
POWER: Program Option-Aware Fuzzer
for High Bug Detection Ability

Ahcheong Lee
School of Computing

KAIST
ahcheong.lee@kaist.ac.kr

Irfan Ariq
School of Computing

KAIST
irfanariqzaki@gmail.com

Yunho Kim
Department of Computer Science

Hanyang University
yunhokim@hanyang.ac.kr

Moonzoo Kim
School of Computing, KAIST

VPlusLab Inc.
moonzoo.kim@gmail.com

Abstract—Most programs with command-line interface (CLI)
have dozens of command-line options (e.g., -l, -F, -R for ls) to
alternate the operation of the programs. Thus, depending on the
option configurations (i.e., a list of options like -l -F and -F
-R) applied during fuzzing, the test coverage and crash detection
results can vary significantly.

In this paper, we propose a novel fuzzing technique POWER
that detects more crashes than the cutting-edge fuzzers by
actively constructing and carefully selecting various program
option configurations. The salient idea of POWER is to enforce
diverse executions of a target program by selecting a set of the
option configurations each of which is far “different/distant” from
the others in the set. Another core idea of POWER is to apply
different fuzzing strategies to different input domains (i.e., option
configurations and input files) to increase testing effectiveness
within limited time budget. The experiment results on the 30 real-
world programs show that POWER detects significantly more
crash bugs than the state-of-the-art fuzzing techniques.

Index Terms—Automated test generation, fuzzing, program
option configurations, dynamic function relevance, crash bug
detection, dynamic analysis

I. INTRODUCTION

Initial configurations of software applications can affect
the behaviors of the applications in a large degree. For
example, most programs with command-line interface (CLI)
have dozens of command-line options to alternate the op-
erations of programs (e.g., ls has more than 50 options
including -a, -F, -l, -n, and -R 1). In other words,
program options play a crucial role in determining the target
program’s execution paths. Thus, when we apply fuzzing to
a program with CLI, the crash detection results can vary
significantly depending on which options are applied during
fuzzing. For example, 36 functions of xmllint (an xml
file parsing tool) in libxml2 cannot be reached at all
unless one of --xinclude, --noxincludenode, and
--nofixup-base-uris options is given.

Although an option configuration (i.e., a list of options given
to a target program such as -a -l -R for ls) can be a
huge determining factor for the effectiveness of fuzzing, most
fuzzing papers have utilized only a single option configuration
in their fuzzing experiments. According to the survey of the
recently published 98 fuzzing papers (see Section V-A for the
details), 76.5% (=(11+64)/98) of the fuzzing papers did not

1See http://linuxcommand.org/lc3 man pages/ls1.html

provide information on the option configurations in the papers.
Thus, there exists large room to improve fuzzing effectiveness
by systematically utilizing various option configurations.

In this paper, we propose a novel fuzzing technique POWER
(Program Option-aWarE fuzzeR) that detects more crash bugs
than the cutting-edge fuzzers by actively constructing and
carefully selecting diverse option configurations together with
conventional input file fuzzing. The salient core ideas of
POWER are as follows:

1) Different Search Strategies for Different Input Domains:
In contrast to the most fuzzers that focus and mutate
only input files to a target program, POWER considers
that a target program has two different input domains to
explore (i.e., option configurations and input files). Thus,
it applies two distinct search strategies to them for high
bug detection ability within limited time budget.
For example, POWER constructs various option configu-
rations (e.g., -debug -rev -num 10) by systemati-
cally combining option keywords in the option dictionary
(e.g., { -debug, -num <m>, -rev, -str, ...}) only for
the first hour while it generates diverse input files with
the various option configurations (which were constructed
and selected in the previous one hour) by mutating input
files in byte-level for 23 hours like conventional fuzzing.

2) Careful Selection of Diverse Option Configurations: To
enforce diverse executions of a target program within
limited time budget, after constructing various option
configurations, POWER selects a set of the option con-
figurations each of which is far “different/distant” from
the others in the set (see Section II-C). This is because
the set of far different option configurations can enforce a
target program to execute diverse execution paths within
limited time budget since an option configuration guides
the target program executions in a large degree.
For example, suppose that the executions of a target
program P with an option configuration o1 cover a set of
functions {main, f1}. Also suppose that the executions
of P with another option configuration o2 cover {main,
f2} and the executions of P with o3 cover {main, f3}.
Roughly speaking, o1 is more different/distant from o2
than o3 if f1 is less relevant to f2 than f3.

Based on the above two core ideas, POWER operates in the
following three stages in order:

1) Exploratory stage: POWER actively constructs option
configurations as well as input files for one hour; it semi-
automatically extracts a set of options from the docu-
ments of a target program and constructs various option
configurations by using a dictionary-based construction
method [1], [2].

2) Option configuration selection stage: From the various
option configurations generated in the exploratory stage,
it selects a set of far “different/distant” option configura-
tions based on the option configuration relevance metric
(see Section II-C), with which POWER will generate
diverse input files in the next main fuzzing stage.

3) Main fuzzing stage: For the remaining 23 hours, POWER
fuzzes only input files with the set of the option configu-
rations selected during the option configuration selection
stage (note that this stage does not mutate option config-
urations at all).

To demonstrate the advantages of POWER, we have applied
POWER to the 30 real-world programs. The experiment results
show that POWER detects twice more unique crashes on
the subject programs than the state-of-the-art fuzzers such as
AFL++ [3] with ten option configurations and Eclipser [4].

The main contributions of this paper are as follows:
1) POWER is the first fuzzing technique that can detect

many crash bugs by actively constructing and carefully
selecting far different option configurations based on the
new option configuration relevance metric (Section II-C).

2) We have performed a series of the experiments where
we have empirically evaluated POWER and other cutting-
edge fuzzers (i.e., AFL++ and Eclipser) and demonstrated
that POWER detects significantly more unique crashes
than the cutting-edge fuzzers (Section IV).

3) After detecting unique crashes in the subject programs,
we have reported 51 new crash bugs detected by POWER
to the original developers of the target subject programs
to improve the quality of the open source subject pro-
grams. 2

The remaining sections are organized as follows. Section II
explains the three stages of POWER in detail. Section III
describes the experiment design and setup. Section IV dis-
cusses the experiment results. Section V describes related
work. Finally, Section VI concludes this paper with future
work.

II. PROGRAM OPTION-AWARE FUZZER(POWER)

A. Overall Process

Figure 1 shows the overall process of POWER (Program
Option-aWare fuzzER). Initially, POWER receives the follow-
ing items (see the left side of Figure 1):

2We reported 51 out of the 88 crash bugs detected by POWER. To reduce
the original developer’s burden to review many crash reports, we checked if
the crashes detected on the latest release version can be still replicated on the
latest development version and submitted only such crash reports.

