POWER: Program Option-Aware Fuzzer
for High Bug Detection Ability

Ahcheong Lee Irfan Ariq
School of Computing School of Computing
KAIST KAIST

ahcheong.lee @kaist.ac.kr irfanariqzaki@gmail.com

Abstract—Most programs with command-line interface (CLI)
have dozens of command-line options (e.g., -1, -F, —R for 1s) to
alternate the operation of the programs. Thus, depending on the
option configurations (i.e., a list of options like -1 -F and -F
-R) applied during fuzzing, the test coverage and crash detection
results can vary significantly.

In this paper, we propose a novel fuzzing technique POWER
that detects more crashes than the cutting-edge fuzzers by
actively constructing and carefully selecting various program
option configurations. The salient idea of POWER is to enforce
diverse executions of a target program by selecting a set of the
option configurations each of which is far “different/distant” from
the others in the set. Another core idea of POWER is to apply
different fuzzing strategies to different input domains (i.e., option
configurations and input files) to increase testing effectiveness
within limited time budget. The experiment results on the 30 real-
world programs show that POWER detects significantly more
crash bugs than the state-of-the-art fuzzing techniques.

Index Terms—Automated test generation, fuzzing, program
option configurations, dynamic function relevance, crash bug
detection, dynamic analysis

I. INTRODUCTION

Initial configurations of software applications can affect
the behaviors of the applications in a large degree. For
example, most programs with command-line interface (CLI)
have dozens of command-line options to alternate the op-
erations of programs (e.g., 1s has more than 50 options
including -a, -F, -1, -n, and -R ). In other words,
program options play a crucial role in determining the target
program’s execution paths. Thus, when we apply fuzzing to
a program with CLI, the crash detection results can vary
significantly depending on which options are applied during
fuzzing. For example, 36 functions of xmllint (an xml
file parsing tool) in libxml2 cannot be reached at all
unless one of ——xinclude, ——noxincludenode, and
-—nofixup-base-uris options is given.

Although an option configuration (i.e., a list of options given
to a target program such as —a -1 -R for 1s) can be a
huge determining factor for the effectiveness of fuzzing, most
fuzzing papers have utilized only a single option configuration
in their fuzzing experiments. According to the survey of the
recently published 98 fuzzing papers (see Section V-A for the
details), 76.5% (=(11+64)/98) of the fuzzing papers did not

I'See http://linuxcommand.org/lc3_man_pages/ls1.html
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provide information on the option configurations in the papers.
Thus, there exists large room to improve fuzzing effectiveness
by systematically utilizing various option configurations.

In this paper, we propose a novel fuzzing technique POWER
(Program Option-aWarE fuzzeR) that detects more crash bugs
than the cutting-edge fuzzers by actively constructing and
carefully selecting diverse option configurations together with
conventional input file fuzzing. The salient core ideas of
POWER are as follows:

1) Different Search Strategies for Different Input Domains:
In contrast to the most fuzzers that focus and mutate
only input files to a target program, POWER considers
that a target program has two different input domains to
explore (i.e., option configurations and input files). Thus,
it applies two distinct search strategies to them for high
bug detection ability within limited time budget.

For example, POWER constructs various option configu-
rations (e.g., ~debug -rev -—num 10) by systemati-
cally combining option keywords in the option dictionary
(e.g., { —debug, -num <m>, -rev, -str, ...}) only for
the first hour while it generates diverse input files with
the various option configurations (which were constructed
and selected in the previous one hour) by mutating input
files in byte-level for 23 hours like conventional fuzzing.

2) Careful Selection of Diverse Option Configurations: To

enforce diverse executions of a target program within
limited time budget, after constructing various option
configurations, POWER selects a set of the option con-
figurations each of which is far “different/distant” from
the others in the set (see Section II-C). This is because
the set of far different option configurations can enforce a
target program to execute diverse execution paths within
limited time budget since an option configuration guides
the target program executions in a large degree.
For example, suppose that the executions of a target
program P with an option configuration o; cover a set of
functions {main, fi}. Also suppose that the executions
of P with another option configuration oo cover {main,
f2} and the executions of P with o3 cover {main, fs}.
Roughly speaking, o; is more different/distant from o2
than o3z if f; is less relevant to f5 than fs.



Based on the above two core ideas, POWER operates in the

following three stages in order:

1) Exploratory stage: POWER actively constructs option
configurations as well as input files for one hour; it semi-
automatically extracts a set of options from the docu-
ments of a target program and constructs various option
configurations by using a dictionary-based construction
method [1], [2].

2) Option configuration selection stage: From the various
option configurations generated in the exploratory stage,
it selects a set of far “different/distant” option configura-
tions based on the option configuration relevance metric
(see Section II-C), with which POWER will generate
diverse input files in the next main fuzzing stage.

3) Main fuzzing stage: For the remaining 23 hours, POWER
fuzzes only input files with the set of the option configu-
rations selected during the option configuration selection
stage (note that this stage does not mutate option config-
urations at all).

To demonstrate the advantages of POWER, we have applied
POWER to the 30 real-world programs. The experiment results
show that POWER detects twice more unique crashes on
the subject programs than the state-of-the-art fuzzers such as
AFL++ [3] with ten option configurations and Eclipser [4].

