLE” in the table) and

CITRUS (i.e., “CIT” in the table) on eight target programs used to answer RQ1. The column “number

of total attempts” means the total number of test cases generated by CLEMENTINE and CITRUS. Note

that this number includes test cases that are discarded due to not increasing the coverage or duplicate

4Test case that increase the coverage
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A1: int main () {

A2: int int0 = 13;

A3: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

A4: google ::base:: Logger* logger1 = google ::base:: GetLogger(int0);

A5: google ::base:: SetLogger (-88, logger1);

A6: return 0;

A7: }

B1: base:: Logger* base:: GetLogger(LogSeverity severity) {

B2: MutexLock l(& log_mutex);

B3: return LogDestination :: log_destination(severity)->logger_;

B4: }

C1: inline LogDestination* LogDestination :: log_destination(LogSeverity severity) {

C2: assert(severity >=0 && severity < NUM_SEVERITIES);

C3: if (! log_destinations_[severity ]) {

C4: log_destinations_[severity] = new LogDestination(severity , NULL);

C5: }

C6: return log_destinations_[severity ];

C7: }

D1: typedef int LogSeverity;

D2: const int GLOG_INFO = 0, GLOG_WARNING = 1, GLOG_ERROR = 2, GLOG_FATAL = 3,

NUM_SEVERITIES = 4;

Figure 3.2: Example of the crash found in glog

crashes. Thus, the total number of attempts does not equal the sum of the other columns. The number

of effective test cases means the number of test cases that increases the coverage.

Based on Table 3.5, CLEMENTINE is able to generate more effective test cases compared to CIT-

RUS. It also shows that CLEMENTINE found more unique crashes than CITRUS. Although, those

unique crashes should be analyzed in more detail to check whether those crashes are true alarms or false

alarms.

Figure 3.2 shows an example of crashes found in glog. The crashes occurred when calling function

GetLogger at line A4. The generated test case gives an integer variable (i.e., int0) with value 13 to call

function GetLogger. Then, function GetLogger calls function log destination at line B3 and gives int0

to function log destination. Function log destination has an assertion at line C2 to make sure that

the given argument (i.e., severity) is within the allowed range that is equal or bigger than zero (i.e.

0) and should be less than NUM SEVERITIES(i.e., the value of NUM SEVERITIES is 4, it is initialized at line

D2). However, function GetLogger passes int0 to function log destination and the value of int0 is 13

which is bigger than 4 (i.e., NUM SEVERITIES). Thus, this crash is caused by assertion failure because the

precondition of severity is not satisfied.

3.2.2 RQ2: How effective is CLEMENTINE compared to CITRUS in terms

of test coverage

To answer this research question, I applied CLEMENTINE and CITRUS to eight target programs

used in the CITRUS’s paper[1], showed in Table 3.2. This experiment is performed on SWTV-Lab’s

server that is powered by AMD Ryzen 7 3800XT CPU, 32 GB of RAM, and running Ubuntu 18.04 LTS
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Table 3.6: Total time taken for CLEMENTINE and CITRUS

Subject
ttotal (h)

CLEMENTINE3+LF1 CITRUS3+LF1 CITRUS12+LF2 (reported

in [1])

hjson 12.3 5.0 16.2

jsonbox 6.4 4.9 20.5

jsoncpp 10.6 6.2 16.8

json-voorhees 17.8 5.6 19.3

jvar 14.0 5.4 21.7

re2 16.8 6.0 20.8

tinyxml2 5.3 4.0 17.2

yaml-cpp 18.7 4.4 22.7

Average 12.7 5.2 19.4

64-bit versions. For this experiment, I run CLEMENTINE for four repetitions and report the averaged

result and standard deviations of the experiments.

Similar to RQ1, I also run CLEMENTINE on each preprocessed file generated after building the

target program. However, I set the total timeout to 3 hours for each subject and divide the timeout for

each preprocessed file depending on the number of functions. For example, target program X consists of

file A.ii, file B.ii, and file C.ii which contains 10 functions, 20 functions, and 30 functions respectively.

Therefore for the 1-hour experiment, CLEMENTINE will run on file A.ii for 10 minutes, file B.ii for 20

minutes, and file C.ii for 30 minutes. After the 3 hours of test case generation is done, I run libfuzzer

for 1 minute for each test case. For the CITRUS experiment, I use the same configuration as explained

in the CITRUS paper [31] (i.e., create file “all.cpp” that includes all header files and target that file).

