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Precise Learn-to-Rank Fault Localization Using Dynamic
and Static Features of Target Programs
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KAIST, South Korea

Finding the root cause of a bug requires a significant effort from developers. Automated fault localization
techniques seek to reduce this cost by computing the suspiciousness scores (i.e., the likelihood of program
entities being faulty). Existing techniques have been developed by utilizing input features of specific types
for the computation of suspiciousness scores, such as program spectrum or mutation analysis results. This
article presents a novel learn-to-rank fault localization technique called PRecise machINe-learning-based fault

loCalization tEchnique (PRINCE). PRINCE uses genetic programming (GP) to combine multiple sets of localiza-
tion input features that have been studied separately until now. For dynamic features, PRINCE encompasses
both Spectrum Based Fault Localization (SBFL) and Mutation Based Fault Localization (MBFL) techniques. It
also uses static features, such as dependency information and structural complexity of program entities. All
such information is used by GP to train a ranking model for fault localization. The empirical evaluation on
65 real-world faults from CoREBench, 84 artificial faults from SIR, and 310 real-world faults from Defects4J
shows that PRINCE outperforms the state-of-the-art SBFL, MBFL, and learn-to-rank techniques significantly.
PRINCE localizes a fault after reviewing 2.4% of the executed statements on average (4.2 and 3.0 times more
precise than the best of the compared SBFL and MBFL techniques, respectively). Also, PRINCE ranks 52.9%
of the target faults within the top ten suspicious statements.
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1 INTRODUCTION

Software developers spend a large amount of time debugging software failures. The first step in de-
bugging is to identify the location of the root cause of the software failure, called fault localization
(FL). FL is an expensive task [71, 84], as it usually involves human effort to understand the complex
internal logic of the Program Under Test (PUT), as well as to reason about the differences between
passing and failing test runs. Consequently, automated FL has received much attention [74]. To
reduce human effort in localizing a fault, various automated FL techniques have been proposed.
The automated FL evaluates suspiciousness of a program element (i.e., a statement or a function)
that indicates a likelihood of having a fault using a specific suspiciousness evaluation formula.

So far, most of the FL techniques utilize a limited set of program features. For example, Spectrum
Based Fault Localization (SBFL) techniques use only the number of passing and failing test cases
that cover a given element. As another example, Mutation Based Fault Localization (MBFL) tech-
niques utilize the number of killed mutants generated by mutating a given element. In addition,
the traditional automated FL techniques use a fixed form of a suspiciousness evaluation formula
and lose the opportunity to improve FL precision through learning from a given target program.

We propose a novel learn-to-rank FL technique utilizing various program features called PRecise

machINe learning-based fault loCalization tEchnique (PRINCE). PRINCE utilizes various program
features such as suspiciousness formulas of SBFL and MBFL and the dependency and complexity
of a file, a function, and a statement. Some of these are utilized by previous learn-to-rank FL tech-
niques [5] (e.g., SBFL features) but the other features are newly adopted to improve precision of
PRINCE (e.g., MBFL and file features). PRINCE adopts these new features for the following reasons.
First, recent MBFL techniques achieve high FL precision [25, 26, 49, 54]. Second, the complexity
and the dependency of a file can be good indicators of a fault [61, 62]. This is because a complex file
implements a complex module, which is likely to have a fault. Also, a source code file that many
other files depend on (i.e., a large degree of fan-in) is likely to be complicated, because it serves
many different users and has a high chance of containing faults. Based on these features, PRINCE
applies genetic programming as a learning algorithm to learn a ranking model.

We empirically evaluate PRINCE using 65 real-world faults from CoREBench [6], 84 artificial
faults from the SIR benchmark [16], and 310 real-world faults from Defects4J [33]. We compare
the precision of PRINCE with the existing SBFL, MBFL, and learn-to-rank techniques in terms
of the expense metric, mean average precision (MAP), and acc@n metrics. Furthermore, we evalu-
ate the importance of the each group of features by comparing how much the precision of PRINCE
is affected when each group of the features is excluded from the entire feature set [15]. The em-
pirical study results show that PRINCE outperforms SBFL, MBFL, and learn-to-rank techniques
in terms of precision. In addition, the experimental results show that newly adopted MBFL and
file features significantly improve the precision of FL. For CoREBench and SIR, a group of the
MBFL features improves the FL precision most significantly. The file feature group, which this
article newly proposes, is the third-most significant feature group to increase the precision for
CoREBench and Defects4J.

The contributions of this article are as follows:

(1) We have demonstrated that PRINCE can localize a fault precisely (e.g., 2.4% in the expense
metric and 0.49 in MAP on average over the target faults and 52.9% in acc@10) using
a machine-learning technique on various dynamic and static program features such as
testing result changes through mutation and source file characteristics (e.g., a size of a
file, a fan-in and a fan-out degree of a file in a file dependency graph).

(2) We have proposed to use a set of representative static and dynamic features on a target
program, which improves FL precision to a large degree. We have studied 55 features in
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Fig. 1. Overall process of PRINCE.

five groups including entirely new ones for FL such as fan-in and fan-out of a file depen-
dency graph.

(3) We have demonstrated our study results through extensive empirical study on real-world
C program faults in CoREBench and artificial faults in SIR as well as real-world Java pro-
gram faults in Defects4J.

The rest of the article is organized as follows. Section 2 overviews the PRINCE framework. Sec-
tion 3 explains the dynamic and static features on a target program utilized by PRINCE. Section 4
describes the experimental setting. Section 5 demonstrates and analyzes the experimental results.
Section 6 discusses observations through the experiment. Section 7 discusses related work. Finally,
Section 8 summarizes this article with future work.

2 PRINCE FRAMEWORK

Figure 1 shows the overall process of the PRINCE framework. The process mainly consists of the
two phases: training phase (see the bottom half of Figure 1) and deployment phase (see the top
half of Figure 1). In the training phase, PRINCE learns a ranking model from the ground truth (i.e.,
knowledge on the locations of faults). Then, in the deployment phase, PRINCE utilizes the ranking
model to generate a ranked list of target statements in which a statement in high rank is likely a
fault. The inputs and output of PRINCE are as follows:

• Inputs:
—A target program P that has a fault but whose location is unknown
—A test suite T for P where T has at least one failing test case
—A set of programs Pknowni

, each of which has a fault whose location is known
—A set of test suites Ti , each of which has at least one failing test case for Pknowni
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• Output:
PRINCE produces a ranked list of the target statements of P . The higher rank (i.e., the first
rank) a statement has, the more likely the statement is a faulty one.

2.1 Training Phase

In the training phase, PRINCE takes as inputs a set of programs Pknowni
each of which has a fault

whose location is known and a set of test suitesTi , each of which has at least one failing test case
for Pknowni

.
First, PRINCE extracts both dynamic features, which depend on the dynamic behaviors of the

target programs and static features. For example, PRINCE extracts dynamic features such as SBFL
features (e.g., the number of passing and failing test cases execute a given statement s) and MBFL
features (e.g., the number of failing tests that become passing tests on mutants generated by mutat-
ing s). The static features include dependency and complexity information of files, functions, and
statements. PRINCE extracts such static features by using lightweight static analyses. The details
of the features PRINCE uses and the method to extract such features are explained in Section 3.
Note that PRINCE is the first learn-to-rank FL framework that utilizes a new diverse set of features
including MBFL features and dependency of file features.

Then, PRINCE learns a ranking model from the extracted features. To learn a ranking model
using a learning algorithm such as genetic programming or rankSVM, PRINCE needs a label of a
statement s, which shows if s is faulty or not and its feature values. We assume that all the faults
in Pknowni

are already known and fixed so that we can assign a label to each statement precisely
(i.e., statements that are modified to fix a fault are faulty).

To generate a ranking model, PRINCE uses Genetic Programming (GP). GP evolves a ranking
function that takes features and produces scores. We use a tree-based GP and a single-point
crossover with a rate of 1.0. We use 0.1 as a mutation rate and 40 as the size of population. The
maximum tree depth is nine and the number of generations of GP is set as 100. The fitness function
is the average ranking of the faulty statements calculated from all faulty programs in the training
set. We use various dynamic and static code features for FL (see Section 3), and a constant 1.0 as
variables for the evolving ranking function.1

2.2 Deployment Phase

In the deployment phase, PRINCE takes as inputs a program P ,which has a fault but whose location
is unknown and a test suite T , which has at least one failing test case for P .

First, as PRINCE did in the training phase, PRINCE extracts both dynamic and static features.
The feature extraction process in the deployment phase is same as the one in the training phase.
Then, PRINCE applies the ranking model learned in the training phase to the extracted features
and generates a ranked list of statements as an output. The statement with the higher rank is more
likely to be faulty.

3 DYNAMIC AND STATIC CODE FEATURES FOR FAULT LOCALIZATION

This section describes the features used by PRINCE. PRINCE uses features classified into five fea-
ture groups: MBFL, SBFL, File, Function, and Statement. MBFL and SBFL feature groups represent
dynamic characteristics of a faulty program using test execution results on the faulty program
and mutants of the faulty program. File, function, and statement feature groups represent static
characteristics of a faulty program. Table 1 shows the full list of the features PRINCE uses. For

1We used the same parameter setting used in the experiment in Sohn and Yoo [68], since the experiment with these
parameter setting produces precise FL results.
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Table 1. List of All Features PRINCE Uses

Type Feature group List of features

•Metllaxis: maxm∈mutkilled (s ) (kill(m)), maxm∈mutkilled (s ) ( 1√
kill(m )

),

maxm∈mutkilled (s ) ( 1√
kill(m )+notkill(m )

),

maxm∈mutkilled (s ) ( kill(m )√
(kill(m )) (kill(m )+notkill(m ))

)

where

- mutkilled (s ) is a set of killed mutants generated at statement s

- kill(m) represents the number of test cases that kill m

- notkill(m) represents the number of test cases that do not kill m

MBFL •MUSE: 1
( |mut (s ) |+1) , Σm∈mut (s ) |pP (s ) ∩ fm |, Σm∈mut (s ) |fP (s ) ∩ pm |

1
( |mut (s ) |+1) (f 2p+1) ×

∑
m∈mut (s ) ( |fP (s ) ∩ pm |),

1
( |mut (s ) |+1) (p2f +1) ×

∑
m∈mut (s ) ( |pP (s ) ∩ fm |),

( 1
( |mut (s ) |+1) (f 2p+1) ×

∑
m∈mut (s ) ( |fP (s ) ∩ pm |)−

Dynamic 1
( |mut (s ) |+1) (p2f +1) ×

∑
m∈mut (s ) ( |pP (s ) ∩ fm |))

where

- mut (s ) is # of mutants generated on s

- fP (s ) (or pP (s )) is the set of tests that cover s and fail (or pass) on a target program P

- fm (or pm ) is the set of tests that fail (or pass) on a mutant m.