The main contributions of this paper are as follows:

1) POWER is the first fuzzing technique that can detect
many crash bugs by actively constructing and carefully
selecting far different option configurations based on the
new option configuration relevance metric (Section II-C).

2) We have performed a series of the experiments where
we have empirically evaluated POWER and other cutting-
edge fuzzers (i.e., AFL++ and Eclipser) and demonstrated
that POWER detects significantly more unique crashes
than the cutting-edge fuzzers (Section IV).

3) After detecting unique crashes in the subject programs,
we have reported 51 new crash bugs detected by POWER
to the original developers of the target subject programs
to improve the quality of the open source subject pro-
grams. 2

The remaining sections are organized as follows. Section II
explains the three stages of POWER in detail. Section III
describes the experiment design and setup. Section IV dis-
cusses the experiment results. Section V describes related
work. Finally, Section VI concludes this paper with future
work.

II. PROGRAM OPTION-AWARE FUZZER(POWER)
A. Overall Process

Figure 1 shows the overall process of POWER (Program
Option-aWare fuzzER). Initially, POWER receives the follow-
ing items (see the left side of Figure 1):

2We reported 51 out of the 88 crash bugs detected by POWER. To reduce
the original developer’s burden to review many crash reports, we checked if
the crashes detected on the latest release version can be still replicated on the
latest development version and submitted only such crash reports.

e a target program P

e a set of initial test inputs 7T;,;; for P each of which
consists of
— an initial option configuration, and
— an initial input file

« a set of documents Docp for P such as a man page and
help messages

POWER consists of the following three stages:

1) Exploratory stage (Section II-B): For the first one hour
of the entire fuzzing process, POWER actively constructs
various option configurations using a dictionary-based
mutation method while fuzzing input files using conven-
tional byte-level mutation.

2) Option configuration selection stage (Section II-C):
Among all option configurations generated in the ex-
ploratory stage, POWER selects a set of the option con-
figurations each of which is far “different/distant” from
the others based on the option configuration relevance
metric (Section II-C3). In other words, POWER selects a
set of the option configurations with which POWER can
enforce diverse executions of a target program.

3) Main fuzzing stage (Section II-D): Using the option con-
figurations selected in the option configuration selection
stage, POWER mutates and generates diverse input files
(not option configurations) for P.

B. Exploratory Stage

The left part of Figure 1 illustrates the exploratory stage.
Algorithm 1 describes how POWER operates in the ex-
ploratory stage. First, for a target program P, POWER semi-
automatically extracts a set of available program options
OPTp from the documents of P such as its man page and help
messages (line 3). Then, POWER executes P with the initial
inputs by using RunTest (lines 4-6). RunTest executes
P with input and adds input to the input priority queue
PQUEUE if the execution increases path coverage (lines 21—
26).

Next, POWER selects an input ¢ that has the highest priority
in PQUEUE (line 8). Then, it decreases the priority of ¢ by
one (line 9) so to give higher priority to the inputs newly
generated from ¢ later. Then, POWER generates two inputs ¢’
and t” from ¢ as follows and executes P with ¢’ and P with
t" by using RunTest (line 13 and line 16, respectively).

o t' is a new input obtained by mutating the option
configuration of ¢ (lines 11-12). To mutate option
configurations, POWER applies dictionary-based muta-
tion [1], [2]. When POWER mutates an option config-
uration, it performs the following mutation operations
(MutateOptConf in line 11 in Algorithm 1):

— insert a random number of random options in OPTp
into random location(s) of the option configuration, or

— replace a random number of options in the option
configuration with random options in OPTp, or

— remove a random number of the options in the option
configuration
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metric. In other words, POWER selects a set of the option
configurations with which POWER can enforce far different
executions of a target program.

1) Example: How to Select Option Configurations

Figure 2 shows an example to show how POWER selects
a set of the option configurations each of which is far
different/distant from the others. The three dotted shapes (a
left blue one, a right red one, and a bottom green one) in
Figure 2(a) represent the executions of a target program P
(which has the functions main, f1, f2, f3, and f4) with three
option configurations o1, 02, and o3, respectively. The left blue
dotted shape contains {main, f1, f2}, which indicates that
the executions of P with oy cover {main, f1, f2} (simply
calling that oy covers {main, f1, f2}). Similarly, o5 covers
{main, f3, f4} and o3 covers {main, f2, f4}.

Fig. 2. (a) An example to explain relevance between option configurations
(b) Function relevance table.

POWER identifies far “different/distant” option configura-
tion pairs based on the option configuration relevance met-
ric (Section II-C3), which is calculated from the dynamic
function relevance (Section II-C2) values between functions
based on the execution profile of P. Intuitively speaking, if
two functions f; and f; are executed together frequently in
many executions, f; and f; are highly relevant. The table
in Figure 2(b) shows function relevance values between the
functions of P (e.g., f1 and f2 are highly relevant while f1
and f3 are not highly relevant).

