
Concolic Testing of the Multi-sector Read Operation for
Flash Memory File System ?

Moonzoo Kim1 and Yunho Kim1

CS Dept. KAIST
Daejeon, South Korea

moonzoo@cs.kaist.ac.kr
kimyunho@kaist.ac.kr

Abstract. In today’s information society, flash memory has become a virtually
indispensable component, particularly for mobile devices. In order for mobile de-
vices to operate successfully, it is essential that flash memory be controlled cor-
rectly through file system software. However, as is typical for embedded software,
conventional testing methods often fail to detect hidden flaws in the software due
to the difficulty of creating effective test cases. As a different approach, model
checking techniques guarantee a complete analysis, but only on a limited scale.
In this paper, we describe an empirical study wherein a concolic testing method is
applied to the multi-sector read operation for a flash memory. This method com-
bines a symbolic static analysis and a concrete dynamic analysis to automatically
generate test cases and perform exhaustive path testing accordingly. In addition,
we analyze the advantages and weaknesses of the concolic testing approach on
the domain of the flash file system compared to model checking techniques.

1 Introduction

Due to attractive characteristics such as low power consumption and strong resistance
to physical shock, flash memory has become a crucial component for mobile devices.
Accordingly, in order for mobile devices to operate successfully, it is essential that the
file system software of the flash memory operates correctly. However, conventional
testing methods often fail to detect hidden bugs in the file system software for flash
memory, since it is very difficult to create effective test cases that provide a check of all
possible execution scenarios generated from the complex file system software. Thus, the
current industrial practice of manual testing does not achieve high coverage or provide
cost-effective testing. In another testing approach, randomized testing can save human
effort for test case generation, but does not achieve high coverage, because random
input data does not necessarily guarantee high coverage of a target program.

? This work was supported by the Engineering Research Center of Excellence Program of Korea
Ministry of Education, Science and Technology(MEST)/Korea Science and Engineering Foun-
dation(KOSEF) (grant number R11-2008-007-03002-0) and the MKE(Ministry of Knowledge
Economy), Korea, under the ITRC(Information Technology Research Center) support pro-
gram supervised by the IITA(Institute of Information Technology Advancement) (IITA-2009-
(C1090-0902-0032)).

These deficiencies of conventional testing incur significant overhead to manufactur-
ers. In particular, ensuring reliability and performance are the two most time-consuming
tasks to produce high quality embedded software. For example, a multi-sector read
(MSR) function was added to the flash software to improve the reading speed of a Sam-
sung flash memory product [2]. However, this function caused numerous errors in spite
of extensive testing and debugging efforts, to the extent that the developers seriously
considered removing the feature. Considering that MSR is a core logic used for most
flash software with variations, and that improvement of the reading speed through MSR
can provide important competitive power to flash memory products, research on the
effective analysis of MSR is desirable and practically rewarding.

In spite of the importance of flash memory, however, little research work has been
conducted to formally analyze flash file systems. In addition, most of such work [8, 10,
4] focuses on the specification of file system design, not real implementation. In this
paper, we describe experiments we carried out to analyze the MSR code of the Sam-
sung flash file system using CREST [12], an open source concolic testing [22, 20, 5]
tool for C programs. With a given compilable target C code, a concolic (CONCrete +
symbOLIC) testing combines both a concrete dynamic analysis and a symbolic static
analysis [13, 23] to automatically generate test cases that achieve high coverage. How-
ever, it is necessary to check the effectiveness of concolic testing on a flash file system
through empirical studies, since the success of this testing approach depends on the
characteristics of the target program under test. MSR has complex environmental con-
straints between sector allocation maps and physical units for correct operation (see
Section 2.2) and these constraints may cause insufficient coverage and/or high runtime
cost for the analysis when concolic testing is applied.

Furthermore, we compare the empirical results obtained from analyzing MSR
through concolic testing with those yielded by model checking [9]. As an alternative
solution to achieve high reliability, model checking guarantees complete analysis re-
sults; the authors reported on the effectiveness of model checking for the verification
of MSR in [15]. However, model checking has a limitation with respect to scalability,
and thus the analysis results can be applied on a small scale only. Thus, comparison of
these two different techniques to analyze MSR can clearly show their relative strengths
and weaknesses and will serve as a basis for developing an advanced analysis technique
suitable for flash file systems.

The organization of this paper is as follows. Section 2 overviews the file system
for the flash memory and describes multi-sector operation in detail. Section 3 briefly
explains the concolic testing algorithm. Section 4 describes the experimental results
obtained by applying concolic testing to MSR. Section 5 discusses observations from
the experiments. Section 6 concludes the paper with directions for future work.