• a target program P
• a set of initial test inputs Tinit for P each of which

consists of
– an initial option configuration, and
– an initial input file

• a set of documents DocP for P such as a man page and
help messages

POWER consists of the following three stages:
1) Exploratory stage (Section II-B): For the first one hour

of the entire fuzzing process, POWER actively constructs
various option configurations using a dictionary-based
mutation method while fuzzing input files using conven-
tional byte-level mutation.

2) Option configuration selection stage (Section II-C):
Among all option configurations generated in the ex-
ploratory stage, POWER selects a set of the option con-
figurations each of which is far “different/distant” from
the others based on the option configuration relevance
metric (Section II-C3). In other words, POWER selects a
set of the option configurations with which POWER can
enforce diverse executions of a target program.

3) Main fuzzing stage (Section II-D): Using the option con-
figurations selected in the option configuration selection
stage, POWER mutates and generates diverse input files
(not option configurations) for P .

B. Exploratory Stage

The left part of Figure 1 illustrates the exploratory stage.
Algorithm 1 describes how POWER operates in the ex-
ploratory stage. First, for a target program P , POWER semi-
automatically extracts a set of available program options
OPTP from the documents of P such as its man page and help
messages (line 3). Then, POWER executes P with the initial
inputs by using RunTest (lines 4–6). RunTest executes
P with input and adds input to the input priority queue
PQUEUE if the execution increases path coverage (lines 21–
26).

Next, POWER selects an input t that has the highest priority
in PQUEUE (line 8). Then, it decreases the priority of t by
one (line 9) so to give higher priority to the inputs newly
generated from t later. Then, POWER generates two inputs t′

and t′′ from t as follows and executes P with t′ and P with
t′′ by using RunTest (line 13 and line 16, respectively).

• t′ is a new input obtained by mutating the option
configuration of t (lines 11-12). To mutate option
configurations, POWER applies dictionary-based muta-
tion [1], [2]. When POWER mutates an option config-
uration, it performs the following mutation operations
(MutateOptConf in line 11 in Algorithm 1):
– insert a random number of random options in OPTP

into random location(s) of the option configuration, or
– replace a random number of options in the option

configuration with random options in OPTP , or
– remove a random number of the options in the option

configuration

Fig. 1. Overall process of POWER in the three stages

• t′′ is obtained by mutating the input file of t in a similar
way to other fuzzing techniques (e.g., common byte-
level mutations such as bitflip, byte-level random arith-
metic addition/subtraction, and byte random replacement)
(MutateFile in line 14)

POWER repeats the above steps to generate new inputs by
mutating option configurations and input files within the
exploratory stage timeout (lines 7–17).

C. Option Configuration Selection Stage

The middle part of Figure 1 illustrates the option config-
uration selection stage. POWER selects a set of the option
configurations each which is far “different/distant” from the
others in the set based on the option configuration relevance
metric. In other words, POWER selects a set of the option
configurations with which POWER can enforce far different
executions of a target program.

1) Example: How to Select Option Configurations
Figure 2 shows an example to show how POWER selects

a set of the option configurations each of which is far
different/distant from the others. The three dotted shapes (a
left blue one, a right red one, and a bottom green one) in
Figure 2(a) represent the executions of a target program P
(which has the functions main, f1, f2, f3, and f4) with three
option configurations o1, o2, and o3, respectively. The left blue
dotted shape contains {main, f1, f2}, which indicates that
the executions of P with o1 cover {main, f1, f2} (simply
calling that o1 covers {main, f1, f2}). Similarly, o2 covers
{main, f3, f4} and o3 covers {main, f2, f4}.

Fig. 2. (a) An example to explain relevance between option configurations
(b) Function relevance table.

POWER identifies far “different/distant” option configura-
tion pairs based on the option configuration relevance met-
ric (Section II-C3), which is calculated from the dynamic
function relevance (Section II-C2) values between functions
based on the execution profile of P . Intuitively speaking, if
two functions fi and fj are executed together frequently in
many executions, fi and fj are highly relevant. The table
in Figure 2(b) shows function relevance values between the
functions of P (e.g., f1 and f2 are highly relevant while f1
and f3 are not highly relevant).

Option configuration relevance between oi and oj is defined
as an average of the function relevance values between all

Algorithm 1: Exploratory Stage
Input: P : a target program, Tinit : a set of initial

inputs for P , and DocP : documents for P (i.e.,
a man page or help messages)

Output: Texp : a set of generated test inputs in the
exploratory stage

1 Function ExploratoryStage(P, Tinit, DocP):
2 PQUEUE ← ∅
3 OPTP ← program options extracted from DocP
4 foreach input ∈ Tinit do
5 RunTest(P, input)
6 end
7 while a given timeout is not reached do
8 Select an input t that has the highest priority

from PQUEUE
9 Decrease the priority of t by 1

10 (o, f)← t
11 o′ ← MutateOptConf(o, OPTP)
12 t′ ← (o′, f)
13 RunTest(P, t′)
14 f ′ ← MutateFile(f)
15 t′′ ← (o, f ′)
16 RunTest(P, t′′)
17 end
18 Texp ← PQUEUE
19 return Texp

20 End Function

21 Function RunTest(P ,input):
22 Execute P with input
23 if a new path is covered then
24 PQUEUE.append(input)
25 end
26 End Function

functions covered by oi and oj (Section II-C3). For example,
the relevance between o1 and o2 is the average of the function
relevance values between the functions covered by o1 and
o2 (i.e., the average of the function relevance values of
(f1,f3), (f1,f4), (f1, main), (f2,f3), (f2, f4), (f2,main),
(main,f3), and (main, f4)).

Note that o1 and o2 have low relevance because more pairs
of the functions covered by o1 and o2 have low function
relevance values as shown in Figure 2(b) (i.e., five out of the
above eight function pairs have low function relevance values
(i.e., (f1,f3), (f1,f4), (f2,f3), (f2, f4), (main,f3),(main,
f4)). In contrast, o1 and o3 are highly relevant because more
pairs of the functions covered by o1 and o3 (i.e., four out of
the six pairs) have high relevance values.

Thus, POWER selects the lowly related (i.e., far different)
option configurations o1 and o2 to guide diverse executions of
P .