- f 2p (or p2f ) is the number of test result changes

from fail to pass(or pass to fail) for all mutants of P

• Basic terms: ep (s ), ef (s ), np (s ), nf (s )

- ep (s ) (or ef (s )) is the the number of passing (or failing) tests that execute s

- np (s ) (or nf (s )) is the the number of passing (or failing) tests that do not execute s

• Binary: 0 if 0 < nf (s ), 1 if 0 = nf (s )

SBFL • GP13: ef (s ), 1
2ep (s )+ef (s ) ,

ef (s )

2ep (s )+ef (s ) , ef (s ) +
ef (s )

2ep (s )+ef (s )

• Jaccard: ef (s ), 1
ef (s )+nf (s )+ep (s ) ,

ef (s )

ef (s )+nf (s )+ep (s )

• Naish1: np (s ), −1 if 0 < nf (s ), np (s ) if 0 = nf (s )

• Naish2: ef (s ), ep (s ), 1
ep (s )+np (s )+1 ,

ep (s )

ep (s )+np (s )+1 , ef (s ) − ep (s )

ep (s )+np (s )+1

• Ochiai: ef (s ), 1√
ef (s )+nf (s )

, 1√
ef (s )+ep (s )

,
ef (s )√

(ef (s )+nf (s )) (ef (s )+ep (s ))

• Russell and Rao: ef (s ), 1
ep (s )+np (s )+ef (s )+nf (s ) ,

ef (s )

ep (s )+np (s )+ef (s )+nf (s )

•Wong1: ef (s )

• Fan-in and Fan-out of a file dependency graph

File • # of defined file scope functions, # of defined file scope variables

• # of defined global functions, # of defined global variables

• # of defined functions, # of defined variables

• Compile time(s), compiler memory usage(KB), # of compiler warnings, LOC

Static • Fan-in and Fan-out of a static function call graph

Function • LOC, Cyclomatic complexity, # of parameters

• # of global variables a function reads, # of global variables a function writes

• # of local variables a function reads, # of local variables a function writes

Statement • Length of statements (bytes)

• # of operators that a statement uses

• # of variables that a statement uses
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Fig. 2. An example of extracting the MUSE features.

data-driven learning techniques such as GP, selecting features is important for effectiveness and
efficiency of the learning techniques [22, 43].

3.1 Dynamic Features

As dynamic features for FL, we choose the suspiciousness formulas and their sub-formulas of the
widely used FL techniques. We use not only the whole formula but also their sub-formulas, because
PRINCE can learn efficient ranking models by composing sub-formulas in a flexible way.

3.1.1 MBFL Features. MBFL features represent the relation between the mutant execution re-
sults of the faulty program and a faulty statement. As MBFL features, we use sub-formulas of the
suspiciousness formulas of the two mutation-based FL techniques: Metallaxis [54] and MUSE [49].
We decompose a formula into sub-formulas as follows recursively until the sub-formulas cannot
be decomposed further:

(1) If a formula f is composed using × such as f1 × · · · × fn where each of fi is not composed
using ×, then we use f and each of fi which is parameterized by s as features.

(2) If a formula f is composed using + or − such as f1 + · · · − fn , where each of fi is not
composed using + nor −, then we use f and each of fi which is parameterized by s as
features.

For example, MUSE’s suspiciousness formula, 1
( |mut(s ) |+1)(f 2p+1) ×

∑
m∈mut(s ) ( | fP (s ) ∩ pm |) −

1
( |mut(s ) |+1)(p2f +1) ×

∑
m∈mut(s ) ( |pP (s ) ∩ fm |) is composed of two sub-formulas 1

( |mut(s ) |+1)(f 2p+1) ×∑
m∈mut(s ) ( | fP (s ) ∩ pm |) and 1

( |mut(s ) |+1)(p2f +1) ×
∑

m∈mut(s ) ( |pP (s ) ∩ fm |)(see Table 1 for details of

the terms used in the formulas). Then, MUSE’s suspiciousness formula and its two sub-formulas
are used as features. Next, we apply the above rule to each of the sub-formulas. The first
sub-formula, 1

( |mut(s ) |+1)(f 2p+1) ×
∑

m∈mut(s ) ( | fP (s ) ∩ pm |) is composed of the three sub-formulas
1

( |mut(s ) |+1) , 1
(f 2p+1) , and

∑
m∈mut(s ) ( | fP (s ) ∩ pm |). These sub-formulas are also included in the MBFL

feature group except 1
(f 2p+1) , which is not parameterized by s (i.e., all statements in a program have

the same value).
Figure 2 shows an example of how to extract the MUSE features. The target function getmax

should return a bigger value of the two integer parameters x and y. Suppose that we have three
test cases tc1, tc2, and tc3 (where tc1 and tc2 fail and tc3 passes) and generate two mutantsm1 and
m2 by mutating s4 (max = y) to max = x and max = -y, respectively.m1 changes the test results of
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Fig. 3. An example of extracting the SBFL features.

tc1 and tc2 from failing to passing and the test result of tc3 from passing to failing.m2 changes the
test result of tc3 from passing to failing. So both of f 2p and p2f are two. For s4, we can compute
the feature values of MUSE sub-formulas as follows:

• |mut (s4) | is two (m1 andm2),
• ∑m∈mut (s4 ) ( | fP (s4) ∩ pm |) is two, because
| fP (s4) ∩ pm1 |) is two (the two failing tests tc1 and tc2 becomes passing onm1) and
| fP (s4) ∩ pm2 |) is zero (no failing test becomes passing onm2)

• ∑m∈mut (s4 ) ( |pP (s4) ∩ fm |) is two, because
|pP (s4) ∩ fm1 |) is one (the passing test tc3 becomes failing onm1) and
|pP (s4) ∩ fm2 |) is one (the passing test tc3 becomes failing onm2).

Using this computation, PRINCE can extract MBFL feature values of MUSE.
Metallaxis defines suspiciousness of a statement s as the maximum suspiciousness value of the

killed mutantsm ∈mutkilled (s ) generated by mutating a statement s . Suspiciousness value of the

killed mutant, susp (m), is defined as kill (m)√
(kill (m))(kill (m)+notkill (m))

where kill (m) and notkill (m) are

the number of test cases that do and do not kill m, respectively, and suspiciousness value of the
statement s is defined as maxm∈mutkil led (s ) (susp (m)). To compute feature values of Metallaxis on a
target statement s , first we decompose the suspiciousness formula of Metallaxis on the killed mu-
tantsm into sub-formulas fi (m)s. Then, for each decomposed sub-formula fi (m), PRINCE defines
the feature value formulas on s as maxm∈mutkil led (s ) ( fi (m)).

3.1.2 SBFL Features. SBFL features capture a relation between the test execution results and
a faulty statement. SBFL suspiciousness formulas use the four atomic terms ep (s ), ef (s ), np (s ),
and nf (s ), which are the number of passing tests that execute s , the number of failing tests that
execute s , the number of passing tests that do not execute s , and the number of failing tests that
do not execute s , respectively. Figure 3 shows an example of how to extract the SBFL features. The
target function getmax2 should return a bigger value of the parameters x and y. Suppose that we
have five test cases tc1 to tc5 (where tc1 and tc2 fail and tc3 to tc5 pass). PRINCE computes ep (s ),
ef (s ), np (s ), and nf (s ) for each statement s using the coverage information of each test case. SBFL
techniques compose the suspicious metric using these four atomic terms (e.g., Naish2’s suspicious

metric is ef (s ) − ep (s )

ep (s )+np (s )+1 ).

For SBFL features, PRINCE uses the suspiciousness formulas of the eight SBFL techniques. Of
these formulas, six formulas (Binary, GP13, Naish1, Naish2, Russell and Rao, and Wong1) are
proven to be maximal in theory [77, 83]. Note that these SBFL techniques form the two biggest
maximal groups of SBFL formulas, ER1 and ER5 [83]. These SBFL features include or dominate
the SBFL formulas discussed in Perez et al. [58] and Pearson et al. [57]. Also, Perez et al. [58]
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empirically showed that Naish2 is optimal to localize a single fault. In addition, we add Jaccard [27]
and Ochiai [51] that are widely studied in literature.2 Similarly to the MBFL features (see Sec-
tion 3.1.1), we use the sub-formulas of the eight SBFL suspiciousness formulas as SBFL features.

3.2 Static Features

From a program P , PRINCE extracts various static features on files, functions, and statements.
PRINCE also uses various source code metrics to measure code dependency and complexity (e.g.,
fan-in and fan-out degrees of code dependency [10, 14], source code size [4], Halstead complexity
metrics [24], McCabe complexity metrics [48], and Object-Oriented (OO) complexity metrics [10,
17]).3 These two characteristics can be good indicators for faulty code segments, because a code
segment that is highly complex or associated with many other code segments can be a fault with
high probability [61]. The static features used by PRINCE are mostly programming language
agnostic.

3.2.1 File Features. File features represent the dependency and the complexity of a source code
file, which can be interpreted as indicators of a faulty file.

Dependency: The dependency between files is measured by fan-in and fan-out of a target file in
a file dependency graph. Using fan-in and fan-out of a source code file is inspired by Chidamber
and Kremerer’s work [10] and D’Ambros et al.’s work [14].

A file dependency graph G = (N ,E) consists of a set of nodes N representing files and a set of
edges E. An edge from a file A to a file B represents that a function defined in A accesses a global
variable defined in B or invokes a function defined in B.4 Fan-in of a fileA is defined as a number of
edges from other files to A. Fan-out of a file A is defined as a number of edges from A to other files.

Complexity: PRINC measures the complexity of a file using the number of defined functions
and variables in file scope (i.e., static type quantifier in C and private or protected access
modifier in Java) and global scope. These metrics are inspired by D’Ambros et al.’s work [14],
which uses the number of private/public attributes and methods as complexity measure of a
class. Also, PRINCE computes a weight for each defined variable according to its type as not every
variable contributes to the complexity of a file equally. We assign more weight to array, struct and
object variables than primitive type variables, because a struct or object variable is a collection
of multiple primitive type variables (and objects); the complexity of handling one struct or object
variable increases proportionally to the number of the primitive variables included in the struct
or object variable. Similarly, the complexity of handling an array variable is proportional to the
size of the array. A weight of a variable is computed as follows:

• primitive type variables (in C and Java): PRINCE assigns a weight value of one.
• pointer variables pointing to a primitive type variable (in C): PRINCE assigns a weight value

of one.
• array type variables: PRINCE assigns a weight as multiplication of the length of the array

and the weight of its element variable.5

2We do not include DStar [57, 73], because it can be theoretically shown that Naish1 dominates DStar, i.e., Naish1 can always
rank an arbitrary faulty statement at equal or higher ranks when compared to DStar under the single fault scenarios.
3The static code features used by PRINCE can cover most metric-based bad code smells [47, 66] (e.g., god class, long
parameter list, long method).
4We do not consider variable references and function calls through a pointer, because existing pointer analysis may generate
spurious point-to relations, which can decrease the precision of a file dependency graph.
5If the size of an array is not known in static analysis (e.g., an array passed as a function parameter via a pointer), then
we conservatively consider the size of the array as one, because precisely identifying the array size using static analysis is
technically difficult.
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Fig. 4. An example of extracting static features.

• struct type variables and pointers (in C): PRINCE assigns the sum of weights of all fields
of the struct type variable recursively. A weight of a struct type pointer variable is equal
to the weight of the corresponding pointee variable. When PRINCE calculates a weight of
the same variable type again through recursive weight calculation, it assigns a weight value
one to prevent infinite recursion (i.e., base cases).

• object variables (in Java): PRINCE assigns the sum of weights of all fields of the object
variable recursively. When PRINCE calculates a weight of the same variable type again
through recursive weight calculation, it assigns a weight value of one to prevent infinite
recursion (i.e., base cases). If the definition of class of the object variable is not known (e.g.,
Object class in Java), then PRINCE assigns a weight value of 1.

Figure 4 shows an example of measuring the dependency and complexity features of files. The
example has three source code files: a, b, and c . The file a has a main function, which invokes f
defined in the file b. The file b has f, which invokes h in the file c, which invokes a function g in
the file b. Fan-in of the file b is two, because main in the file a calls f, and h in the file c calls g,
but they do not access variables defined in the file b. The weight of arr defined in the file b is 10
because of arr, which has 10 integer elements.

Also, PRINCE measures compile time, compiler memory usage, the number of compiler warn-
ings generated, and LOC for a target file as complexity metrics.

3.2.2 Function Features. Function features represent the dependency and the complexity of a
function similarly to the file features (Section 3.2.1).

Dependency: Dependency of a function f is measured by fan-in and fan-out of f in the static call
graph. A static call graph G = (N ,E) consists of a set of nodes N representing functions and a set
of edges E. An edge from a function f to another function д represents that f invokes д. Fan-in of
a function f is defined as a number of edges from other functions to f . Fan-out of a function f is
defined as a number of edges from f to other functions. Using fan-in and fan-out of a function is
inspired by Chidamber and Kremerer’s work [10] and D’Ambros et al.’s work [14].