Option configuration relevance between o; and o; is defined
as an average of the function relevance values between all



Algorithm 1: Exploratory Stage

Algorithm 2: Option Configuration Selection Stage

Input: P : a target program, T;,;; : a set of initial
inputs for P, and Docp: documents for P (i.e.,
a man page or help messages)
Output: T, : a set of generated test inputs in the
exploratory stage

1 Function ExploratoryStage (P, Tjpnit, Docp) :
2 PQUEUE « ()

3 OPTp < program options extracted from Docp
4 foreach input € T;,;; do

5 ‘ RunTest (P, input)

6 end

7 while a given timeout is not reached do

8

Select an input ¢ that has the highest priority
from PQUEUE
9 Decrease the priority of ¢ by 1
10 (o, f) «t
11 0 < MutateOptConf (o, OPTp)
12 t' <+ (0, f)
13 RunTest (P, t')
14 f' + MutateFile (f)
15 t" + (o, )
16 RunTest (P, t")
17 end
18 Tewp <~ PQUEUE
19 return 7.,

20 End Function

21 Function RunTest (P,input) :
22 Execute P with input

23 if a new path is covered then
24 ‘ PQUEU E.append(input)
25 end

26 End Function

functions covered by o; and o; (Section II-C3). For example,
the relevance between 01 and o is the average of the function
relevance values between the functions covered by o; and
02 (i.e., the average of the function relevance values of
(JLf3), (fLfD, (f1, main), (f2,f3), (f2, f4), (f2,main),
(main,f3), and (main, f4)).

Note that 01 and o, have low relevance because more pairs
of the functions covered by o; and oy have low function
relevance values as shown in Figure 2(b) (i.e., five out of the
above eight function pairs have low function relevance values
(e, (fLf3), (fLfD, (f2,F3), (2, f4), (main,[3),(main,
f4)). In contrast, 01 and o3 are highly relevant because more
pairs of the functions covered by o7 and o3 (i.e., four out of
the six pairs) have high relevance values.

Thus, POWER selects the lowly related (i.e., far different)
option configurations oy and o5 to guide diverse executions of
P.

Input: P : a target program, 7;,: a set of option
configuration and input file pairs that increased
path coverage in the exploratory stage

Output: Og;stinct : a set of selected option

configurations
1 Function OptConfSelStage (P, Teyp) :
2 Oeczp + 0 //a set of all option configurations in
Teacp
3 Feyp <= 0 //a set of all input files in T¢yy
4 foreach (o, ) € Teyp do
5 Oeyp-add(o)
6 Feup.add(f)
7 end
8 Calls < GetFuncCalls (P, Teap, Ocapr Feap)
9 Ogser < SelectOptConfSet (Oegp, Calls)

10 return Og;siinct

11 End Function

12 Function GetFuncCalls (P, Teep, Ocap, Fezp)
13 Calls < empty map

14 foreach o € O.,, do

15 Calls[o] + 0

16 foreach f € F.y;, s.t. (o, f) € Teyp do

17 CalledFuncs <+
ExecuteAndGetCalls (P, o, f)

18 foreach func € CalledFuncs do

19 | Calls[o].add( func)

20 end

21 end

22 end

23 return Calls

24 End Function

25 Function SelectOptConfSet (Oggp, Calls, ) :

26 Oger < 0 /] a set of the selected option
configurations

27 (01,02) < a pair of option configurations € Oy,
that has the minimum option relevance among the
all pairs of option configurations

28 Oger-add(01, 02)

29 foreach o € O, do

30 if Yo, € Osel.OptRelca”s(O, Od) < 7 then
31 | Oser-add(o)

32 end

33 end

34 return O,

35 End Function

2) Dynamic Function Relevance

Among the dozens of function relevance/coupling met-
rics (e.g., [5]-[10]), POWER uses dynamic function rele-
vance metric for its intuitive characteristics and its very low
runtime cost to calculate (the concept of the dynamic function
relevance was originally proposed to reduce false alarms of



unit testing [11] [12]). POWER defines and applies dynamic
function relevance as follows:

Definition 1. Let 7/ be a set of generated test inputs
with unique path coverage. A dynamic function relevance
FRri(f,g) € [0,1] between two functions f and g is defined
as:

FRr1(f.g) = |{ti € TI| ti that executes both f and g}|?
TV 9) = |{t: € TI| ¢i that executes f}|
« |{ti € TI| ti that executes g}|

We say g is highly relevant to f if FRr;(f,g) is high.
Intuitively speaking, a high value of F'Rp;(f,g) means that
f and ¢ are frequently executed together with 7' and it
means that f may have high relevance with g. Note that
the runtime overhead to calculate F'Ry;(f,g) is negligible,
because F Ry (f,g) is calculated based on function call traces
and counting the number of function calls in the traces is very
cheap.

3) Option Configuration Relevance

Using the function relevance, we define relevance between
two different option configurations as follows:

Definition 2. For two option configurations 07 and oo, let
F) and F, be sets of functions covered by o; and og
(i.e., that are invoked in the set of the executions with
01 and 09), respectively. The option configuration relevance
OptRel(o1,02) € [0,1] is defined as :

donier 2per FRri(f1, f2)
|Fy| * | Fy|

Intuitively speaking, the option configuration relevance of
two option configurations o7 and o9 is the average of the
function relevance values between the all functions invoked
in the executions with o; and the all functions invoked in the
executions with oo. POWER selects option configuration pairs
that have low relevance (i.e., option configurations that are “far
different/distant” from each other), because such two option
configurations that have low relevance enforce very different
function call executions from each other, which can explore
diverse executions of a target program.

4) Option Configuration Selection

Algorithm 2 describes how to select option configurations
far different from each other. From the set of inputs T, (a set
of pairs of option configurations and input files that increased
path coverage) gathered from the exploratory stage, POWER
selects option configurations as follows:

OptRel(01,02) =

1) It gets a set of option configurations O, and a set of
input files Fe,), from Te,), (line 2-7).