Algorithm 2: Option Configuration Selection Stage
Input: P : a target program, Texp: a set of option

configuration and input file pairs that increased
path coverage in the exploratory stage

Output: Odistinct : a set of selected option
configurations

1 Function OptConfSelStage(P, Texp):
2 Oexp ← ∅ //a set of all option configurations in

Texp

3 Fexp ← ∅ //a set of all input files in Texp

4 foreach (o, f) ∈ Texp do
5 Oexp.add(o)
6 Fexp.add(f)
7 end
8 Calls← GetFuncCalls(P , Texp, Oexp, Fexp)
9 Osel ← SelectOptConfSet(Oexp, Calls)

10 return Odistinct

11 End Function
12 Function GetFuncCalls(P, Texp, Oexp, Fexp):
13 Calls← empty map
14 foreach o ∈ Oexp do
15 Calls[o]← ∅
16 foreach f ∈ Fexp s.t. (o, f) ∈ Texp do
17 CalledFuncs←

ExecuteAndGetCalls(P , o, f)
18 foreach func ∈ CalledFuncs do
19 Calls[o].add(func)
20 end
21 end
22 end
23 return Calls
24 End Function
25 Function SelectOptConfSet(Oexp, Calls, τ):
26 Osel ← ∅ // a set of the selected option

configurations
27 (o1, o2)← a pair of option configurations ∈ Oexp

that has the minimum option relevance among the
all pairs of option configurations

28 Osel.add(o1, o2)
29 foreach o ∈ Oexp do
30 if ∀od ∈ Osel.OptRelCalls(o, od) < τ then
31 Osel.add(o)
32 end
33 end
34 return Osel

35 End Function

2) Dynamic Function Relevance

Among the dozens of function relevance/coupling met-
rics (e.g., [5]–[10]), POWER uses dynamic function rele-
vance metric for its intuitive characteristics and its very low
runtime cost to calculate (the concept of the dynamic function
relevance was originally proposed to reduce false alarms of

unit testing [11] [12]). POWER defines and applies dynamic
function relevance as follows:

Definition 1. Let TI be a set of generated test inputs
with unique path coverage. A dynamic function relevance
FRTI(f, g) ∈ [0, 1] between two functions f and g is defined
as:

FRTI(f, g) =
|{ti ∈ TI| ti that executes both f and g}|2(
|{ti ∈ TI| ti that executes f}|
∗ |{ti ∈ TI| ti that executes g}|

)
We say g is highly relevant to f if FRTI(f, g) is high.

Intuitively speaking, a high value of FRTI(f, g) means that
f and g are frequently executed together with TI and it
means that f may have high relevance with g. Note that
the runtime overhead to calculate FRTI(f, g) is negligible,
because FRTI(f, g) is calculated based on function call traces
and counting the number of function calls in the traces is very
cheap.

3) Option Configuration Relevance
Using the function relevance, we define relevance between

two different option configurations as follows:

Definition 2. For two option configurations o1 and o2, let
F1 and F2 be sets of functions covered by o1 and o2
(i.e., that are invoked in the set of the executions with
o1 and o2), respectively. The option configuration relevance
OptRel(o1, o2) ∈ [0, 1] is defined as :

OptRel(o1, o2) =

∑
f1∈F1

∑
f2∈F2

FRTI(f1, f2)

|F1| ∗ |F2|
Intuitively speaking, the option configuration relevance of

two option configurations o1 and o2 is the average of the
function relevance values between the all functions invoked
in the executions with o1 and the all functions invoked in the
executions with o2. POWER selects option configuration pairs
that have low relevance (i.e., option configurations that are “far
different/distant” from each other), because such two option
configurations that have low relevance enforce very different
function call executions from each other, which can explore
diverse executions of a target program.

4) Option Configuration Selection
Algorithm 2 describes how to select option configurations

far different from each other. From the set of inputs Texp (a set
of pairs of option configurations and input files that increased
path coverage) gathered from the exploratory stage, POWER
selects option configurations as follows:

1) It gets a set of option configurations Oexp and a set of
input files Fexp from Texp (line 2-7).

2) GetFuncCalls (lines 8, 12-24) gets sets of functions
that are called with each option configuration in Oexp by
executing and extracting function call profiles.

3) SelectOptConfSet (lines 9, 25–35) computes rele-
vance values between the all option configurations by
using the function call profile information obtained by

GetFuncCalls. Then, it selects a set of the option
configurations each of which has low relevance to the
others in the set (i.e. a set of the diverse option con-
figurations with which a target program runs diverse
executions paths) with respect to a user given threshold
τ (see Section III-C).

D. Main Fuzzing Stage

The right part of Figure 1 illustrates the main fuzzing
stage, which fuzzes only input files with the option config-
urations selected in the previous stage. In this stage, POWER
operates like other fuzzing techniques except that it exer-
cises various executions with carefully selected far different
option configurations (Section II-C). As a result, POWER
can explore much more diverse execution paths than other
fuzzing techniques even with the multiple different option
configurations (e.g., AFL++ with ten option configuration)
and/or with continuously mutating option configurations (e.g.,
Ecliper) (Section IV-B).

E. Implementation

We have implemented POWER on top of AFL++ [3]. The
core components of POWER including automated program
option extraction, dictionary-based mutation of option config-
urations, option configuration selection strategy, option config-
uration execution interface for fuzz engine are implemented in
additional 6,000 lines of C and C++ code.

III. EXPERIMENT SETUP

A. Research Questions

RQ1. Fuzzing effectiveness of POWER compared to
the state-of-the-art fuzzing techniques: To what extent does
POWER achieve crash detection ability and branch coverage in
24 hours, compared to the state-of-the-art fuzzing techniques?
For RQ1, we compare POWER with AFL++ [3] with ten initial
option configurations. We modified AFL++ to accept multi-
ple initial option configurations and make AFL++ continue
fuzzing with the given multiple initial options (similar to the
main fuzzing stage of POWER).

• AFL++ [3]: it is a fork of AFL [1], which integrates
diverse features from fuzzing research such as AFLFast’s
power scheduling [13] and MOPT’s mutation scheduling
scheme [14]. We selected AFL++ because AFL++ shows
the best performance on the fuzzbench service [15]
provided by Google.

To make a fair comparison with POWER, we provide ten
initial option configurations to AFL++ in the following way:

1) From the 97 fuzzing papers in the survey (Section V-A),
if there exist option configurations that are used by other
papers, we use the option configurations in the papers.

2) If we get only n(< 10) option configurations from the
papers, we randomly generate 10 − n option configura-
tions with the same option dictionary used for POWER.
We restrict the maximum number of options in each
option configuration as ten because it is unlikely that

testers use an option configuration with more than ten
options. In addition, we do not use option configurations
that are not accepted by the target programs (i.e., that
cause the target programs to terminate early with printing
command-line usage messages). The full list of the option
configurations we used is available at https://sites.google.
com/view/power-icst2022.

Also, we compare POWER with Eclipser [4] that supports
mutating both option configurations and input files.