Complexity: Complexity of f is measured by LOC [4], cyclomatic complexity [48], the number of
parameters [14], the number of global and local variables accessed by f [14] with variable weights
as defined in Section 3.2.1.

3.2.3 Statement Features. PRINCE uses three statement features to represent the complexity of
statement s (inspired by the Halstead complexity measures [23], which use the number of operators
and operands in program code):6

6We did not use a dependency feature for statement, because the dependency feature may not be effective to precisely
localize faults. This is because, unlike the file and function dependency, which have a wide range of fan-in and fan-out, the
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(1) the number of operators in s: We use Clang to count the number of operators includ-
ing the arithmetic operators, logical operators, relational operators, bit-wise operators,
pointer operators, array element access operator (i.e., []), assignment operator, compound
assignment operators, sizeof operator, and the function calls.

For example, in Figure 4, the number of operators of the statement in Line 5 of file b
is six: two array element access operators (one at the left-hand side and the other at the
right-hand side of the assignment operator), one assignment operator, one minus operator
in the array subscription, one plus operator, and one function call.

(2) the number of variables accessed in s with their weights (as defined in Section 3.2.1). If
one variable is accessed multiple times in s , then we count the weight of the variable only
once.

(3) the length of s in text bytes: When we measure a length of a statement s , we remove all
whitespace characters (e.g., spaces, tabs, and newlines) in s .

4 EMPIRICAL STUDY SETUP

This section describes the research questions to evaluate the precision and efficiency of PRINCE.
Also, we explain target programs and the experiment setting in detail. Finally, we describe threats-
to-validity of our experiment.

4.1 Research Questions

RQ1. Precision of PRINCE: How precise is PRINCE in localizing a target fault in terms of expense

metric, mean average precision, and acc@n compared to SBFL, MBFL, and machine-learning-based

FL techniques?

RQ1 is about evaluating the precision of PRINCE, which uses the proposed features (see Section 3)
in terms of the expense, mean average precision (MAP), and acc@n metrics. Expense metric [63]
measures % of the executed code elements (i.e., statements or functions) to be examined to localize
a faulty element, should a human developer inspect a target program following the order of the
elements in the ranking generated by a FL technique. MAP [46] is a metric that evaluates the
effectiveness of a ranking technique. MAP is widely used in information retrieval research field.
acc@n metric counts the number of faults localized within top n elements of the ranking. We use
1, 5, and 10 for the value of n.

We compare PRINCE with eight spectrum-based fault localization techniques (Naish1 [50],
Naish2 [50], GP13 [82], Wong1 [75], Russell and Rao [64], Binary [50], Ochiai [51], and Jac-
card [27]), two mutation-based FL techniques (MUSE [49] and Metallaxis [54]), and a machine-
learning-based FL technique Savant [5] which is a state-of-the-art learn-to-rank FL technique. We
compare PRINCE with Savant on Defects4J in terms of the expense metric, MAP, acc@1, acc@3,
and acc@5 in a function level as reported in the Savant paper [5]. We used the function-level ag-
gregation technique (as used in Sohn and Yoo [68]), which assigns a function m with the highest
suspiciousness score ofm’s statements.

RQ2. Efficiency of PRINCE: How much runtime cost does PRINCE incur, compared to SBFL and

MBFL techniques?7

statement dependency has only limited range of fan-in and fan-out (i.e., all statements (except entry or exit statements of
basic blocks) have the same fan-in and fan-out value of 1).
7We do not compare the efficiency of PRINCE with Savant, because the reported execution time in the Savant paper [5]
was measured on the machine setting different from our machine setting.
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RQ2 is about evaluating the efficiency of PRINCE, compared to SBFL and MBFL. We measure
feature value computation time, training time of genetic programming, and suspiciousness score
computation time to compare the efficiency of these techniques.

RQ3. Importance of Program Feature Groups for FL precision: How much does each of the

program feature groups contribute to precision of FL?

RQ3 is about evaluating the contribution of each of the five feature groups (see Section 3) to the
precision of FL in terms of the expense metric. We compare PRINCE using all features with PRINCE
using all features except the feature group α where α ∈ {MBFL, SBFL, File, Function, Statement}
to evaluate the contribution of the feature group α to the precision of FL. This method is called
one-factor-at-a-time (OFAT) method [15], which is widely used to analyze the impact of a factor.

RQ4. Importance of Program Feature Groups for FL precision with Different Ma-

chine Learning Techniques—Genetic Programming, Linear RankSVM, and Non-linear

RankSVM: How much does each of the program feature groups contribute to precision of FL with

different machine-learning techniques?

RQ4 is about investigating importance of the program feature groups with different machine-
learning techniques. We use three different machine-learning techniques (genetic programming,
linear rankSVM, and non-linear rankSVM) to evaluate the importance of the program feature
groups. Linear RankSVM is a variation of Support Vector Machine [12] algorithm that performs
pairwise learning to rank [42]. Through training, linear rankSVM learns the linear weights to in-
put features and the weighted sum of the input features produces suspiciousness scores. Non-linear

RankSVM is another variation of SVM algorithm. As the linear rankSVM learns the linear weights
to input features, non-linear rankSVM learns non-linear weights to input features.

To answer the research questions, we performed a series of experiments by applying spectrum-
based FL techniques, mutation-based FL techniques, and PRINCE to the 65 real-world C program
faults in CoREBench [6], 84 injected C program faults in the SIR benchmark [16], and 310 real-
world Java program faults in Defects4J [33] that were targeted by Pearson et al. [57]. Also, Savant,
which is a learn-to-rank FL technique, is applied to the 282 faults in Defects4J that belong to both
357 bugs used in the Savant paper [5] and the 310 bugs targeted by Pearson et al. [57].8 We compare
PRINCE with Savant on the 282 faults.

4.2 Subject Programs

We used the following three benchmark suites as subject programs—CoREBench, SIR, and De-
fects4J.

• CoREBench [6] is a collection of 70 real-world bugs in the four non-trivial real-world pro-
grams: coreutils, find, grep, and make. CoREBench provides a docker [1] container that
contains 70 buggy versions of the four programs and a failing test case for each buggy ver-
sion (CoREBench itself does not contain any passing test cases, which a user has to download
from the target program repository separately). We used the failing test cases provided in
CoREBench and all passing test cases provided in the regression test suites in the public
repository of the four programs.

• The SIR benchmark [16] is a collection of artificially injected faults of real-world open-
source programs and smaller Siemens programs. We excluded Siemens programs, because
they are too small (less than 500 LoC) to represent real-world programs. We also excluded
space, because the faults of space are real-world faults, which have different characteristic

8Since the experiment in the Savant paper [5] did not target Mockito, we also excluded Mockito in the experiment.
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Table 2. Subject Programs, # of Buggy Versions Used, a Number of Their Source Code Files,

a Number of Their Functions, Their Average Sizes in Lines of Code (kLOC), the Average Number

of Failing and Passing Test Cases, and Brief Description

Bench- Subject # of ver. # of source Size

mark program used code files # of funcs (kLOC) | fP | |pP | Description

Coreutils 19 27.3 49.5 83.1 1.1 485.1 Command line utilities

Core- find 14 31.0 213.2 18.0 1.1 51.3 File searcher

bench grep 14 26.0 149.3 9.4 1.0 87.6 Pattern matcher

make 18 27.0 174.6 35.3 1.2 471.1 Source builder

bash 6 35.0 1214.0 32.7 167.3 832.7 Shell interpreter

flex 19 1.0 147.0 7.4 137.1 429.9 Parser generator

grep 18 1.0 132.0 6.0 97.6 711.4 Text matcher

SIR gzip 16 1.0 82.0 3.0 34.3 179.7 File archiver

make 19 1.0 555.0 28.7 87.8 955.2 Build script interpreter

sed 3 1.0 73.0 4.0 58.8 301.2 Stream editor

vim 3 35.0 1749.0 66.2 67.1 907.9 Text editor

Chart 18 583.7 7789.8 96.3 4.3 2200.6 Chart library

Closure 111 394.9 7587.2 90.2 3.2 7923.2 Closure compiler

Defects4J Lang 55 89.3 2151.6 22.1 2.2 2242.5 Apache commons-lang

Math 83 512.4 4900.7 85.5 2.4 3599.3 Apache commons-math

Mockito 28 270.4 1301.8 37.2 2.8 2431.9 Mocking library

Time 15 156.4 4087.5 28.4 3.3 4126.8 Date and time library

from the artificial faults in the other SIR programs. As a result, we target 84 faults in the
SIR benchmark. We used all tests in the universe test suite provided in the SIR benchmark.

• Defects4J is a collection of 395 real-world bugs in six Java programs with failing and passing
unit tests. We used the 310 faults selected by Pearson et al. [57] to compare MBFL’s FL
precision with the results reported by Pearson et al.

Table 2 describes the target programs including the numbers of the buggy versions used, the
number of their source code files, the number of their functions, their sizes in LOC, the average
numbers of failing and passing test cases (i.e., | fP | and |pP |, respectively) for each buggy ver-
sion, and brief description. We have targeted 65 of 70 buggy versions in CoREBench (we excluded
the following five buggy versions, because they cannot execute a failing test case or passing test
cases due to conflict problems between the CoREBench docker container and the environment
of the target buggy version9: core.51a8f707, find.f7197f3a, core.b8108fd2, core.a860ca32,
grep.074842d3), and all 84 buggy versions in the SIR benchmark and 310 of 395 buggy versions
in Defects4J.

4.3 Configuration

4.3.1 Mutation. PRINCE generates mutants of a target program, each of which is obtained by
mutating exactly one statement covered by at least one failing test case. To generate mutants
for C programs, we have used MUSIC [60], which implements the mutation operators defined in
Agrawal el al. [3].10 For Defects4J, we used Major 1.3.4 [32] to generate mutants for Java programs,

9Other papers report the same problems on the aforementioned target versions of CoREBench [52, 70].
10We tried but failed to use popular mutations tools for C such as Proteum [45] and Milu [30] for the experiments. Proteum
(last release on 2001) does not recognize C99 standard and often fails to parse target C programs in CoREBench. Milu also
frequently generated stillborn mutants from programs in CoREBench.
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because Major is integrated with Defects4J benchmark framework. For high FL accuracy of MBFL,
we generated more mutants by enabling all possible mutation operators of Conditional Operator
Replacement (COR) and Relational Operator Replacement (ROR) in Major (for example, by default,
ROR operator of Major does not mutate “>” to “<” nor “<” to “>”). Also, Major 1.3.4 supports
Expression Value Replacement (EVR) mutation operator, which is not supported by Major 1.2.1
used by Pearson et al. [57].

To reduce a huge amount of mutant execution time, PRINCE randomly selects 20% of the mu-
tants generated per statement. For example, if 85 mutants are generated at one statement, then
PRINCE randomly selects 17 (= �85 × 20%�) mutants.

4.3.2 Training and Validation. To avoid over-fitting problem, we use standard 10-fold cross val-
idation. To evaluate PRINCE on the 65 target faults in CoREBench, we perform 10-fold cross vali-
dation using the 65 target faults as follows:

Step 1. We randomly partition the target 65 faults into 10 equal sized groups д1, . . . , д10.11

Step 2. We select the kth (0 < k ≤ 10) fault group of the 10 fault groups as a test set and use
the other nine groups as a training set.

Step 3. PRINCE learns a ranking model using the faults in the training set.
Step 4. PRINCE applies the ranking model learned from the training set in Step 3 to the faults

in the test set selected in Step 2.
Step 5. We repeat Step 2 to Step 4 for each k from 1 to 10.