2) GetFuncCalls (lines 8, 12-24) gets sets of functions
that are called with each option configuration in Oz, by
executing and extracting function call profiles.

3) SelectOptConfSet (lines 9, 25-35) computes rele-
vance values between the all option configurations by
using the function call profile information obtained by

GetFuncCalls. Then, it selects a set of the option
configurations each of which has low relevance to the
others in the set (i.e. a set of the diverse option con-
figurations with which a target program runs diverse
executions paths) with respect to a user given threshold
7 (see Section III-C).

D. Main Fuzzing Stage

The right part of Figure 1 illustrates the main fuzzing
stage, which fuzzes only input files with the option config-
urations selected in the previous stage. In this stage, POWER
operates like other fuzzing techniques except that it exer-
cises various executions with carefully selected far different
option configurations (Section II-C). As a result, POWER
can explore much more diverse execution paths than other
fuzzing techniques even with the multiple different option
configurations (e.g., AFL++ with ten option configuration)
and/or with continuously mutating option configurations (e.g.,
Ecliper) (Section IV-B).

E. Implementation

We have implemented POWER on top of AFL++ [3]. The
core components of POWER including automated program
option extraction, dictionary-based mutation of option config-
urations, option configuration selection strategy, option config-
uration execution interface for fuzz engine are implemented in
additional 6,000 lines of C and C++ code.

III. EXPERIMENT SETUP

A. Research Questions

RQ1. Fuzzing effectiveness of POWER compared to
the state-of-the-art fuzzing techniques: To what extent does
POWER achieve crash detection ability and branch coverage in
24 hours, compared to the state-of-the-art fuzzing techniques?
For RQ1, we compare POWER with AFL++ [3] with ten initial
option configurations. We modified AFL++ to accept multi-
ple initial option configurations and make AFL++ continue
fuzzing with the given multiple initial options (similar to the
main fuzzing stage of POWER).

o AFL++ [3]: it is a fork of AFL [1], which integrates
diverse features from fuzzing research such as AFLFast’s
power scheduling [13] and MOPT’s mutation scheduling
scheme [14]. We selected AFL++ because AFL++ shows
the best performance on the fuzzbench service [15]
provided by Google.

To make a fair comparison with POWER, we provide ten
initial option configurations to AFL++ in the following way:

1) From the 97 fuzzing papers in the survey (Section V-A),
if there exist option configurations that are used by other
papers, we use the option configurations in the papers.

2) If we get only n(< 10) option configurations from the
papers, we randomly generate 10 — n option configura-
tions with the same option dictionary used for POWER.
We restrict the maximum number of options in each
option configuration as ten because it is unlikely that



testers use an option configuration with more than ten
options. In addition, we do not use option configurations
that are not accepted by the target programs (i.e., that
cause the target programs to terminate early with printing
command-line usage messages). The full list of the option
configurations we used is available at https://sites.google.
com/view/power-icst2022.

Also, we compare POWER with Eclipser [4] that supports
mutating both option configurations and input files.

o Eclipser [4]: We select Eclipser because, in our best
knowledge, it is the only open-source state-of-the-art
fuzzer that officially supports mutating both option con-
figurations and input files. 3

RQ2. Fuzzing effectiveness of the option configuration
relevance based option configuration selection strategy
of POWER: To what extent does the option configuration
relevance values of the selection strategy of POWER affect
crash detection ability and branch coverage achievement? For
RQ2, we have developed a variant of POWER, POWER "¢
which uses random option configuration relevance values in
the option configuration selection stage.

RQ3. Fuzzing effectiveness of the explicit option con-
figuration selection of POWER: To what extent does the
option configuration selection strategy of POWER affect crash
detection ability and coverage, compared to a variant of
POWER, POWER®MO that keeps mutating option configura-
tions without selecting option configurations? In other words,
POWER MO runs in the exploratory stage for the entire
fuzzing time.

B. Target subjects

We have collected the latest release versions (as of Septem-
ber 1st, 2021) of the popular real-world C/C++ programs that
have been used by other fuzzing papers. As like other fuzzing
papers, we target the latest release version (not a development
version) to avoid unnecessary confusion caused by frequent
changes of target program code in a development version. If
the latest release version is distributed earlier than two years
ago, we used the latest development versions. Table I shows
the information (the size and the number of available program
options). The sizes of these subjects range from 2,920 LoC to
1,174,673 LoC (the average is 137,570 LoC). The numbers of
the program options range from 10 to 760. We selected these
real-world subjects with the following criteria:

« The subject should have at least ten program options.
o The subject should be actively maintained (i.e., the last
commit of the subjects was made within around two year

ago).

3We used Eclipser version ‘1.x instead of the most recent version (v2.0)
because Eclipser 2.0 does not mutate the option configurations anymore.

C. Fuzzing Setup

1) Timeout Setup

We ran AFL++, Eclipser, POWER, and the variants of
POWER for 24 hours, which follows the guideline on evalu-
ating fuzzers proposed by Klees et al. [16].

2) Control of Random Variance

To reduce the random variance in the experiment results,
we repeated the same experiment ten times.