• Eclipser [4]: We select Eclipser because, in our best
knowledge, it is the only open-source state-of-the-art
fuzzer that officially supports mutating both option con-
figurations and input files. 3

RQ2. Fuzzing effectiveness of the option configuration
relevance based option configuration selection strategy
of POWER: To what extent does the option configuration
relevance values of the selection strategy of POWER affect
crash detection ability and branch coverage achievement? For
RQ2, we have developed a variant of POWER, POWERRnd

which uses random option configuration relevance values in
the option configuration selection stage.

RQ3. Fuzzing effectiveness of the explicit option con-
figuration selection of POWER: To what extent does the
option configuration selection strategy of POWER affect crash
detection ability and coverage, compared to a variant of
POWER, POWERKMO that keeps mutating option configura-
tions without selecting option configurations? In other words,
POWER KMO runs in the exploratory stage for the entire
fuzzing time.

B. Target subjects

We have collected the latest release versions (as of Septem-
ber 1st, 2021) of the popular real-world C/C++ programs that
have been used by other fuzzing papers. As like other fuzzing
papers, we target the latest release version (not a development
version) to avoid unnecessary confusion caused by frequent
changes of target program code in a development version. If
the latest release version is distributed earlier than two years
ago, we used the latest development versions. Table I shows
the information (the size and the number of available program
options). The sizes of these subjects range from 2,920 LoC to
1,174,673 LoC (the average is 137,570 LoC). The numbers of
the program options range from 10 to 760. We selected these
real-world subjects with the following criteria:

• The subject should have at least ten program options.
• The subject should be actively maintained (i.e., the last

commit of the subjects was made within around two year
ago).

3We used Eclipser version ‘1.x’ instead of the most recent version (v2.0)
because Eclipser 2.0 does not mutate the option configurations anymore.

C. Fuzzing Setup

1) Timeout Setup
We ran AFL++, Eclipser, POWER, and the variants of

POWER for 24 hours, which follows the guideline on evalu-
ating fuzzers proposed by Klees et al. [16].

2) Control of Random Variance
To reduce the random variance in the experiment results,

we repeated the same experiment ten times.
3) Testbed Setup
All the experiments were performed on our own cluster in

which each node is equipped with AMD Ryzen 7 3800XT (4.3
Ghz) and 16GB RAM, running Ubuntu 18.04 64 bit version.

D. Measurement

1) Crash Bug Detection
To measure the crash bug detection ability of the fuzzing

techniques, we report the number of the crashes detected by
the fuzzing techniques. Among the various crash counting
methods [17], we first used stack backtrace hashing which
counts crashes with the same stack trace as one crash (the
most widely used method). Then, we manually deduplicate
those crashes with our best effort, since one unique crash bug
can generate several different crash stack traces. We report the
number of the crashes detected in any of the ten experiment
runs.

2) Coverage Achievement
To measure the coverage achievement of each technique, we

count the number of the covered branches obtained by gcov
and report the average numbers of the covered branches over
the ten experiment runs.

E. Initial Seed Setup

An initial seed consists of an initial option configuration
and an initial input file. All detailed list of initial seed setup
is uploaded at https://sites.google.com/view/power-icst2022.

1) Initial option configuration
We provide an initial option configuration for each subject

as follows:

a) If the papers in the survey (Section V-A) provide an
option configuration for the target program, we used it.

b) If we cannot find such one, we used the simplest option
configuration that can be handled by the subject (e.g.,
‘@@’, ‘-i @@ -o /dev/null’, ...)

2) Initial input file
We provide initial input files for each subject as follows:

a) If the papers in the survey (Section V-A) provide input
files for the target program, we used them.

b) If we cannot find such one, we used example input file(s)
in a subject repository or repositories of similar subjects
(e.g., we can use an example input file in pdftops for
pdftohtml and pdftopng).

TABLE I
TARGET SUBJECTS

Subjects Package name Size # prog. Subjects Package name Size # prog.
(LoC) option (LoC) option

avconv libav-git-c464278 454,936 80 pdftohtml poppler-21.07.0 38,111 32
bison bison-3.7.6 54,423 54 pdftopng xpdf-4.03 97,890 33
cflow cflow-1.6 18,197 45 pdftops xpdf-4.03 103,077 46
cjpeg libjpeg-turbo-2.1.0 6,308 37 pngfix libpng-1.6.37 7,020 15
djpeg libjpeg-turbo-2.1.0 5,792 37 pspp pspp-1.4.1 4,901 25
dwarfdump libdwarf-20210528 83,545 48 readelf binutils-2.36.1 74,789 169
exiv2 exiv2-0.27.4 33,417 79 size binutils-2.36.1 436,055 19
ffmpeg ffmpeg-N-103440-g2f0113be3f 774,186 230 tiff2pdf libtiff-4.3.0 8,234 35
gm GraphicsMagick-1.3.36 197,891 760 tiff2ps libtiff-4.3.0 5,646 41
gs ghostpdl-9.54.0 1,174,673 53 tiffinfo libtiff-4.3.0 3,752 10
jasper jasper-2.0.32 2,920 16 vim vim-8.2.3113 296,916 54
mpg123 mpg123-1.28.2 11,298 123 xmlcatalog libxml-2.9.12 2,609 27
mutool mupdf-git-d00de0e 364,318 224 xmllint libxml-2.9.12 11,285 94
nasm nasm-2.15.05 70,903 33 xmlwf libexpat-2.4.1 4,147 19
objdump binutils-2.36.1 877,165 145 yara yara-4.1.1 5,862 37

F. POWER configuration

We give one hour to the exploratory stage because it
shows best performance during our experimental study. For
the user-given threshold τ of the option configuration selection
(Section II-C), we make POWER to adaptively use the average
value of the maximum and minimum values of the option
relevance as τ .

G. Threats to Validity

A threat to external validity is the representativeness of
our target subjects. We expect that this threat is limited since
we choose the target programs widely used by many fuzzing
researchers. A threat to internal validity is possible bugs in the
implementation of POWER. To control this threat, we have
tested our implementation extensively.

IV. EXPERIMENT RESULTS

A. Summary of the Experiment Data

Table II shows the average length (i.e., the number of
options) and the total number of option configurations selected
and generated by POWER. For example, for avconv (on the
third row), POWER generated 133.9 option configurations on
average and each of the option configurations had 30.7 options
on average. Among the 133.9 option configurations, POWER
selects only 10.0 option configurations on average (each of
these 10.0 selected option configurations has 17.2 options on
average). On average, POWER selected 34.7% of the option
configurations generated in the exploratory stage.

Table III and Table IV report the number of unique
crashes detected and the number of branches covered by the
fuzzing techniques on the 30 target subjects. All experiment
data are publicly available at https://sites.google.com/view/
power-icst2022.