Similarly, we apply 10-fold cross validation for SIR and Defects4J.
For the GP experiments, we use FLUCCS [68]. Regarding the rankSVM experiments, we use

version 2.11 of LIBLINEAR [19], which is a linear rankSVM implementation based on version
3.22 of libSVM [9]. We choose LIBLINEAR, because it has been used to learn ranking models for
FL in the literature [68]. We use default parameter values for rankSVM, because our preliminary
experiments showed that using the default parameter values produce the most-precise FL results
on average. For the non-linear rankSVM experiments, we use 3.22 of libSVM [9] for non-linear
rankSVM. For non-linear rankSVM, we use a radial basis function (i.e., e−γ ( |c−v |2 )), where c is a
constant weight to be learned, v is a feature variable, and γ is a parameter constant set as 1

#features ,
which is default in libSVM. For other parameters, we use the default values of libSVM.

4.3.3 Fault Localization Setup. Because of PRINCE’s random mutation sampling, random shuf-
fling for 10-fold cross validation, and random effects in GP, we repeated the experiment 30 times
to minimize the random effect.

We implemented PRINCE in 4,300 lines of Python and Bash shell scripts using FLUCCS [68],
LIBLINEAR [19], and LibSVM [9] as GP, linear rankSVM, and non-linear rankSVM engines, re-
spectively. To measure the statement coverage achieved by a given test case, we used gcov for C
programs and Cobertura for Java programs. All experiments were performed on 100 machines
equipped with Intel i5 3.6GHz CPU, NVIDIA Geforce 1060 GPU, and 16GB of memory running
Debian Linux 8 64 bits. PRINCE uses GPU to boost the speed of the GP computation implemented
in FLUCCS. We ran one CoREBench docker instance on each machine.

4.4 Threats to Validity

The primary threat to external validity for our study involves the representativeness of our subject
programs, since we have examined C programs in CoREBench and SIR, and Java programs in

11The size of each group can be slightly different when the number of target faults is not divisible by 10 (e.g., the size of д1

to д5 of CoREBench is 7 while the size of д6 to д10 is 6).
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Table 3. Statement and Branch Coverage of Given Test Cases, the Number of Target

Statements, and the Number of the Generated Mutants

Target
Benchmark programs Stmt Cov Br. Cov #Target Stmts #Mutants

CoREBench

coreutils 83.4% 76.5% 557.5 12813.7
find 71.5% 75.3% 914.0 11406.1
grep 78.9% 72.4% 1180.7 8690.0
make 63.9% 65.9% 1229.0 13820.4
bash 49.0% 46.2% 3108.2 16742.3
flex 50.3% 45.7% 2107.2 12018.4
grep 60.4% 50.3% 1508.0 9563.3

SIR gzip 64.2% 55.8% 398.6 5007.6
make 67.1% 64.5% 2618.9 10795.0
sed 56.8% 47.3% 1713.8 9758.9
vim 40.8% 35.8% 4512.7 14356.4
Chart 65.1% 56.3% 7657.1 9781.7
Closure 68.5% 55.6% 32974.0 33796.7

Defects4J Lang 85.0% 70.3% 1400.8 3078.0
Math 71.0% 59.9% 4870.9 12070.7
Mockito 70.4% 56.5% 4680.8 3273.5
Time 78.2% 66.9% 10642.1 16081.9

Defects4J. While this may be the case, CoREBench, SIR, and Defects4J are constructed using the
real-world C and Java programs. Also, CoREBench and Defects4J provide various real-world faults
(i.e., faults that were identified during testing and operational use of the programs, not synthetic
ones). Thus, we believe that this threat to external validity is limited. A primary threat to internal
validity is the existence of possible faults in the tools that implement PRINCE. We controlled this
threat through extensive testing of our tool. A threat to construct validity is the measure of FL
precision metric we use. We controlled this threat by reporting not only the widely used expense
metric to show the percentages of a program to be examined but also MAP and acc@n metric,
which shows the absolute rank of a faulty statement as recommended by Parnin and Orso [55].

5 RESULT OF THE EMPIRICAL STUDY

We used the Wilcoxn test [72] to test whether the difference of experimental results is statistically
significant. The detailed experiment data are available at http://swtv.kaist.ac.kr/data/PRINCE.

5.1 Experiment Data

Table 3 shows the statement and branch coverage of the target programs with the given test cases.
The table also shows the number of target statements and the generated mutants. For example, as
shown in the third row of the table, find covers 75.3% of its branches with the given test cases and
914.0 statements of find are executed by at least one failing test case (i.e., #Target Stmts) on average
per faulty version. MUSIC generates 11406.1 mutants for find on average per faulty version.

5.2 RQ1: Precision of PRINCE

5.2.1 Expense Metric. Regarding the expense metric, PRINCE localizes faults very precisely and
its expense in FL is only 2.4% for CoREBench, SIR, and Defects4J on average per faulty version.
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Table 4. Expense Metric of the Eight Spectrum-based FL Techniques, the Two Mutation-based

FL Techniques, and PRINCE in a Statement Level

Bench- Target Russell

Metric mark programs Naish1 Naish2 GP13 Wong1 and Rao Binary Ochiai Jaccard MUSE Metallaxis PRINCE

coreutils 33.4 33.4 33.4 87.4 33.4 87.4 33.4 33.4 10.3 12.2 3.3

CoRE- find 33.9 33.9 33.9 92.1 33.9 92.1 33.9 33.9 7.2 8.8 2.8

Bench grep 26.5 26.5 26.5 100.0 26.5 100.0 26.5 26.5 3.7 3.5 3.1

make 41.4 41.4 41.4 77.9 41.4 77.9 41.4 41.4 9.2 9.2 3.4

Average 34.2 34.2 34.2 88.5 34.2 88.5 34.2 34.2 7.9 8.7 3.2

bash 22.7 21.5 21.5 33.9 21.9 35.6 24.9 21.9 8.7 11.7 2.5

flex 20.3 19.4 20.0 40.5 22.1 44.4 23.3 23.7 13.7 21.3 3.2

grep 2.8 2.6 2.7 3.6 3.0 5.0 2.7 2.8 1.3 1.6 0.8

SIR gzip 6.9 6.7 6.9 9.5 7.9 12.4 6.7 6.8 5.3 5.4 0.8

Expense make 17.7 15.5 18.6 33.9 18.5 24.4 15.7 16.5 3.9 5.3 1.3

metric (%) sed 12.6 11.4 11.4 16.9 13.6 18.8 11.6 11.6 1.2 1.8 0.4

vim 13.4 11.6 11.9 21.1 13.8 17.8 13.7 12.6 2.5 3.0 1.3

Average 13.1 12.1 13.0 23.2 13.9 22.8 13.3 13.4 6.0 8.4 1.6

Chart 4.7 4.9 5.2 23.0 5.1 23.4 2.5 8.0 8.7 6.4 2.4

Closure 6.3 6.5 5.3 26.6 5.3 13.9 4.8 6.9 12.7 7.8 2.4

Lang 4.9 4.4 5.5 26.0 6.6 26.6 4.8 8.9 12.4 6.7 3.1

Defects4J Math 3.6 3.4 5.1 14.4 6.1 26.0 2.8 7.7 12.8 4.6 2.5

Mockito 5.2 3.1 6.8 23.8 7.7 23.2 4.4 9.3 9.5 6.7 2.2

Time 5.4 5.8 4.5 26.0 8.6 12.1 5.2 7.9 12.5 3.6 1.9

Average 5.1 4.8 5.4 22.7 6.1 20.7 4.1 7.8 12.1 6.4 2.5

Average 10.7 10.3 10.9 32.1 11.5 30.7 10.0 12.6 10.4 7.1 2.4

Table 4 presents the expense metric (i.e., the proportion of the executed statements to examine to
localize a target fault) for the applied FL techniques for CoREBench, SIR, and Defects4J. The most
precise average results per faulty version in the SBFL techniques and the MBFL techniques are
marked in a bold font. The average precision of PRINCE per faulty version is 3.0 (=7.1%/2.4%) times
higher than the best fixed-formula fault localization technique (i.e., Metallaxis) (see the last row
showing the average expenses of Table 4). The difference between PRINCE and Metallaxis in terms
of the expense metric is statistically significant and the effect size is 3.41. Also the average precision
of PRINCE per faulty version is 4.2 (=10.0%/2.4%) times higher than the best SBFL technique (i.e.,
Ochiai).12 The difference between PRINCE and Ochiai in terms of the expense metric is statistically
significant and the effect size is 3.92.

For Defects4J, MBFL is less precise than Ochiai unlike CoREBench and SIR. The difference be-
tween the best MBFL technique (i.e., Metallaxis) and Ochiai in terms of the expense metric is
statistically significant and the effect size is 0.66. This is because FL accuracy of MBFL depends on

12For CoREBench, six SBFL techniques (Naish1, Naish2, GP13, Russell and Rao, Ochiai, and Jaccard) showed the same
expense because 58 of 65 target CoREBench faulty versions have only one failing test case and the remaining seven target
versions have two failing test cases that have the same statement coverage. Thus, ef (s ) and nf (s ) are 1 and 0 for all target
statements s in the 58 versions, respectively (similarly, ef (s ) and nf (s ) are 2 and 0 for all target statement s in the remaining
7 versions, respectively). Then, the suspiciousness formulas of the six SBFL techniques become monotonically decreasing
functions of ep (s ). Thus, although the suspiciousness scores for s may be different among the six SBFL techniques, the
obtained suspiciousness rankings of s (including a faulty statement) are all the same.
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Table 5. Mean Average Precision (MAP) of the Eight Spectrum-based FL Techniques,

the Two Mutation-based FL Techniques, and PRINCE in a Statement Level

Bench- Target Russell

Metric mark programs Naish1 Naish2 GP13 Wong1 and Rao Binary Ochiai Jaccard MUSE Metallaxis PRINCE

coreutils 0.0300 0.0300 0.0300 0.0114 0.0300 0.0114 0.0300 0.0300 0.0971 0.0823 0.3067

CoRE- find 0.0295 0.0295 0.0295 0.0109 0.0295 0.0109 0.0295 0.0295 0.1389 0.1138 0.3623

Bench grep 0.0377 0.0377 0.0377 0.0100 0.0377 0.0100 0.0377 0.0377 0.2703 0.2845 0.3211

make 0.0242 0.0242 0.0242 0.0128 0.0242 0.0137 0.0242 0.0242 0.1087 0.1087 0.2967

Average 0.0299 0.0299 0.0299 0.0114 0.0299 0.0116 0.0299 0.0299 0.1466 0.1399 0.3190

bash 0.0440 0.0466 0.0466 0.0295 0.0457 0.0281 0.0402 0.0457 0.1144 0.0854 0.4078

flex 0.0492 0.0516 0.0501 0.0247 0.0453 0.0225 0.0430 0.0423 0.0728 0.0470 0.3157

grep 0.3622 0.3876 0.3691 0.2769 0.3341 0.2008 0.3663 0.3623 0.7634 0.6107 0.7016

SIR gzip 0.1453 0.1497 0.1439 0.1054 0.1258 0.0805 0.1497 0.1479 0.1894 0.1857 0.6883

make 0.0565 0.0644 0.0537 0.0295 0.0541 0.0410 0.0638 0.0607 0.2591 0.1877 0.7937

MAP sed 0.0796 0.0876 0.0876 0.0592 0.0736 0.0531 0.0864 0.0864 0.6065 0.5679 0.6915

vim 0.0744 0.0864 0.0838 0.0474 0.0726 0.0561 0.0732 0.0792 0.3953 0.3294 0.7463

Average 0.1378 0.1474 0.1394 0.0976 0.1265 0.0786 0.1397 0.1383 0.3258 0.2575 0.6128

Chart 0.2151 0.2041 0.1934 0.0436 0.1957 0.0427 0.4065 0.1258 0.1149 0.1062 0.4167

Closure 0.1587 0.1550 0.1898 0.0376 0.1883 0.0720 0.2092 0.1453 0.0787 0.1143 0.4167

Lang 0.2062 0.2268 0.1805 0.0385 0.1524 0.0377 0.2101 0.1125 0.0806 0.1297 0.3226

Defects4J Math 0.2809 0.2950 0.1953 0.0693 0.1629 0.0385 0.3521 0.1297 0.0781 0.1776 0.4000

Mockito 0.1934 0.3226 0.1466 0.0420 0.1300 0.0432 0.2257 0.1073 0.1053 0.1307 0.4545

Time 0.1845 0.1718 0.2247 0.0384 0.1163 0.0828 0.1912 0.1261 0.0800 0.2193 0.5263

Average 0.2075 0.2240 0.1876 0.0470 0.1668 0.0532 0.2597 0.1298 0.0835 0.1401 0.4042

Average 0.1696 0.1825 0.1565 0.0512 0.1401 0.0519 0.2052 0.1172 0.1368 0.1615 0.4858

diverse mutant generation [54] (i.e., MBFL achieves higher FL precision by using more diverse mu-
tants) and Major generates much fewer mutants per line for Defects4J than MUSIC for CoREBench
and SIR. For example, only 1.58 mutants per target line were generated for Defects4J, while 9.91
mutants per target line were generated for CoREBench and SIR, on average per faulty version.13

5.2.2 Mean Average Precision Metric. Regarding the mean average precision (MAP) metric,
PRINCE localizes faults more precisely than the other FL techniques for all subject programs.