3) Testbed Setup

All the experiments were performed on our own cluster in
which each node is equipped with AMD Ryzen 7 3800XT (4.3
Ghz) and 16GB RAM, running Ubuntu 18.04 64 bit version.

D. Measurement

1) Crash Bug Detection

To measure the crash bug detection ability of the fuzzing
techniques, we report the number of the crashes detected by
the fuzzing techniques. Among the various crash counting
methods [17], we first used stack backtrace hashing which
counts crashes with the same stack trace as one crash (the
most widely used method). Then, we manually deduplicate
those crashes with our best effort, since one unique crash bug
can generate several different crash stack traces. We report the
number of the crashes detected in any of the ten experiment
runs.

2) Coverage Achievement

To measure the coverage achievement of each technique, we
count the number of the covered branches obtained by gcov
and report the average numbers of the covered branches over
the ten experiment runs.

E. Initial Seed Setup

An initial seed consists of an initial option configuration
and an initial input file. All detailed list of initial seed setup
is uploaded at https://sites.google.com/view/power-icst2022.

1) Initial option configuration

We provide an initial option configuration for each subject
as follows:

a) If the papers in the survey (Section V-A) provide an
option configuration for the target program, we used it.

b) If we cannot find such one, we used the simplest option
configuration that can be handled by the subject (e.g.,
‘@@’, -i @@ -o /dev/null’, ...)

2) Initial input file
We provide initial input files for each subject as follows:

a) If the papers in the survey (Section V-A) provide input
files for the target program, we used them.

b) If we cannot find such one, we used example input file(s)
in a subject repository or repositories of similar subjects
(e.g., we can use an example input file in pdftops for
pdftohtml and pdftopng).



TABLE I
TARGET SUBJECTS

Subjects Package name Size | # prog. Subjects Package name Size | # prog.

(LoC) option (LoC) option
avconv libav-git-c464278 454,936 80 pdftohtml poppler-21.07.0 38,111 32
bison bison-3.7.6 54,423 54 pdftopng xpdf-4.03 97,890 33
cflow cflow-1.6 18,197 45 pdftops xpdf-4.03 103,077 46
cjpeg libjpeg-turbo-2.1.0 6,308 37 pngfix libpng-1.6.37 7,020 15
djpeg libjpeg-turbo-2.1.0 5,792 37 pspp pspp-1.4.1 4,901 25
dwarfdump | libdwarf-20210528 83,545 48 readelf binutils-2.36.1 74,789 169
exiv2 exiv2-0.27.4 33,417 79 size binutils-2.36.1 436,055 19
ffmpeg ffmpeg-N-103440-g2f0113be3f 774,186 230 tiff2pdf libtiff-4.3.0 8,234 35
gm GraphicsMagick-1.3.36 197,891 760 tiff2ps libtiff-4.3.0 5,646 41
gs ghostpdl-9.54.0 1,174,673 53 tiffinfo libtiff-4.3.0 3,752 10
jasper jasper-2.0.32 2,920 16 vim vim-8.2.3113 296,916 54
mpgl23 mpgl123-1.28.2 11,298 123 xmlcatalog | libxml-2.9.12 2,609 27
mutool mupdf-git-d00deOe 364,318 224 xmllint libxml-2.9.12 11,285 94
nasm nasm-2.15.05 70,903 33 xmlwf libexpat-2.4.1 4,147 19
objdump binutils-2.36.1 877,165 145 yara yara-4.1.1 5,862 37

F. POWER configuration TABLE II

We give one hour to the exploratory stage because it
shows best performance during our experimental study. For
the user-given threshold 7 of the option configuration selection
(Section II-C), we make POWER to adaptively use the average
value of the maximum and minimum values of the option
relevance as 7.

G. Threats to Validity

A threat to external validity is the representativeness of
our target subjects. We expect that this threat is limited since
we choose the target programs widely used by many fuzzing
researchers. A threat to internal validity is possible bugs in the
implementation of POWER. To control this threat, we have
tested our implementation extensively.

I'V. EXPERIMENT RESULTS

A. Summary of the Experiment Data

Table II shows the average length (i.e., the number of
options) and the total number of option configurations selected
and generated by POWER. For example, for avconv (on the
third row), POWER generated 133.9 option configurations on
average and each of the option configurations had 30.7 options
on average. Among the 133.9 option configurations, POWER
selects only 10.0 option configurations on average (each of
these 10.0 selected option configurations has 17.2 options on
average). On average, POWER selected 34.7% of the option
configurations generated in the exploratory stage.

Table III and Table IV report the number of unique
crashes detected and the number of branches covered by the
fuzzing techniques on the 30 target subjects. All experiment
data are publicly available at https://sites.google.com/view/
power-icst2022.