Finally, I compare the coverage result reported in the CITRUS’s paper [1]. Table 3.6 shows the total

time taken for CLEMENTINE and CITRUS for the 3 hours test case generation and 1 minute libfuzzer.

The total time taken for CLEMENTINE is longer than CITRUS because within the 3-hour test case

generation, CLEMENTINE generates a larger number of test cases than CITRUS.

Table 3.7 shows the result obtained by CLEMENTINE and CITRUS. CLEMENTINE achieved

85% function coverage or higher on 87.5% (=7/8) of all target programs (i.e., all target programs ex-

cept json-voorhees). hjson has the highest improvement in function coverage (69.3%p, from 26.2%

to 95.5%) while tinyxml2 has the higest improvement for statement coverage (51.4%, from 33.9% to

85.3%). On average, CLEMENTINE achieves higher test coverage by 24.4%p (=88.5%-64.1%) for func-

tion coverage, 8.9%p (=60.1%-51.2%) for branch coverage, and 15.0%p (=81.6%-66.6%) for statement

coverage compared to CLEMENTINE, for the 3 hours test case generation and 1 minute libfuzzer

experiment. Even compared to the best experiment result reported in CITRUS’s paper [1] which has

a longer timeout (i.e., CITRUS12+LF2 performs 12 hours test case generation and 2 minutes libfuzzer),

CLEMENTINE3+LF1 still achieved higher 13.1%p(=88.5%-75.4%) function coverage and 1.0%p(=81.3%-

80.6%) statement coverage. However, Note that the CITRUS12+LF2 experiment is performed on the server

with different specifications (i.e., Intel Core i5-4670 CPU (3.4GHz), 16 GB of RAM, and running Ubuntu

16.04 LTS 64-bit versions.)
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Table 3.7: Comparison of Coverage Achieved by CLEMENTINE and CITRUS on Subject in Table 3.2

Subject
% Statement Coverage (± stdev.)

CLEMENTINE3+LF1 CITRUS3+LF1 CITRUS12+LF2 (reported in

[1])

hjson 79.1 (±2.1) 67.3 (±1.5) 80.2 (±1.1)
jsonbox 94.3 (±1.5) 89.6 (±2.2) 93.9 (±1.3)
jsoncpp 63.3 (±1.0) 57.9 (±0.7) 95.4 (±0.1)
json-voorhees 77.2 (±0.8) 63.9 (±4.8) 76.7 (±1.0)
jvar 88.1 (±0.6) 64.5 (±1.0) 81.2 (±2.5)
re2 79.6 (±1.1) 78.5 (±1.2) 80.2 (±1.0)
tinyxml2 85.3 (±1.2) 33.9 (±1.3) 56.6 (±3.1)
yaml-cpp 85.9 (±1.8) 77.3 (±3.0) 80.6 (±0.8)

Average 81.6 66.6 80.6

Subject
% Branch Coverage (± stdev.)

CLEMENTINE3+LF1 CITRUS3+LF1 CITRUS12+LF2 (reported in

[1])

hjson 64.6 (±2.2) 58.5 (±2.1) 70.2 (±1.6)
jsonbox 77.0 (±2.7) 78.1 (±3.0) 78.9 (±2.2)
jsoncpp 42.1 (±1.6) 45.9 (±0.3) 60.7 (±0.2)
json-voorhees 47.3 (±1.3) 38.9 (±6.6) 48.3 (±1.3)
jvar 63.9 (±0.7) 44.2 (±1.2) 64.5 (±3.8)
re2 59.8 (±1.0) 59.9 (±1.1) 45.5 (±4.3)
tinyxml2 61.7 (±1.5) 23.8 (±1.2) 62.4 (±0.9)
yaml-cpp 64.4 (±3.2) 60.1 (±2.2) 63.0 (±1.0)

Average 60.1 51.2 61.7

Subject
% Function Coverage (± stdev.)