Table 5 presents MAP for the applied FL techniques for CoREBench, SIR, and Defects4J. The
average MAP of PRINCE per faulty version is 0.4858, which is 2.4 (=0.4858/0.2052) and 3.0
(=0.4858/0.1615) times greater than that of the best SBFL (Ochiai) and MBFL (Metallaxis) tech-
niques. The difference between PRINCE and Ochiai in terms of MAP is statistically significant and
the effect size is 2.41. In addition, the difference between PRINCE and Metallaxis in terms of MAP
is statistically significant and the effect size is 3.08.

5.2.3 Acc@n Metrics. Regarding the acc@1, acc@5, and acc@10 metrics, PRINCE again out-
performs the SBFL and the MBFL techniques for CoREBench, SIR, and Defects4J.

13Our experiment on Defects4J uses 39.8% more mutants than the experiment in Pearson et al. [57] (i.e., 1.58 vs 1.13 mutants
per target line on average per faulty version). Thus, in contrast to Pearson et al. [57] which reported the expense metrics
of MUSE and Metallaxis as 20.6% and 7.5% for the 310 faults in Defects4J on average, our experiment result shows that
the expense metrics of MUSE and Metallaxis are 12.1% and 6.4% for the same 310 faults in Defects4J on average per faulty
version, respectively.
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Table 6 shows that PRINCE locates a faulty statement at the top rank for 13.1% (=60/(65+84+310))
of the target faults (see the last column of the last row of the acc@1 section in Table 6). Compared
to the best fixed formula FL technique (i.e., MUSE), PRINCE locates 1.7 times (=60/35) more faults
at the top rank. Compared to Ochiai, which is the best SBFL technique, PRINCE locates 2.5 (=60/24)
times more faults at the top rank. For acc@10, PRINCE locates 52.9% (=243/(65+84+310)) of the
target faults in the top 10 ranks (see the last column of the last row of the acc@10 section in
Table 6).

5.2.4 Comparison with Other Learning-based FL Techniques. We have compared PRINCE with
Savant [5], which is a state-of-the-art learn-to-rank FL technique that localizes a fault in a function
level. Table 7 shows the comparison results of PRINCE with Savant. The table shows the expense
metric, MAP, acc@1, acc@3, and acc@5 of Savant and PRINCE in a function level. We compare the
function-level FL precision of PRINCE with the experiment results reported in the Savant paper [5].

The results in Table 7 show that PRINCE outperforms Savant in terms of the expense metric,
MAP, acc@1, acc@3, and acc@5 for Defects4J in a function level. PRINCE achieved 94.9% lower
expense metric than Savant. The difference between PRINCE and Savant in terms of the expense
metric is statistically significant and the effect size is 4.83. In addition, the difference between
PRINCE and Savant in terms of MAP is statistically significant and the effect size is 2.45. Also,
PRINCE localizes a fault in the top one, three, and five functions for 58.7%, 56.6%, and 38.5% more
faulty program versions than Savant, respectively.

5.3 RQ2: Efficiency of PRINCE

Table 8 shows the time spent by the SBFL techniques, the MBFL techniques, and PRINCE for FL per
faulty version. The SBFL techniques spend most of the FL time for running test cases, and the time
taken to calculate suspiciousness scores is negligible (i.e., less than 3s). Therefore, we can consider
that the runtime costs of the different SBFL techniques are same. The SBFL techniques spend up
to 230.9s (i.e., Closure in Defects4J) for localizing a fault depending on the number of test cases
and execution time of test cases. The MBFL techniques (i.e., Metallaxis and MUSE) spend most of
the FL time for generating mutants and running test cases on the mutants. Since the time taken to
calculate the MBFL suspiciousness scores is negligible, we can consider that the runtime costs of
the MBFL techniques are same.

The runtime cost of PRINCE mainly consists of the followings: feature value computation time,
training time to learn ranking models, and suspiciousness score computation time using the gen-
erated ranking models.

• Feature value computation time: This consists of the execution times to compute the SBFL
features, the MBFL features, file/function/statement features of a target program P .
—The execution time to compute SBFL features is the sum of the time to execute the test

cases on P and the time to evaluate SBFL feature formulas with the test execution results
on P .

—The execution time to compute MBFL is the sum of the time to generate mutants from the
target statements of P , the time to compile the randomly sampled 20% of the generated
mutants, the time to execute test cases on the sampled mutants, and the time to eval-
uate MBFL feature formulas with the test execution results on the sampled mutants.14

Computing MBFL features for PRINCE is faster than applying MBFL techniques, because

14Although it takes a large amount of time to compute MBFL feature values, running test cases on mutants can easily
parallelized on distributed computing nodes so that the execution time of PRINCE can be acceptable in practice.
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Table 6. acc@1, acc@5, and acc@10 of the Eight Spectrum-based FL Techniques,

the Two Mutation-based FL Techniques, and PRINCE in a Statement Level

Bench- Target Russell
Metric mark programs Naish1 Naish2 GP13 Wong1 and Rao Binary Ochiai Jaccard MUSE Metallaxis PRINCE

coreutils 0 0 0 0 0 0 0 0 1 1 3
CoRE- find 0 0 0 0 0 0 0 0 1 0 2
Bench grep 0 0 0 0 0 0 0 0 1 1 3

make 0 0 0 0 0 0 0 0 4 1 6

Total 0 0 0 0 0 0 0 0 7 3 14

bash 0 0 0 0 0 0 0 0 0 0 0
flex 0 0 0 0 0 0 0 0 2 0 3
grep 4 4 4 3 4 3 4 4 6 5 8

SIR gzip 3 3 3 1 3 2 3 3 8 7 10
make 0 0 0 0 0 0 0 0 2 0 3

acc@1 sed 0 0 0 0 0 0 0 0 1 0 1
vim 0 0 0 0 0 0 0 0 0 0 0

Total 7 7 7 4 7 5 7 7 19 12 25

Chart 0 0 0 0 0 0 0 0 0 0 1
Closure 3 4 3 1 4 1 6 4 3 4 7
Lang 1 2 0 0 1 0 2 1 1 1 3

Defects4J Math 3 5 3 0 2 0 5 5 2 5 5
Mockito 1 1 4 1 3 1 4 4 3 4 4
Time 0 0 0 0 0 0 0 0 0 0 1

Total 8 12 10 2 10 2 17 14 9 14 21

Total 15 19 17 6 17 7 24 21 35 29 60
(3.3%) (4.1%) (3.7%) (1.3%) (3.7%) (1.5%) (5.2%) (4.6%) (7.6%) (6.3%) (13.1%)

coreutils 0 0 0 0 0 0 0 0 3 2 5
CoRE- find 0 0 0 0 0 0 0 0 1 0 3
Bench grep 0 0 0 0 0 0 0 0 3 1 3

make 0 0 0 0 0 0 0 0 4 3 7

Total 0 0 0 0 0 0 0 0 11 6 18

bash 0 0 0 0 0 0 0 0 0 0 1
flex 0 0 0 0 0 0 0 0 2 1 5
grep 6 7 6 3 4 3 4 5 8 6 9

SIR gzip 3 3 3 1 3 2 3 3 9 7 10
make 0 0 0 0 0 0 0 0 2 0 4

acc@5 sed 0 0 0 0 0 0 0 0 1 0 1
vim 0 0 0 0 0 0 0 0 0 0 0

Total 9 10 9 4 7 5 7 8 22 14 30

Chart 5 5 4 1 4 1 6 4 5 5 7
Closure 21 22 21 11 21 8 24 21 19 18 28
Lang 26 24 26 9 27 11 29 25 24 25 32

Defects4J Math 28 28 27 9 28 8 32 27 25 26 34
Mockito 11 12 11 3 13 4 15 11 9 7 18
Time 8 9 9 2 9 2 11 9 8 7 15

Total 99 100 98 35 102 34 117 97 90 88 134

Total 108 110 107 39 109 39 124 105 123 108 182
(23.5%) (24.0%) (23.3%) (8.5%) (23.7%) (8.5%) (27.0%) (22.9%) (26.8%) (23.5%) (39.7%)

coreutils 0 0 0 0 0 0 0 0 4 3 8
CoRE- find 0 0 0 0 0 0 0 0 2 1 6
Bench grep 1 1 1 0 1 0 1 1 4 5 7

make 0 0 0 0 0 0 0 0 5 4 10

Total 1 1 1 0 1 0 1 1 15 13 31

bash 0 0 0 0 0 0 0 0 0 0 2
flex 2 3 4 2 2 2 2 2 3 2 7
grep 6 7 6 3 4 3 4 5 9 7 12

SIR gzip 3 3 3 1 3 2 3 3 11 9 11
make 1 2 2 1 1 1 2 1 5 3 7

acc@10 sed 0 0 0 0 0 0 0 0 1 0 1
vim 0 0 0 0 0 0 0 0 0 0 0

Total 14 15 15 7 10 8 11 11 29 21 40

Chart 10 9 11 3 11 2 13 9 12 13 13
Closure 27 28 28 15 30 11 35 28 31 32 38
Lang 28 26 29 13 31 15 35 27 28 29 39

Defects4J Math 34 35 38 14 36 11 42 33 33 35 47
Mockito 10 12 12 5 11 6 16 12 11 13 19
Time 8 10 11 3 9 5 13 10 10 12 16