THE AVERAGE LENGTH AND TOTAL NUMBER OF THE OPTION
CONFIGURATIONS GENERATED AND SELECTED BY POWER

Targets All option conf. Option conf. | Selection

generated by POWER | selected by POWER Ratio

# of opt. # of opt. | # of opt.  # of opt.

(length) conf. (length) conf.
avconv 30.7 1339 17.2 10.0 7.5%
bison 24.8 145.6 10.1 37.8 26.0%
cflow 24.1 202.5 28.9 20.4 10.1%
cjpeg 16.2 124.7 6.4 30.3 24.3%
djpeg 14.8 138.3 5.1 25.5 18.4%
dwarfdump 223 1112 10.4 21.6 19.4%
exiv2 399 519.1 40.8 192.8 37.1%
ffmpeg 41.7 226.0 433 113.6 50.3%
gm 303.1 12713 281.7 57.1 4.5%
gs 25.0 54.7 15.5 4.0 7.3%
jasper 154 107.2 13.8 20.9 19.5%
mpgl23 41.2 246.3 43.6 138.5 56.2%
mutool 47.6 147.7 53.7 449 30.4%
nasm 15.7 161.2 132 255 15.8%
objdump 333 243.0 51.7 81.4 33.5%
pdftohtml 11.2 83.8 6.2 14.0 16.7%
pdftopng 11.8 49.2 153 27.6 56.1%
pdftops 10.2 47.6 14.6 27.6 58.0%
pngfix 8.0 43.1 6.5 13.0 30.2%
pspp 12.2 132.3 12.1 99.5 75.2%
readelf 54.9 307.8 58.1 230.7 75.0%
size 8.4 85.8 11.3 20.5 23.9%
tiff2pdf 16.9 153.9 14.0 302 19.6%
tiff2ps 14.8 220.1 14.8 1149 52.2%
tiffinfo 10.9 100.1 10.4 3.8 3.8%
vim 23.4 457.6 229 179.3 39.2%
xmlcatalog 17.7 253.1 18.1 107.2 42.4%
xmllint 51.9 1576.2 52.3 1523.8 96.7%
xmlwf 12.5 2319 12.3 64.8 27.9%
yara 18.4 95.4 20.7 60.7 63.6%
Avg. I 32.6 2559 | 30.8 1114 | 347%

B. RQI. Fuzzing effectiveness of POWER compared to the
state-of-the-art fuzzing techniques

The experiment results clearly show that POWER detects
far more unique crashes than the other fuzzing techniques.



TABLE III
THE TOTAL NUMBER OF CRASHES DETECTED AND THE AVERAGE
NUMBERS OF BRANCHES COVERED BY THE FUZZERS

TABLE IV
THE TOTAL NUMBER OF CRASHES DETECTED AND THE AVERAGE
NUMBERS OF BRANCHES COVERED BY THE VARIANTS OF POWER

Targets Eclipser AFL++ w/ 10 POWER
H opt. conf. ‘
#uniq.  #branch | #uniq. #branch | #uniq. #branch
H crash  covered ‘ crash  covered ‘ crash  covered
avconv 0 8778.1 0 20226.7 5 15006.2
bison 0 1636.1 0 6526.2 5 6138.0
cflow 0 1792.8 0 1386.8 2 1675.3
cjpeg 0 2961.9 2 3119.7 0 4086.7
djpeg 0 438.5 0 2254.5 0 2513.7
dwarfdump 0 472.6 2 6259.9 2 7240.6
exiv2 0 4243.6 0 8082.2 1 9567.0
ffmpeg 0 18520.7 0 43967.0 2 453928
gm 0 2497.4 0 7636.2 1 9710.1
gs 0 132349 0 204959 0 24161.6
jasper 0 1855.6 0 2051.2 0 4101.0
mpg123 0 3202.1 0 2944.9 1 3809.3
mutool 0 13315.1 0 4076.0 0 13647.7
nasm 2 2150.0 0 6737.6 4 6506.6
objdump 0 5116.1 13 31327.6 13 33070.5
pdftohtml 0 1159.4 0 5997.7 4 7600.7
pdftopng 0 766.0 0 8404.7 9 8687.5
pdftops 0 763.1 0 9738.6 9 9354.9
pngfix 0 535.5 0 1166.8 0 1143.1
pspp 0 2935.0 4 6564.5 8 5650.0
readelf 0 520.3 2 10550.1 8 10321.6
size 0 3812.1 5 9078.9 3 9054.8
tiff2pdf 0 494.4 0 4133.0 0 4177.1
tiff2ps 0 898.1 0 3514.1 0 3379.0
tiffinfo 1 5522 0 3509.4 4 3228.1
vim 0 271413 7 50842.5 5 456543
xmlcatalog 0 374.7 0 7607.0 0 7598.9
xmllint 0 4233.9 0 111325 2 144205
xmlwf 0 1984.3 0 3821.2 0 3733.8
yara 0 745.6 0 3002.1 0 31189
Total H 3 \ 35 \ 88

Table III show the number of unique crashes detected and
the number of the branches covered by Eclipser, AFL++,
and POWER. POWER detected 88 unique crashes on the 30
target programs, which is significantly more than the number
of the unique crashes detected by the other state-of-the-art
fuzzing techniques. In other words, POWER detects 29.3
(= 88/3) times more unique crashes than Eclipser and 2.51
(= 88/35) times more crashes than AFL++ with ten option
configurations. Also, POWER covers more branches than the
other techniques (i.e. POWER achieved 5.7% more branches
than AFL++ on average with very low p-value(0.0011)). For
example, on exiv2, POWER covered 2.3 (=9567.0/4243.6)
times and 1.2 (= 9567.0/8082.2) times more branches than
Eclipser and AFL++ respectively (see the ninth row in Ta-
ble III).