CLEMENTINE3+LF1 CITRUS3+LF1 CITRUS12+LF2 (reported in

[1])

hjson 95.5 (±0.4) 26.2 (±0.4) 38.1 (±0.5)
jsonbox 96.9 (±0.5) 88.7 (±1.8) 92.6 (±1.5)
jsoncpp 85.7 (±1.1) 68.5 (±0.5) 95.0 (±0.1)
json-voorhees 64.5 (±1.5) 55.0 (±1.7) 64.3 (±0.5)
jvar 95.0 (±0.9) 72.8 (±1.2) 87.0 (±2.4)
re2 87.8 (±0.4) 84.1 (±2.9) 61.2 (±1.5)
tinyxml2 90.0 (±0.9) 36.6 (±0.4) 84.2 (±0.9)
yaml-cpp 92.8 (±0.3) 80.6 (±1.8) 80.8 (±0.7)

Average 88.5 64.1 75.4
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Table 3.8: Statistics of Generated Test Case by CLEMENTINE (CLE) and CITRUS (CIT) on Subject

in Table 3.2

Subject
Avg. # of Total

Attempts

Avg. # of Ef-

fective TC

Avg. # of Un-

compilable TC

Avg. # of Un-

linkable TC

Avg. # of

Unique Crash

TC

CIT CLE CIT CLE CIT CLE CIT CLE CIT CLE

hjson 27276.50 3507.75 120.25 558.25 7962.00 551.00 0.00 0.00 1.00 12.25

JsonBox 17044.50 6078.50 113.00 202.00 4261.75 463.75 0.00 0.00 3.50 10.00

jsoncpp 13733.75 2604.75 185.00 454.00 3601.25 369.50 0.00 0.00 8.50 41.00

json-voorhees 10824.25 5799.00 147.25 888.00 3110.50 3240.75 0.00 0.00 4.25 10.75

jvar 13609.50 6798.25 143.25 659.75 3477.00 1715.25 0.00 0.00 28.75 52.00

re2 9037.25 3781.25 179.75 829.25 2105.00 612.00 31.25 73.75 54.75 160.75

tinyxml2 47481.25 13372.25 58.50 137.75 14021.50 2788.25 0.00 0.00 7.00 34.50

yaml-cpp 7374.75 5429.00 77.75 942.00 1863.00 1981.25 3.00 502.50 4.00 27.00

Answer to RQ2: On average, CLEMENTINE achieves higher test coverage than CITRUS by

24.5%p for function coverage, 8.9%p branch coverage, and 15.0%p for statement coverage, for the 3

hours test case generation and 1 minute libfuzzer experiment on 8 real-world C++ programs.

Table 3.8 shows the number of test cases generated by CLEMENTINE (i.e., “CLE” in the table) and

CITRUS (i.e., “CIT” in the table) on eight target programs used to answer RQ2. Based on Table 3.8,

CLEMENTINE generated more effective test cases compared to CITRUS even though CITRUS has a

higher number of total attempts than CLEMENTINE. CLEMENTINE also has fewer uncompilable test

cases and can find more crashes than CITRUS. However, the crashes found by CLEMENTINE should

be analyzed more to check whether the crashes are true alarms or false alarms.

Figure 3.3 shows an example of crashes found in yamlcpp. The generated test case creates an

instance of AnchorDict (i.e., anchordict0) at line A3. Then, the generated test case calls function Get

on anchordict0 with 122 as the function argument. In function Get, the integer 122 is used as the index

to access the vector m data. However, the size of vector m data in anchordict0 is zero since anchordict0

is just created at line A2. Thus, this crash is caused by accessing an array with an invalid index.
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A1: int main () {

A2: YAML::AnchorDict <int > anchordict0 {};

A3: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

A4: int int1 = anchordict0.Get((int) 122);

A5: return 0;

A6: }

B1 : template <class T>

B2 : class AnchorDict {

B3 : public:

B4 : AnchorDict () : m_data {} {}

B5 : void Register(anchor_t anchor , T value) {

B6 : if (anchor > m_data.size()) {

B7 : m_data.resize(anchor);

B8 : }

B9 : m_data[anchor - 1] = value;

B10: }

B11: T Get(anchor_t anchor) const { return m_data[anchor - 1]; }

B12: private:

B13: std::vector <T> m_data;

B14: };

Figure 3.3: Example of the crash found in yaml-cpp
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Chapter 4. Related Works

4.1 C/C++ Unit-level Testing Tools

As the name suggests, unit-level testing is a testing process that tests functions in the program

individually. Unit-level testing needs test drivers to test each function individually. There have been

many C++ unit testing frameworks such as Google Test [45] and CppUnit [46] that helps the developer

to execute test driver automatically. Unfortunately, those frameworks are not capable of generating test

drivers automatically. While writing test drivers for small programs may not be difficult, writing test

drivers for large programs may take much time and cost.