2 Overview of Multi-sector Read Operation

Unified storage platform (USP) is a software solution to operate a Samsung flash mem-
ory device [2]. USP allows applications to store and retrieve data on flash memory
through a file system. USP contains a flash translation layer (FTL) through which data
and programs in the flash memory device are accessed. The FTL consists of three layers

- a sector translation layer (STL), a block management layer (BML), and a low-level
device driver layer (LLD). Generic I/O requests from applications are fulfilled through
the file system, STL, BML, and LLD, in order. MSR resides in STL. 1

2.1 Overview of Sector Translation Layer (STL)

A NAND flash device consists of a set of pages, which are grouped into blocks. A unit
can be equal to a block or multiple blocks. Each page contains a set of sectors.

When new data is written to flash memory, rather than overwriting old data directly,
the data is written on empty physical sectors and the physical sectors that contain the
old data are marked as invalid. Since the empty physical sectors may reside in sepa-
rate physical units, one logical unit (LU) containing data is mapped to a linked list of
physical units (PU). STL manages this mapping from logical sectors (LS) to physical
sectors (PS). This mapping information is stored in a sector allocation map (SAM),
which returns the corresponding PS offset from a given LS offset. Each PU has its own
SAM.

Logical
unit 7

SAM of physical unit 1

Logical offset Physical offset

Physical
unit 4

Physical
unit 1

unit 7

SAM of physical unit 4

Logical offset Physical offsetLogical offset Physical offset

0 3
1 2
2

unit 4
LS2

unit 1
LS0
LS1
LS1

Logical offset Physical offset

0
1
2 02

3

LS1
LS0

2 0
3

Fig. 1. Mapping from logical sectors to physical sectors

Figure 1 illustrates a mapping from logical sectors to physical sectors where 1 unit
consists of 1 block and 1 block contains 4 pages, each of which consists of 1 sector.
Suppose that a user writes LS0 of LU7. An empty physical unit PU1 is then assigned
to LU7, and LS0 is written into PS0 of PU1 (SAM1[0]=0). The user continues to write
LS1 of LU7, and LS1 is subsequently stored into PS1 of PU1 (SAM1[1]=1). The user
then updates LS1 and LS0 in order, which results in SAM1[1]=2 and SAM1[0]=3.
Finally, the user adds LS2 of LU7, which adds a new physical unit PU4 to LU7 and
yields SAM4[2]=0.

2.2 Multi-sector Read Operation

USP provides a mechanism to simultaneously read as many multiple sectors as possible
in order to improve the reading speed. The core logic of this mechanism is implemented

1 This section is taken from [15].

in a single function in STL. Due to the non-trivial traversal of data structures for logical-
to-physical sector mapping (see Section 2.1), the function for MSR is 157 lines long and
highly complex, having 4-level nested loops. Figure 2 describes simplified pseudo code
of these 4-level nested loops. The outermost loop iterates over LUs of data (line 2-
18) until the numScts amount of the logical sectors are read completely. The second
outermost loop iterates until the LS’s of the current LU are completely read (line 5-16).
The third loop iterates over PUs mapped to the current LU (line 7-15). The innermost
loop identifies consecutive PS’s that contain consecutive LS’s in the current PU (line
8-11). This loop calculates conScts and offset, which indicate the number of such
consecutive PS’s and the starting offset of these PS’s, respectively. Once conScts and
offset are obtained, BML READ rapidly reads these consecutive PS’s as a whole (line
12).

01:curLU = LU0;
02:while(numScts > 0) {
03: readScts = # of sectors to read in the current LU
04: numScts -= readScts;
05: while(readScts > 0) {
06: curPU = LU->firstPU;
07: while(curPU != NULL) {
08: while(...) {
09: conScts = # of consecutive PS’s to read in curPU
10: offset = the starting offset of these consecutive PS’s
11: }
12: BML_READ(curPU, offset, conScts);
13: readScts = readScts - conScts;
14: curPU = curPU->next;
15: }
16: }
17: curLU = curLU->next;
18:}

Fig. 2. Loop structures of MSR

For example, suppose that the data is “ABCDEF” and each unit consists of four
sectors and PU0, PU1, and PU2 are mapped to LU0 (“ABCD”) in order and PU3 and
PU4 are mapped to LU1 (“EF”) in order, as depicted in Figure 3(a). Initially, MSR
accesses SAM0 to find which PS of PU0 contains LS0(‘A’). It then finds SAM0[0]=1
and reads PS1 of PU0. Since SAM0[1] is empty (i.e., PU0 does not have LS1(‘B’)),
MSR moves to the next PU, which is PU1. For PU1, MSR accesses SAM1 and finds that
LS1(‘B’) and LS2(‘C’) are stored in PS1 and PS2 of PU1 consecutively. Thus, MSR
reads PS1 and PS2 of PU1 altogether through BML READ and continues its reading
operation.