C. RQ2. Fuzzing effectiveness of the option configuration
relevance based option configuration selection strategy of
POWER

From the experiment results, we can conclude that the
option configuration selection strategy using the option con-
figuration relevance contributes to significantly increase the
testing effectiveness of POWER. Table IV show the number
of the unique crashes detected and the branches covered by
POWER and POWER "¢, POWER #"? yses random option

Targets || POWER"d | POWERKMO | POWER
#uniq.  #branch | #uniq. #branch | #uniq.  #branch
‘ crash  covered crash  covered crash  covered
avconv 4 11709.6 7 171977 5 15006.2
bison 1 5728.0 6637.6 5 6138.0
cflow 3 1553.2 4 1689.1 2 1675.3
cjpeg 0 3920.1 0 4192.8 0 4086.7
djpeg 0 2598.1 0 2651.7 0 2513.7
dwarfdump 1 6565.5 4 7563.7 2 7240.6
exiv2 0 8679.3 0 9636.8 1 9567.0
ffmpeg 1 362526 1 4812238 2 45392.8
gm 0 6492.3 0 9454.0 1 9710.1
gs 0 225862 1 24905.8 0 24161.6
jasper 0 3674.4 0 3660.1 0 4101.0
mpgl23 0 3744.1 1 4006.3 1 3809.3
mutool 0 1242338 0 15746.1 0 136477
nasm 4 6403.2 3 6578.8 4 6506.6
objdump 13 262379 8  24639.1 13 33070.5
pdftohtml 0 7184.0 0 8100.5 4 7600.7
pdftopng 0 7341.9 0 8947.8 9 8687.5
pdftops 0 8177.3 0 9719.0 9 9354.9
pngfix 0 1107.8 0 1191.2 0 1143.1
pspp 9 3389.2 7 4462.3 8 5650.0
readelf 0 9402.0 1 8799.3 8 10321.6
size 1 5078.7 4 7621.5 3 9054.8
tiff2pdf 0 4126.1 0 4226.8 0 4177.1
tiff2ps 1 2950.8 1 3274.1 0 3379.0
tiffinfo 1 2732.4 1 3060.9 4 3228.1
vim 0 39844.8 2 45466.5 5 45654.3
xmlcatalog 0 6598.8 0 6413.9 0 7598.9
xmllint 2 142457 2 14406.5 2 144205
xmlwf 0 3590.3 0 3733.0 0 3733.8
yara 0 3455.6 0 3954.2 0 3118.9
Total I 41 | 50 ‘ 88

configuration relevance values to select arbitrary option con-
figurations. In total, POWER found 2.15 (= 88/41) times more
crashes than POWER%"? and POWER covered 12.1% more
branch coverage than POWER /"¢ on average. For example,
on tiffinfo, POWER found four times more crashes and
covered 18.1% (=(3228.1-2732.4)/2732.4) more branches than
POWER ¢,

D. RQ3. Fuzzing effectiveness of the explicit option configu-
ration selection of POWER

The experiment results show that the explicit option con-
figuration selection of POWER contribute to detect a large
number of unique crashes. Table IV shows the number of the
unique crashes detected and the branches covered by POWER
and POWERX MO where POWERX MO keeps mutating option
configurations for 24 hours without selecting option config-
urations. POWER detected 76% (=(88-50)/50) more crashes
than POWER®M© and covered similar number of branches
on average. Thus, we can conclude that the explicit option
configuration selection contributes to improve crash detection.

E. Real-world Crash Bugs Detected by POWER

For complex bugs that require specific combination of
multiple options to trigger, POWER can successfully detect
such bugs that have not been detected even after the extensive
fuzzing effort.



For example, a new crash bug of mpgl23 is detected by
POWER, but not by AFL++ with ten option configurations
nor Eclipser. This is because the bug requires a specific
option configuration to trigger. POWER detects the bug by
generating an option configuration with 12 different command-
line options . We reported the bug to the developer of
mpgl23 (the bug report is available at https://sourceforge.net/
p/mpg123/bugs/322/) and the developer fixed the bug within
33 hours from the initial bug report. The developer was
highly interested in POWER because although mpgl123 had
been extensively fuzzed by using Google’s OSS-fuzz [18], the
reported bug was not detected before (the exact message of
the developer is “Interesting approach you find stuff where
oss-fuzz didn’t anymore.”). This demonstrates that POWER
can detect many crash bugs in practice by systematically
constructing and carefully selecting option configurations by
using option configuration relevance.

For another example, POWER detected a new crash of
vim (but not by AFL++ with ten option configurations nor
Eclipser). The option configuration used to detect the crash
consists of 19 options. 3 The developers of vim responded to
us as follows: “thanks for fuzzing and finding those bugs. Out
of curiosity, which fuzzer did you use? I hope you continue
fuzzing vim to find more bugs”. The bug report is available
at https://github.com/vim/vim/issues/8955

V. RELATED WORK

A. Survey of Fuzzing Papers

While command-line options can largely affect program
behaviors, research communities pay little attention to fuzzing
command-line option configurations. To find out how many
papers explicitly utilize program option configurations in their
experiments, we have surveyed 98 fuzzing papers that (1) were
published recently (from 2015 to 2021) on top conferences and
journals of software engineering and security, and (2) targeted
CLI programs. From the survey, we have found that

1) three papers [4], [13], [19] directly mutate option config-
urations in their experiments.

2) 20 papers specify the option configurations used in their
experiments (e.g., [14], [20]-[26]).