The performance of unit-level testing relies on how good the test drivers are. The test driver consists

of a sequence of functions to provide realistic context for the target function and input value to those

function arguments. Coverage-guided greybox fuzzing (e.g., AFL++ [16], libfuzzer [18], POWER [19])

and symbolic executions (e.g., CUTE [20], KLEE [21], DeepState [22]) considered as the current state-

of-the-art of automated testing technique for C++ programs that can generates various input value.

However, those techniques are mainly performed in system-level. Thus, there is still a need for human

effort to write test drivers for each function to adapt those techniques in unit-level.

Some early works on automated unit testing utilize static drivers to achieve high test performance in

unit testing. KLOVER [23] performs unit testing by generating input using its own C++ symbolic engine

on the static drivers. FSX [24] proposed test driver refinement on an existing test driver guided by its

diagnostic engine. While KLOVER and FSX rely on the static test driver, CLEMENTINE uses random

method call sequencce generation to generate test drivers. One positive aspect of random method call

sequence compared to static drivers is it can produce diverse object states that help CLEMENTINE to

test diverse behavior of the target program.

The later work on automated unit testing focuses on generating fuzz drivers to achieve high testing

performance. FUDGE [25] is one of example such work. FUDGE focuses on testing the C++ library

and it needs the consumer of the C++ library to generate the test driver. First, FUDGE scans the

consumer of the target library to get the candidate target function. Then, FUDGE generates fuzz

drivers for each target function by referring to the order of the method call (called snippet) that was

used in the consumer program. Similar to FUDGE, FuzzGen [26] also focuses on testing C++ library and

it requires the consumer code of the target C++ library. FuzzGen utilizes an Abstract API Dependence

Graph (AADG) of existing external projects to generate the fuzz driver. The difference between FUDGE

and FuzzGen relies on how they utilize the consumer of the target library. While FUDGE sliced the

snippet from the consumer code, FuzzGen extracts the possible method call sequence from AADG to

eliminate irrelevant consumer code in the generated fuzz drivers. Although utilizing consumer code can

help FUDGE and FuzzGen to generate fuzz drivers, it also has some limitations such as: (1) FUDGE

and FuzzGen miss the opportunity to test functions that are never used in the consumer program, and

(2) The order of function call sequence is limited to the snippet that exists in the consumer code, thus

FUDGE and FuzzGen may not thoroughly explore diverse function call order. On the opposite side,

CLEMENTINE does not rely on the consumer code to generate test drivers. Additionally, the random

method call sequence generation enables CLEMENTINE to explore diverse function call orders.

IntelliGen [27] is one of the recent works and similar to CLEMENTINE, it also does not need

50



consumer code to generate a test driver. To improve the bug detection performance, IntelliGen generates

fuzz drivers for functions in the target C++ library by prioritizing functions with the most potentially

vulnerable statements. UTBotCPP [28] is also another recent work that does not need consumer code to

generate fuzz drivers. UTBotCPP generates a fuzz driver for each function of the given C++ code and

then uses KLEE [21] to generate the input. However, IntelliGen does not explain how it handles C++

features (e.g., template, STL type) and I cannot check whether IntelliGen handles C++ features or not

since its implementation is not publicly available. Similarly, UTBotCPP also still does not handle C++

features and it does not generate fuzz drivers for the function that uses C++ feature.

4.2 Method Call Sequence Generation

In programming languages other than C++, method call sequence generation has been widely used

to generate test drivers. EvoSuite [10] is the state-of-the-art of automated unit-level testing in Java

programming language. Similar to CLEMENTINE, EveSuite performs random method call sequence

generation of object-constructing statements to create a test driver. Then, EvoSuite uses genetic evolu-

tionary algorithm to maximize the coverage (e.g., line, branch) and minimize the size of the test cases.