Total 117 120 129 53 128 50 154 119 125 134 172

Total 132 136 145 60 139 58 166 131 169 168 243
(28.8%) (29.6%) (31.6%) (13.1%) (30.3%) (12.6%) (36.2%) (28.5%) (36.8%) (36.6%) (52.9%)
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Table 7. Expense Metric, MAP, acc@1, acc@3, and acc@5 of Savant

and PRINCE in Method Level for Defects4J

Target Expense metric (%) MAP acc@1 acc@3 acc@5

Programs Savant PRINCE Savant PRINCE Savant PRINCE Savant PRINCE Savant PRINCE

Chart 18.9 1.1 0.0529 0.6091 5 6 9 9 11 13

Closure 15.3 1.2 0.0654 0.5333 2 8 13 39 21 45

Lang 23.3 0.8 0.0429 0.6806 29 28 41 51 45 52

Math 15.4 0.9 0.0649 0.6711 22 51 47 78 57 81

Time 8.6 0.7 0.1163 0.6831 5 7 12 14 14 14

Average 17.5 0.9 0.0535 0.5886

Total 63 100 122 191 148 205

22.3% 35.5% 43.3% 67.7% 52.5% 72.7%

Table 8. Fault Localization Time of SBFL, MBFL, and PRINCE in Seconds

PRINCE

Avg. feature Susp. com-

Benchmark Target programs SBFL MBFL value computation Training putation Total

coreutils 7.2 7410.7 1951.0 70.7 0.6 2022.3

find 13.3 14182.8 74.5 1.3 2026.9

CoREBench grep 12.1 11685.6 63.0 0.5 2014.5

make 6.8 6763.4 74.2 1.2 2026.5

Average 9.5 9610.8 1951.0 70.8 0.9 2022.8

bash 21.6 21683.1 2751.9 66.0 0.6 2818.4

flex 10.7 11022.5 71.4 1.1 2824.4

grep 14.6 13153.8 74.0 1.2 2827.0

SIR gzip 7.5 7977.4 71.3 0.8 2824.0

make 11.5 12313.6 77.4 0.8 2830.0

sed 9.4 8972.6 71.8 1.5 2825.1

vim 29.1 28105.4 62.0 1.2 2815.0

Average 12.5 12489.6 2751.9 72.6 1.0 2825.4

Chart 28.9 3509.4 2768.5 246.7 1.9 3015.2

Closure 230.9 23658.5 190.5 1.6 2959.0

Lang 28.6 3751.6 192.6 3.7 2961.1

Defects4J Math 91.5 11196.5 200.4 2.0 2968.9

Mockito 55.3 6399.5 184.0 2.9 2952.5

Time 31.3 4642.1 224.8 3.8 2993.3

Average 120.4 13141.1 2768.5 197.9 2.3 2966.3

PRINCE used only 20% of the generated mutants while MBFL techniques used all mu-
tants.15

—The execution time to compute file, function, and statement features is time to perform
static analysis.

We report an average of feature value computation time per faulty version for each bench-
mark. For example, the reported feature value computation time for CoREBench (i.e.,

15If PRINCE uses all generated mutants, then it increases the execution time almost 5 times but decreases the expense only
0.5%p (1.9% vs. 2.4%) compared to PRINCE using only 20% of the mutants.
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Table 9. Expense Metric of PRINCE Using All Features and PRINCE Using

All Except Each of the Five Feature Groups

PRINCE PRINCE using all features except
Target using all MBFL SBFL Stmt. Func. File

Benchmark programs features features features features features features
coreutils 3.3 17.5 6.8 7.2 4.7 6.1
find 2.8 12.7 6.3 5.1 4.3 6.5

CoREBench grep 3.1 9.4 5.8 4.9 4.6 7.2
make 3.4 13.8 6.6 5.7 5.2 4.8
Average 3.2 13.7 6.4 5.8 4.7 6.1
bash 2.5 12.8 3.6 4.4 3.9 3.6
flex 3.2 19.7 6.5 6.3 4.3 3.9
grep 0.8 3.1 1.1 0.9 1.0 0.7

SIR gzip 0.8 2.9 1.3 1.5 0.8 0.7
make 1.3 5.9 2.3 1.9 1.7 1.2
sed 0.4 1.8 0.6 0.5 0.4 0.4
vim 1.3 5.0 2.7 1.4 1.4 2.5
Average 1.6 8.2 2.8 2.7 2.1 1.8
Chart 2.4 2.1 8.8 2.6 2.4 3.2
Closure 2.4 4.2 8.2 2.5 2.2 2.8
Lang 3.1 4.3 6.8 3.6 3.7 3.9

Defects4J Math 2.5 2.5 5.1 3.2 2.7 3.1
Mockito 2.2 4.1 6.8 2.6 2.6 2.7
Time 1.9 4.4 4.2 2.1 1.8 2.4
Average 2.5 3.6 6.8 2.9 2.6 3.1

1951.0s) is the sum of the feature value computation time of the all faulty versions of
CoREBench divided by the number of the all target faulty versions of CoREBench (i.e., 65).
This is because PRINCE needs feature value computation of not only a target faulty version,
but also the other faulty versions together to learn a ranking model. Also, the feature val-
ues are computed once and reused for FL of every target faulty version. We report average
feature value computation time for SIR and Defects4J similarly.

• Training time: Training time is the execution time of genetic programming to learn a ranking
model from known faults data. Since we have 10 groups of faulty target program versions
(e.g., д1,д2, . . .д10) in 10-fold cross validation setup for each benchmark, the training time
of дi is the execution time of genetic programming to learn a ranking model from the other

nine fault groups. For each faulty version Pj ∈ дi , the training time is training time of дi

|дi | , because
the faulty versions in the same fault group share the same ranking model. We report the
average training time per faulty version.

• Susp. computation time: We report the execution time of applying the learned ranking model
to the target statements of each target faulty program version on average per faulty version.

5.4 RQ3: Importance of Program Feature Groups for FL Precision

Table 9 shows the expense metric of PRINCE using all feature groups (see the third column) and
PRINCE using all except one of the five feature groups (see the fourth to the last columns). We
treat the increase ratio of expense metric caused by excluding a feature group as the contribution
of the feature group to the precision of FL.
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For CoREBench and SIR, among the five feature groups, the MBFL feature group contributes to
the precision of FL most significantly. Removing the MBFL features increases the expense metric
value by 4.3 times for CoREBench (=13.7%/3.2% (see the 3rd and 4th columns of the 6th row)) and
5.1 times (=8.2%/1.6% (see the 3rd and 4th columns of the 14th row)) for SIR, on average per faulty
version. The second-most effective feature group is SBFL. Removing SBFL features increases the
expense metric value by 2.0 times (=6.4%/3.2% (see the 3rd and 5th columns of the 6th row)) for
CoREBench, and 1.8 times (=2.8%/1.6% (see the 3rd and 5th columns of the 14th row)) for SIR, on
average per faulty version.

For CoREBench, the file features are the third-most important feature group to the precision.
Removing the file features increases the expense metric value by 1.7 times (=6.1%/3.2% (see the
third and the last columns of the sixth row)) for CoREBench, on average per faulty version. The
importance of the statement features and the function features follow that of the file features in
order.

For the SIR benchmark, the statement features are the 3rd-most important feature group to
the precision. Removing the statement features increase the expense metric value by 1.7 times
(=2.7%/1.6% (see the 3rd and 6th columns of the 14th row)) on average per faulty version. The
importance of the function features and the file features follow that of the statement features. The
file features (the 3rd-most important for CoREBench) are the least important for SIR, because 5 of
7 SIR benchmark programs consist of a single source code file.

For Defects4J, among the five feature groups, the SBFL feature group contributes to the pre-
cision of FL most significantly. Removing the SBFL increases expense metric value by 2.7 times
(=6.8%/2.5% (see the third and fifth columns of the last row)) on average per faulty version. The
second-most-effective feature group is MBFL. Removing MBFL features increases expense metric
value by 1.4 times (=3.6%/2.5% (see the third and fourth columns of the last row)) on average per
faulty version. Note that MBFL may contribute to the FL precision more than SBFL for Defects4J
if a sufficient number of diverse mutants are provided (see Section 5.2).

5.5 RQ4: Importance of Program Feature Groups for FL Precision with Different
Machine Learning Techniques

We can confirm that the importance of the feature groups to FL precision is preserved with three
different machine-learning algorithms. Table 10 shows the expense metric of PRINCE using all
features (see the fourth column) and PRINCE using all except one of the five feature groups (see
the fifth to ninth columns) with linear rankSVM and non-linear rankSVM instead of GP.

For CoREBench and SIR, the most important feature group of all the three learning algorithms
(i.e., GP, linear rankSVM, and non-linear rankSVM), is still the MBFL. For example, excluding the
mutation features increases the expense for CoREBench as follows:

• 4.3 times for PRINCE with genetic programming (=13.7%/3.2%)
• 4.5 times for PRINCE with linear rankSVM (=17.9%/4.0%)
• 4.4 times for PRINCE with non-linear rankSVM (=16.2%/3.7%)

The order of the importance to FL precision among the five feature groups is the same for the
all three learning algorithms for CoREBench. For CoREBench, the SBFL features and file features
are the second- and the third-most important features for all three learning algorithms, respec-
tively. The importance of the statement and the function features follow that of the file features
with all the three learning algorithms, too.

For SIR, the order of the importance to FL precision among the five feature groups is also the
same as all three learning algorithms. For SIR, the SBFL features are the second-most-important
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Table 10. Expense Metric of PRINCE Using All Features and PRINCE Using All Except Each of the

Five Feature Groups with the Linear rankSVM and Non-linear rankSVM Learning Algorithms

PRINCE PRINCE using all features except

Learning Benchmark Target using all MBFL SBFL Stmt. Func. File

Algorithms programs features features features features features features

coreutils 4.1 24.3 8.5 9.0 5.9 9.0

find 3.6 16.8 7.6 6.2 5.2 9.5

CoREBench grep 3.7 11.6 7.4 6.9 5.9 8.5

make 4.3 17.0 9.0 8.0 6.3 6.7

Average 4.0 17.9 8.2 7.7 5.8 7.9

bash 3.5 16.1 4.3 5.5 4.4 4.5

flex 4.6 23.6 8.4 8.2 5.0 4.5

grep 0.9 3.8 1.4 1.0 1.2 0.8

SIR gzip 1.0 3.3 1.6 1.7 0.9 0.8

make 1.5 6.5 3.0 2.5 2.1 1.5

Linear sed 0.4 2.2 0.7 0.6 0.4 0.5

RankSVM vim 1.5 6.4 3.5 1.8 1.8 2.9

Average 2.1 9.7 3.6 3.4 2.5 2.1

Chart 2.5 2.6 10.4 3.2 3.0 3.5

Closure 2.3 5.0 10.0 2.9 2.4 3.1

Lang 3.5 5.0 8.1 4.6 4.8 5.0

Defects4J Math 2.6 2.9 6.4 4.0 3.1 3.6

Mockito 2.4 4.8 8.1 3.2 3.0 3.1

Time 2.0 5.4 5.1 2.6 2.3 3.0

Average 2.6 4.3 8.3 3.5 3.1 3.6

coreutils 3.7 20.5 8.7 8.6 5.4 8.1

find 3.6 14.1 8.1 6.4 4.9 7.8

CoREBench grep 3.8 11.0 6.4 6.1 5.8 7.6

make 3.8 17.3 7.4 6.5 6.7 6.0

Average 3.7 16.2 7.6 7.0 5.8 7.3

bash 3.4 14.3 4.5 5.7 4.5 4.4

flex 4.1 25.2 8.3 7.1 5.0 4.9

grep 0.9 3.5 1.3 1.2 1.1 0.8

SIR gzip 1.0 3.5 1.5 1.7 1.0 0.9

make 1.5 7.6 2.9 2.3 1.9 1.5

Non-linear sed 0.5 2.3 0.8 0.6 0.5 0.5

RankSVM vim 1.4 5.8 3.3 1.8 1.6 3.1

Average 2.0 10.1 3.6 3.2 2.4 2.2

Chart 2.3 2.4 9.5 3.0 2.7 3.8

Closure 2.3 4.7 9.3 2.8 2.5 3.3

Lang 3.5 5.0 7.9 4.3 4.3 4.3

Defects4J Math 2.9 3.1 6.0 3.7 3.4 3.9

Mockito 2.3 4.4 7.8 2.8 2.8 3.1

Time 1.8 4.9 4.7 2.3 2.0 2.8

Average 2.6 4.2 7.8 3.3 3.1 3.6
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features followed by the statement features and the function features for all three learning algo-
rithms. For SIR, the file features are the least important as described in Section 5.4.