TABLE II
THE AVERAGE LENGTH AND TOTAL NUMBER OF THE OPTION
CONFIGURATIONS GENERATED AND SELECTED BY POWER

Targets All option conf. Option conf. Selection
generated by POWER selected by POWER Ratio

of opt. # of opt. # of opt. # of opt.
(length) conf. (length) conf.

avconv 30.7 133.9 17.2 10.0 7.5%
bison 24.8 145.6 10.1 37.8 26.0%
cflow 24.1 202.5 28.9 20.4 10.1%
cjpeg 16.2 124.7 6.4 30.3 24.3%
djpeg 14.8 138.3 5.1 25.5 18.4%
dwarfdump 22.3 111.2 10.4 21.6 19.4%
exiv2 39.9 519.1 40.8 192.8 37.1%
ffmpeg 41.7 226.0 43.3 113.6 50.3%
gm 303.1 1277.3 281.7 57.1 4.5%
gs 25.0 54.7 15.5 4.0 7.3%
jasper 15.4 107.2 13.8 20.9 19.5%
mpg123 41.2 246.3 43.6 138.5 56.2%
mutool 47.6 147.7 53.7 44.9 30.4%
nasm 15.7 161.2 13.2 25.5 15.8%
objdump 33.3 243.0 51.7 81.4 33.5%
pdftohtml 11.2 83.8 6.2 14.0 16.7%
pdftopng 11.8 49.2 15.3 27.6 56.1%
pdftops 10.2 47.6 14.6 27.6 58.0%
pngfix 8.0 43.1 6.5 13.0 30.2%
pspp 12.2 132.3 12.1 99.5 75.2%
readelf 54.9 307.8 58.1 230.7 75.0%
size 8.4 85.8 11.3 20.5 23.9%
tiff2pdf 16.9 153.9 14.0 30.2 19.6%
tiff2ps 14.8 220.1 14.8 114.9 52.2%
tiffinfo 10.9 100.1 10.4 3.8 3.8%
vim 23.4 457.6 22.9 179.3 39.2%
xmlcatalog 17.7 253.1 18.1 107.2 42.4%
xmllint 51.9 1576.2 52.3 1523.8 96.7%
xmlwf 12.5 231.9 12.3 64.8 27.9%
yara 18.4 95.4 20.7 60.7 63.6%

Avg. 32.6 255.9 30.8 111.4 34.7%

B. RQ1. Fuzzing effectiveness of POWER compared to the
state-of-the-art fuzzing techniques

The experiment results clearly show that POWER detects
far more unique crashes than the other fuzzing techniques.

TABLE III
THE TOTAL NUMBER OF CRASHES DETECTED AND THE AVERAGE

NUMBERS OF BRANCHES COVERED BY THE FUZZERS

Targets Eclipser AFL++ w/ 10 POWER
opt. conf.

#uniq. #branch #uniq. #branch #uniq. #branch
crash covered crash covered crash covered

avconv 0 8778.1 0 20226.7 5 15006.2
bison 0 1636.1 0 6526.2 5 6138.0
cflow 0 1792.8 0 1386.8 2 1675.3
cjpeg 0 2961.9 2 3119.7 0 4086.7
djpeg 0 438.5 0 2254.5 0 2513.7
dwarfdump 0 472.6 2 6259.9 2 7240.6
exiv2 0 4243.6 0 8082.2 1 9567.0
ffmpeg 0 18520.7 0 43967.0 2 45392.8
gm 0 2497.4 0 7636.2 1 9710.1
gs 0 13234.9 0 20495.9 0 24161.6
jasper 0 1855.6 0 2051.2 0 4101.0
mpg123 0 3202.1 0 2944.9 1 3809.3
mutool 0 13315.1 0 4076.0 0 13647.7
nasm 2 2150.0 0 6737.6 4 6506.6
objdump 0 5116.1 13 31327.6 13 33070.5
pdftohtml 0 1159.4 0 5997.7 4 7600.7
pdftopng 0 766.0 0 8404.7 9 8687.5
pdftops 0 763.1 0 9738.6 9 9354.9
pngfix 0 535.5 0 1166.8 0 1143.1
pspp 0 2935.0 4 6564.5 8 5650.0
readelf 0 520.3 2 10550.1 8 10321.6
size 0 3812.1 5 9078.9 3 9054.8
tiff2pdf 0 494.4 0 4133.0 0 4177.1
tiff2ps 0 898.1 0 3514.1 0 3379.0
tiffinfo 1 552.2 0 3509.4 4 3228.1
vim 0 27141.3 7 50842.5 5 45654.3
xmlcatalog 0 374.7 0 7607.0 0 7598.9
xmllint 0 4233.9 0 11132.5 2 14420.5
xmlwf 0 1984.3 0 3821.2 0 3733.8
yara 0 745.6 0 3002.1 0 3118.9

Total 3 35 88

Table III show the number of unique crashes detected and
the number of the branches covered by Eclipser, AFL++,
and POWER. POWER detected 88 unique crashes on the 30
target programs, which is significantly more than the number
of the unique crashes detected by the other state-of-the-art
fuzzing techniques. In other words, POWER detects 29.3
(= 88/3) times more unique crashes than Eclipser and 2.51
(= 88/35) times more crashes than AFL++ with ten option
configurations. Also, POWER covers more branches than the
other techniques (i.e. POWER achieved 5.7% more branches
than AFL++ on average with very low p-value(0.0011)). For
example, on exiv2, POWER covered 2.3 (=9567.0/4243.6)
times and 1.2 (= 9567.0/8082.2) times more branches than
Eclipser and AFL++ respectively (see the ninth row in Ta-
ble III).