To minimize the generated test cases, EvoSuite performs minimization in two different level. The first

minimization level is done in test suite level by removing duplicate test cases. The second minimization

level is done in test case level by removing duplicate statements. Two benefits of test case minimization

are increasing the readability of the test case and reducing the risk of generating flaky tests [47]. EvoSuite

is developed as an open-source tool and there have been many improvements since it was first developed

in 2011.

There is another automated unit-level testing for Java programs called Randoop [2]. Randoop

also uses random method call sequence generation to create the test cases. Once, the test case is

generated, Randoop will execute the test case and check for contract validations using contract checker.

The result of the execution determines whether the test case is redundant, illegal, contract-violating,

or useful for generating more test cases. Contract-violating test cases are considered potential errors

that should be fixed. For the non-violating test cases, Randoop checks the test cases against given

filters to determine whether the test case is valuable or not. There are two main differences between

CLEMENTINE and Randoop. The first difference is the way CLEMENTINE and Randoop detect failing

test cases. CLEMENTINE considers a test case as fail if the test case crashes while execution, while

Randoop uses a contract checker to check whether a test case violates given contracts or not. The second

difference is the way CLEMENTINE and Randoop determines whether a test case is valuable or not.

CLEMENTINE determines whether a test case is valuable from the test coverage (e.g., line, branch).

If the test case increases test coverage, then the test case is considered a valuable test case. On the

other hand, Randoop determines a test case is valuable using three defined filters (i.e., equality. null,

exception).
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Chapter 5. Conclusion

5.1 Conclusions

CLEMENTINE is the next version of CITRUS, an automated C++ unit-level tool that uses method

call sequence generation technique to generate high code coverage test suite. CLEMENTINE improves

the testing performance of CITRUS by overcoming the limitation of design choices in CITRUS. There are

three main limitations of CITRUS addressed in this work, improper way of writing test case file, improper

way of linking test case file, and many not-properly-handled functions. Moreover, CLEMENTINE also

handles more C++ features like function pointer type, void pointer, non-public member function, and

so on.

By solving two main limitations, CLEMENTINE success to generate effective test cases for four

target programs which CITRUS failed to do. Adding support to more C++ features also makes the test-

ing performance of CLEMENTINE better compared to CITRUS. On average, CLEMENTINE achieved

81.6% statement coverage (15.0%p higher than CITRUS), 60.1% branch coverage (8.9%p higher than

CITRUS), and 88.5% function coverage (24.4%p higher than CITRUS) on eight real-world C++ pro-

grams.

5.2 Future Work

CLEMENTINE is able to find more unique crashes on most of the target subjects compared to

CITRUS. However, there is still a need to analyze those crashes to check whether those crashes are

actually true alarms or are they just false alarms. Thus, analyzing the crashes found by CLEMENTINE

is one of the important thing to do in the future.

There are still many things can be done to improve the performance of CLEMENTINE. Implement-

ing support for more C++ types and features surely will improve CLEMENTINE. Although CLEMEN-

TINE already supports some C++ types and features, there are still many C++ types and features that

are still not supported by CLEMENTINE. For example, FILE type, std::function type, double pointer

type, and so on.

Changing the input to multiple files also can improve CLEMENTINE. Currently, CLEMENTINE

can take only one input file at a time. Thus, the user should distribute the time budget to each file before

running CLEMENTINE and the time budget for each file is static. Although the number of functions

can be a proxy to distribute the time budget for each file, the number of functions does not represent

the complexity of a file. Thus the time budget distribution might be ineffective.

Improving the mutation operator, especially for random method call insertion. Currently, for random

method call insertion, CLEMENTINE randomly selects the inserted method from the list of functions.

However, the inserted method may not be related to the target function. Thus inserting not related

function may not help CLEMENTINE to explore diverse behavior of the target function. For example,

the current test case targets member function pop from class Stack. Thus, inserting method call to

member function append from class Vector will not help CLEMENTINE to explore diverse behavior of

function pop.
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[5] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-Based Greybox Fuzzing as Markov

Chain,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’16, (New York, NY, USA), p. 1032–1043, Association for Computing Machinery,

2016.

[6] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “REDQUEEN: Fuzzing

with Input-to-State Correspondence,” in Symposium on Network and Distributed System Security

(NDSS), 2019.

[7] P. Braione, G. Denaro, A. Mattavelli, and M. Pezzè, “SUSHI: A Test Generator for Programs
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