For Defects4J, the most important feature group of all the three learning algorithms is SBFL. For
example, excluding the SBFL features increases the expense as follows:

• 2.7 times for PRINCE with genetic programming (=6.8%/2.5%)
• 3.2 times for PRINCE with linear rankSVM (=8.3%/2.6%)
• 3.0 times for PRINCE with non-linear rankSVM (=7.8%/2.6%)

The order of the importance to FL precision among the five feature groups is also the same
as all three learning algorithms for Defects4J. The MBFL features are the second-most important
followed by the file, statement, and function features. The difference between the learners is not
statistically significant.

6 DISCUSSIONS

6.1 Advantage of Adopting Learn-to-Rank Technique

The use of the learn-to-rank technique with genetic programming allows PRINCE to be flexible
in adapting the target faulty program. PRINCE learns FL formula and weights for the program
features by actively optimizing them for given subjects. Compared to pre-determined weights,
this adaptive approach has significant practical advantages. If PRINCE uses a pre-defined formula,
then it would fail to achieve high precision of FL of CoREBench, SIR, and Defects4J benchmark
programs, because the CoREBench and Defects4J programs have largely different characteristics
on files from those of SIR programs (i.e., CoREBench and Defects4J programs consist of multi-
ple source files while 5 of 7 SIR programs have only a single source file). If file features have
high weights, then an FL technique with a fixed formula may be precise for CoREBench and De-
fects4J programs but imprecise for the SIR benchmark programs. Similarly, if file features have
low weights, then a FL technique with a fixed formula may be imprecise for the CoREBench and
Defects4J programs, since it misses a chance to utilize important file features. To overcome such
limitation, PRINCE actively optimizes FL formula for given data sets (e.g., 149 known faults for C
programs and 310 known faults for Java programs). In practice where programs usually have long
lifetime through many revisions, a user can train PRINCE with data sets obtained from already
fixed faults and apply PRINCE for effective FL.

6.2 Effective Features for Precise Fault Localization

6.2.1 General Applicability of the Proposed Features for Fault Localization. Note that our ex-
periments show that the proposed features are generally effective to improve FL, since these
features improve precision of fault localization with three different learning algorithms (i.e., ge-
netic programming, linear rankSVM, and non-linear rankSVM) in a similar degree. For example
of CoREBench, the expense metric of PRINCE using genetic programming, linear rankSVM, and
non-linear rankSVM are 3.2%, 4.0%, and 3.7% on average per faulty version, respectively. This is far
more precise than Naish2 (34.2% on average per faulty version), the best SBFL technique, and MUSE
(7.9% on average per faulty version), the best MBFL technique for C benchmark programs. For De-
fects4J, the expense metric of PRINCE using genetic programming, linear rankSVM, and non-linear
rankSVM are 2.5% 2.6%, and 2.6% on average per faulty version, respectively. This is more precise
than Ochici (4.1% on average per faulty version), the best SBFL technique, and Metallaxis (6.4% on
average per faulty version), the best MBFL technique for Java benchmark programs.

Also note that relative significance of each feature group for the fault localization precision still
remains the same with the three different learning algorithms. For example, mutation features
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Table 11. The Number of LoC of Patches, Expense Metric, and Correlation

between the LoC of Patches and Expense Metric

Target LoC of patches Expense (%) Correlation

Benchmark programs Avg. Max. MUSE Metallaxis PRINCE MUSE Metallaxis PRINCE

coreutils 4.8 15 10.3 12.2 3.3 0.26 0.11 0.14

CoREBench find 6.7 17 7.2 8.8 2.8 0.30 0.25 0.17

grep 5.9 13 3.7 3.5 3.1 0.19 0.38 0.18

make 10.5 58 9.2 9.2 3.4 0.27 0.34 0.11

bash 1.8 5 8.7 11.7 2.5 −0.03 0.00 0.03

flex 1.2 3 13.7 21.3 3.2 0.01 −0.02 −0.05

grep 1.7 4 1.3 1.6 0.8 −0.07 −0.04 −0.02

SIR gzip 1.5 3 5.3 5.4 0.8 −0.04 0.00 −0.04

make 1.5 3 3.9 5.3 1.3 −0.03 −0.07 −0.02

sed 1.4 2 1.2 1.8 0.4 −0.01 0.02 0.01

vim 2.1 5 2.5 3.0 1.3 −0.07 −0.03 0.01

Chart 7.3 39 8.7 6.4 2.4 0.15 0.18 −0.01

Closure 6.0 43 12.7 7.8 2.4 0.20 0.35 0.05

Defects4J Lang 7.6 43 12.4 6.7 3.1 0.35 0.23 0.13

Math 6.5 54 12.8 4.6 2.5 0.28 0.26 0.14

Mockito 7.1 31 9.5 6.7 2.2 0.21 0.34 0.03

Time 8.5 26 12.5 3.6 1.9 0.28 0.24 −0.04

improve the precision of fault localization on CoREBench most significantly, followed by SBFL,
file, statement, and function features for all three different learning algorithms. These observations
imply that the proposed features of PRINCE are not only effective for a specific learning algorithm
for FL, but also generally effective for various learning algorithms. Thus, we can conclude that the
proposed set of program features studied in this article are valuable to learn-to-rank techniques
in general.

6.2.2 Mutation Feature Group. Through the experiment (Table 9), we have found that mutation
feature group contributes to increase the precision of FL (in terms of expense metric) most signif-
icantly among the five feature groups for CoREBench and SIR, and second-most significantly for
Defects4J. Since FL can localize a fault precisely with diverse passing and failing test cases, the mu-
tation features contribute in precisely localizing a fault by utilizing diverse mutant executions even
with a few given test cases. In contrast, SBFL features may fail to contribute in precisely localizing
a fault if only a few test cases are available. Note that, in a real-world environment, generating
diverse failing test cases is highly challenging. Also, compared to SBFL, which may suffer from
the same basic block problem (i.e., every statement in a same basic block has the same coverage,
which may lower a rank of a target fault), the mutation feature can assign different suspiciousness
values to statements in a same block.

Furthermore, we found that MBFL has weak correlation between the complexity of a patch
and FL precision. Table 11 shows the patch complexity (in LoC), expense of FL techniques, and
correlation between the patch complexity and the expense. We use the added/removed/changed
lines of code of a patch as a complexity measure of a patch and the expense metric as a FL precision.
We use Pearson correlation [56] as a correlation measure. The experimental results show that
MUSE and Metallaxis have almost no correlation between the patch complexity and FL precision
for SIR benchmark programs, which have only simple patches (i.e., the sizes of the patches are no
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more than five lines). For CoREBench and Defects4J, which have complex patches (up to 58 lines
long patch for make), the correlation is still weak (ranging from 0.11 to 0.38). PRINCE has even
weaker correlation between the patch complexity and FL precision than MBFL (i.e., the correlation
ranges from −0.04 to 0.18).

6.2.3 File Feature Group. A salient observation from the experiments is that the file feature
group contributes to increase FL significantly.16 Our conjecture is that the file features (e.g., fan-in
of a source code file and a number of defined functions and variables in a source code file) have
high correlation to the number of faults in a file, because such features indicate complexity of inter-
actions with other files that often become causes of failures. Among the 12 file features, the fan-in
in a file dependency graph, the number of functions defined in a file, and the number of variables
defined in a file are the top 3 effective features. For each of the four target programs in CoREBench
and six target programs of Defects4J, we compute the Pearson correlation coefficient [56] between
the values of each of the top three effective features and the number of faults in a source code file.17

The correlation between the fan-in in a file dependency graph and the number of faults is 0.72 on
average, which indicates high correlation. The correlation between the number of functions and
the number of faults is 0.61 and the one between the number of variables and the number of faults
is 0.59, which is also reasonably high. During the learning phase, PRINCE captures this correla-
tion between file features and the number of faults and generates a suspiciousness formula, which
utilizes the file features effectively to increase precision of FL.

6.3 General Applicability of PRINCE’s Ranking Model

We performed a simple case study to investigate whether or not a ranking model learned by
PRINCE from one project can be effective in precisely localizing faults in other projects. We com-
pare the expense of PRINCE using the 10-fold cross validation and inter-benchmark training and
validation in Table 12. The third column shows the expense of PRINCE using the 10-fold cross val-
idation. The fourth to ninth columns show the expense of PRINCE using inter-benchmark training
and validation. The column name A to B means that PRINCE uses all the faults in benchmark A
as a training set and all the faults in benchmark B as a test set where A, B ∈ {CoREBench, SIR,
Defects4J} and A � B.

The experiment results show that the ranking model learned by PRINCE using one project
can be effective in precisely localizing the faults in other projects. For example, PRINCE using
Defects4J (D) to CoREBench (C) and C to D only increases the expense by 0.7% and 0.9%, respec-
tively. Using the faults in SIR as a training set decreases the FL precision of PRINCE compared to
the 10-fold cross validation (i.e., SIR (S) to C and S to D increase expense of PRINCE 1.8 and 3.0
times compared to 10-fold cross validation). This is because the faults in SIR are artificial ones,
which have different characteristics from the real-world faults in CoREBench and Defects4J (e.g.,
the average LoC of a patch for SIR faults is only 1.6 lines while that for CoREBench and Defects4J
faults are 7.0 and 6.7 lines, respectively, as shown in the third column of Table 11). Also, a ranking
model obtained from SIR does not utilize file features much since five of seven SIR benchmark
programs have only one file.

16File feature group is meaningless for SIR benchmarks, since most of the SIR benchmark programs have only one source
file
17We calculate correlation coefficient in a following way. We assign an average feature value and a number of faults to a
source code file over the different faulty versions.
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Table 12. Expense Metric of PRINCE Using 10-fold Cross Validation and Inter-benchmark

Training and Validation (C=CoREBench, D=Defects4J, and S=SIR)

Expense (%) of PRINCE
Benchmark Target 10-fold cross

programs validation S to C D to C C to S D to S C to D S to D
coreutils 3.3 6.5 3.7
find 2.8 4.2 3.9

C grep 3.1 6.4 3.4
make 3.4 6.0 4.4
Average 3.2 5.8 3.9
bash 2.5 3.4 4.3
flex 3.2 4.6 6.4
grep 0.8 1.2 1.7

S gzip 0.8 1.3 1.5
make 1.3 1.9 2.9
sed 0.4 0.7 1.0
vim 1.3 2.1 2.5
Average 1.6 2.3 3.2
Chart 2.4 3.2 6.5
Closure 2.4 3.4 7.1
Lang 3.1 3.4 11.0

D Math 2.5 3.7 6.6
Mockito 2.2 3.2 5.3
Time 1.9 2.7 5.8
Average 2.5 3.4 7.4

6.4 PRINCE in Function-level Fault Localization

Existing work suggests that the statement level FL may not be the most ideal approach. Parnin and
Orso reported, from their seminal human evaluation of FL, that developers sometimes preferred
higher level overview at function or file granularity, rather than statement level rankings [55].
Subsequently, many techniques have been evaluated at function or method level [5, 81].

Table 13 shows the FL results of Ochiai (the most-precise SBFL technique), Metallaxis (the most-
precise MBFL technique), and PRINCE in function level. The first and second columns show the
benchmark and target programs, respectively. The third column shows the number of target func-
tions. The 4th to 6th and 7th to 9th columns show the expense and MAP metric of the three FL
techniques, respectively. The 10th to 12th, 13th to 15th, and 16th to the last columns show the
acc@1, acc@5, and acc@10 of the three FL techniques, respectively.