The requirement for MSR is that the content of the read buffer should be equal to the
original data in the flash memory when MSR finishes reading, as given by assert(
∀i.LS[i]==buf[i]) inserted at the end of MSR.

1 0
1 1
2

3

E
AB F

C
D

3 3
0 2

3
1

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4

(a) A distribution of
“ABCDEF”

B
D

F
AC E

PU0~PU4SAM0~SAM4 SAM0~SAM4

(c) A distribution of
“FEDCBA”

(b) Another distribution of
“ABCDEF”

1 0
1 1
2

3

B
F E A

D
C

PU0~PU4SAM0~SAM4

Fig. 3. Possible distributions of data “ABCDEF” and “FEDCBA” to physical sectors

In these analysis tasks, we assume that each sector is 1 byte long and each unit
has four sectors. Also, we assume that data is a fixed string of distinct characters (e.g.,
“ABCDE” if we assume that data is 5 sectors long, and “ABCDEF” if we assume that
data is 6 sectors long). We apply this data abstraction, since the values of logical sectors
should not affect the reading operations of MSR, but the distribution of logical sectors
into physical sectors does. For example, for the same data “ABCDEF”, the reading op-
erations of MSR are different for Figure 3(a) and Figure 3(b), since they have different
SAM configurations (i.e. different distributions of “ABCDEF”). However, for “FED-
CBA” in Figure 3(c), which has the same SAM configuration as the data shown in Fig-
ure 3(a), MSR operates in exactly same manner as for Figure 3(a). Thus, if MSR reads
“ABCDEF” in Figure 3(a) correctly, MSR reads “FEDCBA” in Figure 3(c) correctly
too.

In addition, we assume that data occupies 2 logical units. The number of possible
distribution cases for l LS’s and n physical units, where 5 ≤ l ≤ 8 and n ≥ 2, increases
exponentially in terms of both n and l, and can be obtained by

n−1∑

i=1

((4×i)C4 × 4!)× ((4×(n−i))C(l−4) × (l − 4)!)

For example, if a flash has 1000 physical units with data occupying 6 LS’s, there exist
a total of 3.9 × 1022 different distributions of the data. Table 1 shows the total num-
ber of possible cases for 5 to 8 logical sectors and various numbers of physical units,
respectively, according to the above formula.

MSR has characteristics of a control-oriented program (4-level nested loops) and a
data-oriented program (large data structure consisting of SAMs and PUs) at the same
time, although the values of PS’s are not explicitly manipulated. As seen from Figure 3,
the execution paths of MSR depend on the values of SAMs and the order of PUs linked
to LU. In other words, MSR operates deterministically, once the configuration of the
SAMs and PUs is fixed.

PUs 4 5 6 7 8
l = 5 61248 290304 9.8× 105 2.7× 106 6.4× 106

l = 6 239808 1416960 5.8× 106 1.9× 107 5.1× 107

l = 7 8.8× 105 7.3× 106 3.9× 107 1.5× 108 5.0× 108

l = 8 3.4× 106 4.2× 107 2.9× 108 1.4× 109 5.6× 109

Table 1. Total number of the distribution cases

3 Overview of the Concolic Testing Approach

This section presents an overview of the concolic testing algorithm [22, 20, 5]. The con-
colic testing algorithm executes a target program both concretely and symbolically [13,
23] at the same time. Note that the symbolic path is built following the path that the
concrete execution takes. The concolic testing algorithm proceeds in the following five
steps:

1. Instrumentation
A target C program is statically instrumented with probes, which record symbolic
path constraints from a concrete execution path when the target program is exe-
cuted.

2. Concrete execution
The instrumented C program is executed with given input values and the concrete
execution part of the concolic execution constitutes the normal execution of the
program. For the first execution of the target program, initial input values are as-
signed with random values. For the second execution and onward, input values are
obtained from step 5.

3. Symbolic execution
The symbolic execution part of the concolic execution collects symbolic constraints
over the symbolic input values at each branch point encountered along the con-
crete execution path. Whenever each statement Sj of the original target program
is executed, a corresponding probe Pj inserted at Sj updates the symbolic map of
symbolic variables if Sj is an assignment statement, or collects a corresponding
symbolic path constraint Cj if Sj is a branch statement. Thus, a complete sym-
bolic path formula φi is built at the end of the ith execution by combining all path
constraints Cj’s.