C. RQ2. Fuzzing effectiveness of the option configuration
relevance based option configuration selection strategy of
POWER

From the experiment results, we can conclude that the
option configuration selection strategy using the option con-
figuration relevance contributes to significantly increase the
testing effectiveness of POWER. Table IV show the number
of the unique crashes detected and the branches covered by
POWER and POWERRnd. POWERRnd uses random option

TABLE IV
THE TOTAL NUMBER OF CRASHES DETECTED AND THE AVERAGE

NUMBERS OF BRANCHES COVERED BY THE VARIANTS OF POWER

Targets POWERRnd POWERKMO POWER

#uniq. #branch #uniq. #branch #uniq. #branch
crash covered crash covered crash covered

avconv 4 11709.6 7 17197.7 5 15006.2
bison 1 5728.0 3 6637.6 5 6138.0
cflow 3 1553.2 4 1689.1 2 1675.3
cjpeg 0 3920.1 0 4192.8 0 4086.7
djpeg 0 2598.1 0 2651.7 0 2513.7
dwarfdump 1 6565.5 4 7563.7 2 7240.6
exiv2 0 8679.3 0 9636.8 1 9567.0
ffmpeg 1 36252.6 1 48122.8 2 45392.8
gm 0 6492.3 0 9454.0 1 9710.1
gs 0 22586.2 1 24905.8 0 24161.6
jasper 0 3674.4 0 3660.1 0 4101.0
mpg123 0 3744.1 1 4006.3 1 3809.3
mutool 0 12423.8 0 15746.1 0 13647.7
nasm 4 6403.2 3 6578.8 4 6506.6
objdump 13 26237.9 8 24639.1 13 33070.5
pdftohtml 0 7184.0 0 8100.5 4 7600.7
pdftopng 0 7341.9 0 8947.8 9 8687.5
pdftops 0 8177.3 0 9719.0 9 9354.9
pngfix 0 1107.8 0 1191.2 0 1143.1
pspp 9 3389.2 7 4462.3 8 5650.0
readelf 0 9402.0 1 8799.3 8 10321.6
size 1 5078.7 4 7621.5 3 9054.8
tiff2pdf 0 4126.1 0 4226.8 0 4177.1
tiff2ps 1 2950.8 1 3274.1 0 3379.0
tiffinfo 1 2732.4 1 3060.9 4 3228.1
vim 0 39844.8 2 45466.5 5 45654.3
xmlcatalog 0 6598.8 0 6413.9 0 7598.9
xmllint 2 14245.7 2 14406.5 2 14420.5
xmlwf 0 3590.3 0 3733.0 0 3733.8
yara 0 3455.6 0 3954.2 0 3118.9

Total 41 50 88

configuration relevance values to select arbitrary option con-
figurations. In total, POWER found 2.15 (= 88/41) times more
crashes than POWERRnd, and POWER covered 12.1% more
branch coverage than POWERRnd on average. For example,
on tiffinfo, POWER found four times more crashes and
covered 18.1% (=(3228.1-2732.4)/2732.4) more branches than
POWERRnd.

D. RQ3. Fuzzing effectiveness of the explicit option configu-
ration selection of POWER

The experiment results show that the explicit option con-
figuration selection of POWER contribute to detect a large
number of unique crashes. Table IV shows the number of the
unique crashes detected and the branches covered by POWER
and POWERKMO where POWERKMO keeps mutating option
configurations for 24 hours without selecting option config-
urations. POWER detected 76% (=(88-50)/50) more crashes
than POWERKMO and covered similar number of branches
on average. Thus, we can conclude that the explicit option
configuration selection contributes to improve crash detection.

E. Real-world Crash Bugs Detected by POWER

For complex bugs that require specific combination of
multiple options to trigger, POWER can successfully detect
such bugs that have not been detected even after the extensive
fuzzing effort.

For example, a new crash bug of mpg123 is detected by
POWER, but not by AFL++ with ten option configurations
nor Eclipser. This is because the bug requires a specific
option configuration to trigger. POWER detects the bug by
generating an option configuration with 12 different command-
line options 4. We reported the bug to the developer of
mpg123 (the bug report is available at https://sourceforge.net/
p/mpg123/bugs/322/) and the developer fixed the bug within
33 hours from the initial bug report. The developer was
highly interested in POWER because although mpg123 had
been extensively fuzzed by using Google’s OSS-fuzz [18], the
reported bug was not detected before (the exact message of
the developer is “Interesting approach you find stuff where
oss-fuzz didn’t anymore.”). This demonstrates that POWER
can detect many crash bugs in practice by systematically
constructing and carefully selecting option configurations by
using option configuration relevance.

For another example, POWER detected a new crash of
vim (but not by AFL++ with ten option configurations nor
Eclipser). The option configuration used to detect the crash
consists of 19 options. 5 The developers of vim responded to
us as follows: “thanks for fuzzing and finding those bugs. Out
of curiosity, which fuzzer did you use? I hope you continue
fuzzing vim to find more bugs”. The bug report is available
at https://github.com/vim/vim/issues/8955

V. RELATED WORK

A. Survey of Fuzzing Papers

While command-line options can largely affect program
behaviors, research communities pay little attention to fuzzing
command-line option configurations. To find out how many
papers explicitly utilize program option configurations in their
experiments, we have surveyed 98 fuzzing papers that (1) were
published recently (from 2015 to 2021) on top conferences and
journals of software engineering and security, and (2) targeted
CLI programs. From the survey, we have found that

1) three papers [4], [13], [19] directly mutate option config-
urations in their experiments.

2) 20 papers specify the option configurations used in their
experiments (e.g., [14], [20]–[26]).

3) 11 papers [27]–[37] did not specify the option configura-
tions (but implicitly exposed their option configurations
through publicly available experiment data)

4) 64 papers failed to specify program option configurations
used (e.g. [38]–[44]).

In summary, 76.5% (=(11+64)/98) of the recently-published
fuzzing papers did not provide information on the program
option configurations used. Moreover, most of the above
papers (except [4], [13], [19]) use only one fixed option
configuration for their experiments.

4--smooth --listentry -z -w l --quiet --index - -4to1 -2 -q --fifo --outfile
5-o1 -b -S -y --noplugin -O2 -E -i --startuptime -A --ttyfail NONE -u ‘input

file’ -S -R -o2 + -V1

B. Fuzzing Techniques to Directly Mutate Option Configura-
tions

TOFU [19] is a fuzzer that mutates command-line option
configurations for directed fuzzing. It generates many different
option configurations by using dictionary-based mutation and
tries to find an option configuration that gives the closest
distance to a target basic block. TOFU receives a specifi-
cation of command-line options (i.e., the name of options
and the type of option argument if any) from a user and
performs a dictionary-based mutation on the command-line
option configurations by using the specification as a dictionary.
Unlike TOFU, POWER automatically extracts the specifica-
tion of command-line options from the man page and the
help messages of target programs. Also, POWER actively
generates diverse option configurations with accompanying
input files to explore large path space while TOFU mutates
option configurations only until it finds a path to a target block.

Zeller et al. [45] (an online course, not a published paper)
developed a fuzzer that automatically infers the program
option grammar of Python programs that use argparse
function. They use the inferred program option grammar to
generate valid program option configurations and fuzz input
files with the generated option configurations. However, un-
like POWER that generates both option configurations and
accompanying input files together and evaluates/selects far
different/distant option configurations, they did not evaluate
the generated option configurations.

Eclipser [4] also supports option configuration mutation.
Eclipser tracks relation between each input byte and branch
constraints with light-weight instrumentation on binary code,
and it supports tracking on not only input file bytes but also on
input option configuration’s bytes. After tracking the relation,
it searches for correct values of the related bytes with multiple
executions to cover the branches.