PRINCE localizes faults with 1.1% of expense and 0.6037 of MAP on average per faulty ver-
sion(see the sixth column and ninth column of the second last row in Table 13). Also, PRINCE
localizes more than half of the target faulty functions (=304 faults = 66.2% of the target faults)
within the top five ranks. In addition, PRINCE localizes 39.7% and 74.7% of the target faulty func-
tions at the top one and ten ranks (see the 12th and the last columns of the second last row in
Table 13), respectively. Again, PRINCE outperforms Ochiai and Metallaxis in expense, MAP, and
acc@n as it did in statement-level fault localization in Section 5.2. The results suggest that findings
in this article can be generalized to other granularity levels.
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Table 13. Expense Metric, MAP, acc@1, acc@5, and acc@10 of Ochiai (Best of SBFL),

Metallaxis (Best of MBFL), and PRINCE in Function Level

Target #target Expense (%) MAP acc@1 acc@5 acc@10

Benchmark Programs funcs. O M P O M P O M P O M P O M P

coreutils 40.6 12.2 7.0 3.3 0.0740 0.1548 0.3030 2 4 9 5 7 12 7 9 15

find 181.2 11.4 2.3 0.7 0.0951 0.3991 0.6825 1 3 10 3 6 13 6 8 13

CoRE-Bench grep 122.4 9.4 2.4 1.6 0.1016 0.4630 0.5985 2 2 11 4 4 13 6 8 14

make 141.4 13.2 2.6 1.0 0.0713 0.4038 0.6317 1 2 10 2 5 11 3 9 14

Average 116.4 11.7 3.8 1.7 0.0837 0.3428 0.5394

Total 6 11 40 14 22 49 22 34 56

9.2% 16.9% 61.5% 21.5% 33.8% 75.4% 33.8% 52.3% 86.2%

bash 910.5 6.9 4.4 0.5 0.1618 0.3291 0.6546 0 0 1 0 1 2 1 2 4

flex 127.9 8.4 5.1 1.2 0.1322 0.1990 0.5397 0 4 8 2 5 10 3 8 16

grep 113.5 4.2 4.8 1.3 0.2824 0.3502 0.5160 1 9 10 4 10 11 7 13 14

gzip 57.4 5.8 5.0 2.1 0.2046 0.2139 0.4783 1 7 13 4 9 14 6 12 16

SIR make 488.4 5.6 7.3 0.5 0.1918 0.1108 0.6612 0 1 4 1 2 6 2 5 12

sed 60.6 10.3 4.3 1.8 0.0789 0.2206 0.5666 1 2 3 2 3 6 2 3 3

vim 1469.2 3.7 5.6 0.3 0.2939 0.2287 0.6806 0 0 0 0 0 1 1 1 2

Average 294.3 6.2 5.5 1.2 0.1977 0.2254 0.5646

Total 3 23 39 13 30 50 22 44 67

3.6% 27.4% 46.4% 15.5% 35.7% 59.5% 26.2% 52.4% 79.8%

Chart 713.4 2.6 4.2 1.1 0.2238 0.1438 0.6364 3 3 6 8 7 13 10 10 15

Closure 1326.7 4.1 3.8 1.2 0.1443 0.1993 0.5833 5 4 8 17 16 45 25 22 52

Lang 413.1 2.6 3.4 0.8 0.3097 0.1411 0.6725 24 23 28 38 40 52 48 49 53

Defects4J Math 377.3 2.4 3.7 0.9 0.3393 0.1131 0.6444 29 24 51 67 41 81 74 58 82

Mockito 567.1 2.1 3.4 0.8 0.4348 0.1382 0.6525 3 3 7 7 8 14 10 10 14

Time 261.4 3.5 2.9 0.7 0.1778 0.2403 0.6435 3 3 3 8 8 14 11 10 15

Average 754.6 3.1 3.7 1.0 0.2583 0.1591 0.6278

Total 67 60 103 145 120 219 178 159 231

21.6% 19.4% 33.2% 46.8% 38.7% 70.6% 57.4% 51.3% 74.5%

Average 580.0 4.9 4.0 1.1 0.2225 0.1973 0.6037

Total 76 94 182 172 172 318 222 237 354

16.6% 20.5% 39.7% 37.5% 37.5% 69.3% 48.4% 51.6% 77.1%

O, M, and P denote Ochiai, Metallaxis, and PRINCE, respectively.

7 RELATED WORK

7.1 Fault Localization Techniques

7.1.1 Learn-to-Rank Fault Localization. Learning a ranking model from multiple sources of fault
localization has been proposed recently. Xuan and Monperrus combined scores from different SBFL
formulas using linear weights [81]. Le et al. used rankSVM to learn ranking models from multiple
SBFL scores as well as the invariant violation features [5]. Finally, Sohn and Yoo [68] used rankSVM
as well as GP to learn ranking models from SBFL scores and program change metrics. In this article,
we propose a new set of features on a target program including features of MBFL and the source
code files which significantly improve precision of fault localization.

7.1.2 Spectrum-based Fault Localization. Spectrum-based fault localization is widely stud-
ied [74]. SBFL formulas have been designed and proposed, both manually [2, 27, 28, 31, 51, 75] and

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 23. Pub. date: October 2019.



23:28 Y. Kim et al.

automatically using genetic programming [82]. It also has been extended in various ways by con-
sidering inputs other than structural coverage including call sequence [13], dataflow analysis [65],
and specification [21]. One strength of SBFL is its relatively low cost compared to techniques that
uses program state analysis [11, 84] or machine learning [5, 68]. SBFL does not require any input
other than structural coverage, which tends to be collected as a measure of test adequacy regardless
of localization purpose.

There are well-known limitations and critiques to SBFL. Steinmann et al. [69] point out that
the inherent limitations in block structure prevents statement level SBFL from achieving precision
over certain level. PRINCE avoids this problem by using the MBFL features that use statement
level mutation analysis and the statement features, which captures different characteristic of each
statement in the same basic block. There are mixed claims about the practicality of SBFL in the
literature. Parnin and Orso presented a human study that showed that SBFL does not improve
developer productivity in practice [55], and called for a more realistic evaluation metric such as
absolute ranking. However, Xia et al. recently reported that using even a mediocre localization tool
(i.e., those that can rank the faulty statement within the top 10 places) can improve the developer
productivity [76]. We report both the traditional expense metric and the absolute ranking: PRINCE
can rank 182 of 459 (39.7%) target faults within the top five places and 243 of 459 (52.9%) target
faults within the top 10 places. Also, several research work have been proposed to increase the
precision of existing SBFL techniques by generating effective test cases for SBFL [44, 59] These
techniques are orthogonal to PRINCE and can be used to improve the effectiveness of SBFL features
of PRINCE to precisely localize faults.

7.1.3 Mutation-based Fault Localization. Moon et al. [49] proposed a mutation-based fault lo-
calization technique MUSE. MUSE focuses on the difference introduced by the mutation using the
conjectures: (a) the failing tests are more likely to pass on the mutants generated by mutating the
faulty statement than the mutants generated by mutating the correct statement, (b) the passing
tests are more likely to fail on the mutants generated by mutating the correct statement than the
mutants generated by mutating the faulty statement. Papadakis and Le-Traon proposed Metallaxis,
whichs use mutation analysis for fault localization [53, 54]. Metallaxis depends on the similarity
between mutants in an attempt to detect unknown faults: Variations of existing SBFL formulas
were used to identify suspicious mutants. Gong et al. [20] extends Metallaxis to improve mutant
execution speed without loss of precision. Zhang et al. [85], however, use mutation analysis to
identify a fault-inducing commit from a series of commits to a source code repository: Their in-
tuition is that mutating the statement updated by a faulty commit is likely to generate test results
similar to those of the faulty commit. Both of Metallaxis and Zhang et al.’s work are based on
similarity between the code mutation and the fault. Those MBFL techniques can overcome the
limitation in block structure of SBFL and more precisely locate a fault than the SBFL techniques.
However, the MBFL techniques require a large amount of time, because the MBFL techniques need
to execute a large amount of various mutants to precisely locate a fault. In contrast, PRINCE can
locate a fault more precisely and faster than Metallaxis and MUSE by using the SBFL features, static
code features, and only 20% of the generated mutants altogether. Pearson et al. [57] compared the
precision of the MBFL techniques (Metallaxis and MUSE) with the SBFL techniques on real-world
Java program faults in Defects4J. However, the comparison is limited, because Pearson et al. used
a limited number of mutation operators, which can significantly decrease the precision of MBFL
techniques. We demonstrated that using more mutation operators can improve the precision of
MBFL techniques (Section 5.2).

7.1.4 Fault Localization by Altering Program States. There exists several other fault localization
techniques that do not use ranking metrics. Cleve and Zeller [11] use delta debugging to search
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for a program state that can cause a failed execution by replacing the state of a passing execution
with that of a failing execution. Zhang et al. [86] change outcomes of branch predicates of a failing
execution to find suspicious branch predicates. If the changed outcomes make the failing execution
pass, then the corresponding branch predicate is considered as the suspiciousness one. In a similar
way, Jeffrey et al. [29] changed the value of a program variable in a failing execution to the values in
other passing executions. Chandra et al. [8] use symbolic execution to find such value changes that
make a failing execution pass. All those techniques depend on the state change by mutating the
value of variables and the outcome of predicates, which can be mimicked by mutation in PRINCE’s
MBFL features. In addition to the MBFL features, PRINCE utilizes SBFL and various static features
to increase precision of fault localization.

7.2 Source Code Features Used by Bug Prediction Techniques

Various source code metrics to measure code complexity are used by bug prediction techniques as
features to learn a bug prediction model. Widely adopted source code metrics for bug prediction
include source code size [4], Halstead complexity metrics [24], McCabe complexity metrics [48],
and Object-Oriented (OO) complexity metrics [10, 17].

The size metrics measure lines of code, the number of functions, the number of variables, and so
on, as the complexity metrics. Halstead [24] proposed several size metrics using the number of op-
erators and operands. McCabe [48] proposed the cyclomatic complexity to measure the complexity
of a control flow structure by using the number of nodes and their connections. OO metrics mea-
sure the complexity of class structures in object-oriented programming languages. Chidamber and
Kemerer [10] proposed metrics to measure complexity of classes using inheritance depth, the num-
ber of parent and children classes in an inheritance graph, and coupling and cohesion of classes.
Abreu and Carapuça [17] proposed other metrics for complexity of classes using the number of
attributes and methods defined in target classes.

We have applied most of the proposed complexity metrics as the static code features for fault
localization. PRINCE utilizes some metrics as they are (e.g., size metrics, the cyclomatic complexity,
the number of operators and operands) and some metrics after adaptation as a language agnostic
form (e.g., the number of attributes and methods defined in classes are modified to the number of
variables and functions defined in files). Several metrics cannot be used by PRINCE, because the
metrics measure the complexities that exist only in the object-oriented programming language
(e.g., the number of parent and children classes in an inheritance graph), which is not possible to
be language agnostic.

8 CONCLUSION AND FUTURE WORK

We have presented PRINCE, a new learn-to-rank fault localization technique that utilizes various
dynamic and static code features. PRINCE learns ranking models from existing known faults using
dynamic features from MBFL and SBFL as well as static code features from a statement, a function,
and a file and applies the ranking models to precisely localize unknown faults. The results of
empirical evaluation on 65 real-world faults in CoREBench, 84 artificial faults in SIR, and 310
real-world faults in Defects4J show that PRINCE outperforms the state-of-the-art MBFL, SBFL,
and learn-to-rank FL techniques significantly and provides a practical fault localization solution.
PRINCE is 3.0 and 4.2 times more precise than Metallaxis and Ochiai in terms of expense metric,
each of which is the best MBFL and SBFL technique, respectively. Also, PRINCE ranks the faulty
statement among the top 5 statements for 182 of 459 target faults.

Future work includes performance optimization of dynamic future extraction from mutation
testing as well as developing new features for PRINCE such as identifier-based features [18] and
function relation-based features [35] to improve the precision of PRINCE. Also, we will develop a
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test suite augmentation technique [78, 80] for effective fault localization by using automated test
generation techniques such as a compositional symbolic analysis [37, 67] from unit-level anal-
ysis [35, 39, 40], a mutation-based test generation technique [36, 38], a hybrid test generation
technique of concolic testing and genetic algorithm [41, 79], and a distributed concolic testing
technique [7, 34]. Finally, we plan to evaluate various other learning methods to improve PRINCE.
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