3) 11 papers [27]-[37] did not specify the option configura-
tions (but implicitly exposed their option configurations
through publicly available experiment data)

4) 64 papers failed to specify program option configurations
used (e.g. [38]-[44]).

In summary, 76.5% (=(11+64)/98) of the recently-published
fuzzing papers did not provide information on the program
option configurations used. Moreover, most of the above
papers (except [4], [13], [19]) use only one fixed option
configuration for their experiments.

4__smooth --listentry -z -w 1 --quiet —-index - -4tol -2 -q --fifo --outfile

5.01 -b -S -y --noplugin -O2 -E -i --startuptime -A --ttyfail NONE -u ‘input
file’ -S -R -02 + -V1

B. Fuzzing Techniques to Directly Mutate Option Configura-
tions

TOFU [19] is a fuzzer that mutates command-line option
configurations for directed fuzzing. It generates many different
option configurations by using dictionary-based mutation and
tries to find an option configuration that gives the closest
distance to a target basic block. TOFU receives a specifi-
cation of command-line options (i.e., the name of options
and the type of option argument if any) from a user and
performs a dictionary-based mutation on the command-line
option configurations by using the specification as a dictionary.
Unlike TOFU, POWER automatically extracts the specifica-
tion of command-line options from the man page and the
help messages of target programs. Also, POWER actively
generates diverse option configurations with accompanying
input files to explore large path space while TOFU mutates
option configurations only until it finds a path to a target block.

Zeller et al. [45] (an online course, not a published paper)
developed a fuzzer that automatically infers the program
option grammar of Python programs that use argparse
function. They use the inferred program option grammar to
generate valid program option configurations and fuzz input
files with the generated option configurations. However, un-
like POWER that generates both option configurations and
accompanying input files together and evaluates/selects far
different/distant option configurations, they did not evaluate
the generated option configurations.

Eclipser [4] also supports option configuration mutation.
Eclipser tracks relation between each input byte and branch
constraints with light-weight instrumentation on binary code,
and it supports tracking on not only input file bytes but also on
input option configuration’s bytes. After tracking the relation,
it searches for correct values of the related bytes with multiple
executions to cover the branches.

C. Dictionary-based Mutation in Fuzzing Techniques

Dictionary-based mutation was developed for effective
fuzzing for simply structured input files (to complexly-
structured input files, grammar-based fuzzing [2], [46], [47]
are applied). The dictionary consists of tokens provided by
users or automatically extracted from target programs’ source
code and/or documents. Dictionary-based mutation adds or
deletes a token and mutates one token into another to effec-
tively generate test inputs that satisfy the input constraints of
the target programs. To guide fuzzing an input file, AFL [1]
provides an API to use either a user-provided dictionary or
an automatically extracted one. Superion [2] improves AFL’s
dictionary-based mutation to align with their grammar-aware
fuzzing. The main difference between POWER and the above
fuzzers is that POWER applies dictionary-based mutation
to option configurations but AFL and Superion do to input
files without recognizing the importance of diverse option
configurations.



D. Prioritization Heuristics on Input Files

As POWER assigns high priority to the inputs containing
far different/distant option configurations, other fuzzers apply
various prioritization heuristics to increase coverage and crash
detection power.

AFLfast [48] favors input files that execute rarely executed
paths. FairFuzz [49] and Vuzzer [50] favor input files which
execute rarely executed branches and which execute basic
blocks located in deep control-structure, respectively. Col-
IAFL [40] favors input files whose execution paths have many
uncovered neighbor branches. Ankou [27] defines a distance
between two different execution paths, and it scores each input
file according to its execution path’s “uniqueness” which is
measured using the distances to other paths. TortoiseFuzz [35]
favors input files which execute many functions, loops, and
basic blocks that have many memory access operators. SAV-
IOR [51] statically labels suspicious basic blocks which con-
tain (or which can reach) operators that can lead to undefined
behaviors, and it scores each input file in terms of a number
of the suspicious basic blocks visited by the test input.

Although the prioritization heuristics of these fuzzers con-
sider only input files (not option configurations), POWER fo-
cuses on option configurations as well as input files/executions
so to improve bug detection power further.

E. Testing Configurable Software Systems

A command-line option configuration can be considered as a
kind of system configurations. There exist several methodolo-
gies that utilize combinatorial interation testing to test highly
configurable systems [52]. Because a highly configurable
system can produce a huge number of different products,
the following papers estimated and priortized products to test
by selecting corresponding configurations. A.B. Sanchez et
al. [53] suggested methods to measure complexity of each
product and assign a high priorty to highly complex products
to detect faults as early as possible. Henard et al. [54]
measured similarity between two different configurations and
suggested to test distinct products before similar products.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel fuzzing technique POWER,
which improves bug detection ability of fuzzing by actively
fuzzing and selecting option configurations as well as input
files. The experiment results on the 30 popular real-world
subjects confirm that POWER significantly outperforms the
state-of-the-arts fuzzing techniques and the core ideas of
POWER are effective to improve fuzzing performance.

As future work, we will consider constraints on command
line option configurations (curretly POWER does not consider
constraints on the options; it applies dictionary-based mutation
to generate diverse option configurations). Also, we will apply
mutation-based heuristics [55]-[57] with cost-effective muta-
tion [58] and symbolic execution heuristics [59] to improve
testing effectiveness of POWER.
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