C. Dictionary-based Mutation in Fuzzing Techniques

Dictionary-based mutation was developed for effective
fuzzing for simply structured input files (to complexly-
structured input files, grammar-based fuzzing [2], [46], [47]
are applied). The dictionary consists of tokens provided by
users or automatically extracted from target programs’ source
code and/or documents. Dictionary-based mutation adds or
deletes a token and mutates one token into another to effec-
tively generate test inputs that satisfy the input constraints of
the target programs. To guide fuzzing an input file, AFL [1]
provides an API to use either a user-provided dictionary or
an automatically extracted one. Superion [2] improves AFL’s
dictionary-based mutation to align with their grammar-aware
fuzzing. The main difference between POWER and the above
fuzzers is that POWER applies dictionary-based mutation
to option configurations but AFL and Superion do to input
files without recognizing the importance of diverse option
configurations.

D. Prioritization Heuristics on Input Files

As POWER assigns high priority to the inputs containing
far different/distant option configurations, other fuzzers apply
various prioritization heuristics to increase coverage and crash
detection power.

AFLfast [48] favors input files that execute rarely executed
paths. FairFuzz [49] and Vuzzer [50] favor input files which
execute rarely executed branches and which execute basic
blocks located in deep control-structure, respectively. Col-
lAFL [40] favors input files whose execution paths have many
uncovered neighbor branches. Ankou [27] defines a distance
between two different execution paths, and it scores each input
file according to its execution path’s “uniqueness” which is
measured using the distances to other paths. TortoiseFuzz [35]
favors input files which execute many functions, loops, and
basic blocks that have many memory access operators. SAV-
IOR [51] statically labels suspicious basic blocks which con-
tain (or which can reach) operators that can lead to undefined
behaviors, and it scores each input file in terms of a number
of the suspicious basic blocks visited by the test input.

Although the prioritization heuristics of these fuzzers con-
sider only input files (not option configurations), POWER fo-
cuses on option configurations as well as input files/executions
so to improve bug detection power further.

E. Testing Configurable Software Systems

A command-line option configuration can be considered as a
kind of system configurations. There exist several methodolo-
gies that utilize combinatorial interation testing to test highly
configurable systems [52]. Because a highly configurable
system can produce a huge number of different products,
the following papers estimated and priortized products to test
by selecting corresponding configurations. A.B. Sánchez et
al. [53] suggested methods to measure complexity of each
product and assign a high priorty to highly complex products
to detect faults as early as possible. Henard et al. [54]
measured similarity between two different configurations and
suggested to test distinct products before similar products.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel fuzzing technique POWER,
which improves bug detection ability of fuzzing by actively
fuzzing and selecting option configurations as well as input
files. The experiment results on the 30 popular real-world
subjects confirm that POWER significantly outperforms the
state-of-the-arts fuzzing techniques and the core ideas of
POWER are effective to improve fuzzing performance.

As future work, we will consider constraints on command
line option configurations (curretly POWER does not consider
constraints on the options; it applies dictionary-based mutation
to generate diverse option configurations). Also, we will apply
mutation-based heuristics [55]–[57] with cost-effective muta-
tion [58] and symbolic execution heuristics [59] to improve
testing effectiveness of POWER.

ACKNOWLEDGMENTS

We thank Robert Sebastian Herlim for the help on the
command line survey of fuzzing papers. This work was
supported by the NRF grant (NRF-2020R1C1C1013996,
NRF-2021R1A2C2009384, NRF-2021R1A5A1021944) and
the IITP grant (no. 2021-0-00905-001) funded by the Korea
government (MSIT).

REFERENCES

[1] M. Zalewski, “American fuzzy lop (afl) fuzzer,” http://lcamtuf.coredump.
cx/afl/, 2017.

[2] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in Proceedings of the 41st International Conference
on Software Engineering. IEEE Press, 2019, p. 724–735. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00081

[3] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++ : Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association, Aug.
2020. [Online]. Available: https://www.usenix.org/conference/woot20/
presentation/fioraldi

[4] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing
on binary code,” in Proceedings of the International Conference on
Software Engineering, 2019, pp. 736–747.

[5] S. Chidamber and C. Kemerer, “Towards a metrics suite for object
oriented design,” in ‘OOPSLA, 1991.

[6] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” Journal of Systems and Software, vol. 23,
no. 2, pp. 111 – 122, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/016412129390077B

[7] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering (TSE), vol. 20,
no. 6, pp. 476–493, 1994.

[8] Y. Lee, B. Liang, S. Wu, and F. Wang, “Measuring coupling and
cohesion of object-oriented programs based on information flow,” in
International Conference on Software Quality (ICSQ), 1995.

[9] G. A. Hall, W. Tao, and J. C. Munson, “Measurement and validation of
module coupling attributes,” Software Quality Journal, vol. 13, no. 3,
pp. 281–296, 2005.

[10] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling mea-
surement for object-oriented software,” IEEE Transactions on Software
Engineering, vol. 30, no. 8, pp. 491–506, 2004.

[11] Y. Kim, Y. Choi, and M. Kim, “Precise concolic unit testing of c pro-
grams using extended units and symbolic alarm filtering,” in Proceedings
of the 40th International Conference on Software Engineering, 2018, pp.
315–326.

[12] Y. Kim, S. Hong, and M. Kim, “Target-driven compositional concolic
testing with function summary refinement for effective bug detection,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 16–26.

[13] M. Böhme, V. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” IEEE Transactions on Software Engineering,
vol. 45, no. 5, pp. 489–506, 2019.

[14] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“MOPT: Optimized mutation scheduling for fuzzers,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 1949–1966. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu

[15] J. Metzman, A. Arya, and L. Szekeres,
“FuzzBench: Fuzzer Benchmarking as a Service,” March
2020. [Online]. Available: https://security.googleblog.com/2020/03/
fuzzbench-fuzzer-benchmarking-as-service.html

[16] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2123–2138.

[17] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, 2019.

[18] “Oss-fuzz,” https://google.github.io/oss-fuzz/, accessed: 2021-10-03.
[19] Z. Wang, B. Liblit, and T. Reps, “TOFU: Target-oriented fuzzer,” 2020.

[20] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou,
“Ecofuzz: Adaptive energy-saving greybox fuzzing as a variant
of the adversarial multi-armed bandit,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 2307–2324. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/yue

[21] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 711–
725.

[22] T. Yue, Y. Tang, B. Yu, P. Wang, and E. Wang, “Learnafl: Grey-
box fuzzing with knowledge enhancement,” IEEE Access, vol. 7, pp.
117 029–117 043, 2019.

[23] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, 2019.

[24] A. Fioraldi, D. C. D’Elia, and D. Balzarotti, “The use of likely
invariants as feedback for fuzzers,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug. 2021,
pp. 2829–2846. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/fioraldi

[25] X. Li, L. Sun, R. Jiang, H. Qu, and Z. Yan, “Ota: An operation-oriented
time allocation strategy for greybox fuzzing,” in 2021 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2021, pp. 108–118.

[26] B. Wang, K. Lu, Q. Wu, and A. Pakki, “Unleashing fuzzing through
comprehensive, efficient, and faithful exploitable-bug exposing,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–1, 2021.

[27] V. J. Manès, S. Kim, and S. K. Cha, “Ankou: Guiding grey-box
fuzzing towards combinatorial difference,” in Proceedings of the 42nd
International Conference on Software Engineering, 2020.

[28] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” 2020 IEEE
Symposium on Security and Privacy (SP), pp. 1497–1511, 2020.

[29] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence,” in Symposium
on Network and Distributed System Security (NDSS), 2019.

[30] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen,
“Fuzzguard: Filtering out unreachable inputs in directed grey-box
fuzzing through deep learning,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
2255–2269. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/zong

[31] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
“Breaking through binaries: Compiler-quality instrumentation for
better binary-only fuzzing,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
1683–1700. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/nagy

[32] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng, K. Lu, and T. Wang, “Unifuzz: A holistic and
pragmatic metrics-driven platform for evaluating fuzzers,” 2020.

[33] A. Herrera, H. Gunadi, S. Magrath, M. Norrish, M. Payer,
and A. L. Hosking, “Seed selection for successful fuzzing,” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis. New York, NY, USA: Association
for Computing Machinery, 2021, p. 230–243. [Online]. Available:
https://doi.org/10.1145/3460319.3464795

[34] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen, X. Xie,
G. Pu, and T. Liu, “Memlock: Memory usage guided fuzzing,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering,
Seoul, South Korea, 2020.

[35] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, “Not all
coverage measurements are equal: Fuzzing by coverage accounting for
input prioritization,” in Symposium on Network and Distributed System
Security (NDSS), 01 2020.

[36] S. Nagy and M. Hicks, “Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing,” in 2019 IEEE Symposium on Security
and Privacy (SP), 2019, pp. 787–802.

[37] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu, and B. Mao,
“Ptrix: Efficient hardware-assisted fuzzing for cots binary,” in AsiaCCS
2019 - Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security. Association for Computing Machinery, Inc,
2019, pp. 633–645.

[38] N. Coppik, O. Schwahn, and N. Suri, “Memfuzz: Using memory
accesses to guide fuzzing,” in 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), 2019, pp. 48–58.

[39] C. Lemieux, R. Padhye, K. Sen, and D. Song, “Perffuzz: Automatically
generating pathological inputs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
New York, NY, USA: Association for Computing Machinery, 2018, p.
254–265. [Online]. Available: https://doi.org/10.1145/3213846.3213874

[40] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen,
“Collafl: Path sensitive fuzzing,” in 2018 IEEE Symposium on Security
and Privacy (SP), vol. 00, 2018, pp. 660–677. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SP.2018.00040

[41] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and Y. Liu,
“Cerebro: Context-aware adaptive fuzzing for effective vulnerability
detection,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2019, p. 533–544. [Online].
Available: https://doi.org/10.1145/3338906.3338975

[42] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and
Z. Chen, “GREYONE: Data flow sensitive fuzzing,” in 29th
USENIX Security Symposium (USENIX Security 20). Boston,
MA: USENIX Association, Aug. 2020. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/gan

[43] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and X. Zhang, “Stochfuzz:
Sound and cost-effective fuzzing of stripped binaries by incremental and
stochastic rewriting,” in 2021 IEEE Symposium on Security and Privacy
(SP), 2021, pp. 659–676.

[44] X. Wang, C. Hu, R. Ma, D. Tian, and J. He, “Cmfuzz: context-aware
adaptive mutation for fuzzers,” Empirical Software Engineering, vol. 26,
01 2021.

[45] “Testing configurations - the fuzzing book,” https://www.fuzzingbook.
org/html/ConfigurationFuzzer.html, accessed: 2020-10-13.

[46] T. Pham, M. Boehme, A. Santosa, A. Caciulescu, and A. Roychoudhury,
“Smart greybox fuzzing,” IEEE Transactions on Software Engineering,
vol. PP, pp. 1–1, 09 2019.

[47] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments,” in 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA: USENIX Association, Aug. 2012,
pp. 445–458. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

[48] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 1032–1043. [Online]. Available: https://doi.org/10.1145/2976749.
2978428

[49] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2018, p. 475–485. [Online]. Available: https:
//doi.org/10.1145/3238147.3238176

[50] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, vol. 17,
2017, pp. 1–14.

[51] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and
L. Lu, “Savior: Towards bug-driven hybrid testing,” in 2020 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2020, pp. 2–2. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP.2020.00002

[52] I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and
E. S. de Almeida, “On strategies for testing software product
lines: A systematic literature review,” Information and Software
Technology, vol. 56, no. 10, pp. 1183–1199, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584914000834

[53] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés, “A comparison of test
case prioritization criteria for software product lines,” in 2014 IEEE
Seventh International Conference on Software Testing, Verification and
Validation, 2014, pp. 41–50.

[54] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product

lines,” IEEE Transactions on Software Engineering, vol. 40, no. 07, pp.
650–670, jul 2014.

[55] Y. Kim, S. Mun, S. Yoo, and M. Kim, “Precise learn-to-rank fault
localization using dynamic and static features of target programs,”
ACM Trans. Softw. Eng. Methodol., vol. 28, no. 4, oct 2019. [Online].
Available: https://doi.org/10.1145/3345628

[56] Y. Kim, S. Hong, B. Ko, D. L. Phan, and M. Kim, “Invasive software
testing: Mutating target programs to diversify test exploration for high
test coverage,” in 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation, April 2018.

[57] S. Hong, T. Kwak, B. Lee, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“MUSEUM: Debugging real-world multilingual programs using muta-
tion analysis,” Information and Software Technology (IST), vol. 82, pp.
80–95, Feb 2017.

[58] Y. Kim and S. Hong, “Learning-based mutant reduction using
fine-grained mutation operators,” Software Testing, Verification and
Reliability, p. e1786. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/stvr.1786

[59] Y. Kim, D. Lee, J. Baek, and M. Kim, “Concolic testing for high test
coverage and reduced human effort in automotive industry,” in 41st
ACM/IEEE IEEE International Conference on Software Engineering,
2019.