4. Deciding the next execution path
Given a symbolic path formula φi obtained in step 3, φi+1 (the next execution
path to test) is created by negating one path constraint Cj . For example, if depth
first search (DFS) is used, φi+1 is generated by negating the last symbolic path
constraint of φi. If there is no further new paths to test, the algorithm terminates.

5. Selecting the next input values
A constraint solver such as a Satisfiability Modulo Theory (SMT) solver [3] gener-
ates a model that satisfies φi+1. This model assigns concrete values to input values
and the whole concolic testing procedure iterates from stage 2 again with these
input values.

Note that the above algorithm does not raise any false alarms, since it executes a
concrete path. However, there is a clear limitation in step 5. A constraint solver cannot
solve complex path formulas to compute concrete values; most constraint solvers cannot
handle statements containing arrays, pointers, and non-linear arithmetic. To address this
difficulty, symbolic constraints are simplified by replacing some of the symbolic values
with concrete values, which may result in incomplete coverage.

4 Empirical Study on Concolic Testing MSR

In this section, we describe two series of experiments for concolically testing MSR,
both of which target the same MSR code, but with different environment models - a
constraint-based model and an explicit model. Our hypotheses are as follows:

– H1: Concolic testing is effective for analyzing the MSR code
– H2: Concolic testing is more efficient than model checking for analyzing the MSR

code

Regarding H1, we expect that concolic testing can detect bugs effectively, since it
tries to explore all feasible execution paths. For H2, considering that model checking
analyzes all possible value combinations of variables, concolic testing may analyze the
MSR code faster (note that different value combinations of variables may execute a
same path).

4.1 Testbed for the Experiments

All experiments were performed on 64 bit Fedora Linux 9 equipped with a 3 GHz
Core2Duo processor and 16 gigabytes of memory. We used CREST [1] as a concolic
testing tool for our experiments, since it is an open source tool and we could obtain more
detailed experimental results by modifying the CREST source code for our purposes.
However, since the CREST project is in its early stage, CREST has several limitations
such as lack of support for dereferencing of pointers and array index variables in the
symbolic analysis. Consequently, the target MSR code was modified to use an array
representation of the SAMs and PUs. We used CREST 0.1.1 (with DFS search option),
gcc 4.3.0, Yices 1.0.19 [6], which is a SMT solver used as an internal constraint solver
by CREST for solving symbolic path formulas.

For model checking experiments, CBMC 2.6 [7] and MiniSAT 1.14 [18] were used.
The target MSR codes used for concolic testing and model checking are identical, ex-
cept nominal modification replacing the assumption statements in CBMC experiments
with if statements to terminate testing if the assumptions are evaluated false (i.e. in-
valid test cases (see Section 4.2)). Model checking experiments were performed on the
same testbed as that of concolic testing experiments.

To evaluate the effectiveness of concolic testing, we applied mutation analysis [14]
by injecting the following three types of frequently occuring bugs (i.e. mutation opera-
tors), each of which has three instances:

1. Off-by-1 bugs

– b11: while(numScts>0) of the outermost loop (line 2 of Figure 2) to
while(numScts>1)

– b12: while(readScts>0) of the second outermost loop (line 5 of Figure 2)
to while(readScts>1)

– b13: for(i=0;i<conScts; i++) of BML READ() (line 12 of Figure 2)
to for(i=0;i<conScts-1;i++)

2. Invalid condition bugs

– b21: if(SAM[i].offset[j]!=0xFF) in the third outermost loop to
if(SAM[i].offset[j]==0xFF)

– b22: readScts=((4-j)>numScts)?numScts:4-j in the innermost
loop to readScts=((4-j)<numScts)?numScts:4-j

– b23: if((firstOffset+nScts)==SAM[i].offset[j]) in the inner-
most loop to if((firstOffset+nScts)!=SAM[i].offset[j])

3. Missing statement bugs

– b31: missing nScts=1 in the second outermost loop
– b32: missing nReadScts-- in the second outermost loop
– b33: missing nLun++ corresponding the line 17 of Figure 2

Furthermore, we injected an artificial corner case bug bc by changing line 13 of
Figure 2 as follows:

readScts = readScts - conScts -
(PU[1].sect[3]==’A’ && PU[0].sect[0]==’B’ && PU[2].sect[3]==’C’
&& PU[1].sect[1]==’D’ && PU[4].sect[3]==’E’ && PU[3].sect[2]==’F’)

Note that bc causes an error only when the configuration of the PUs and SAMs
satisfies the given condition illustrated in Figure 1.(b). bc is very hard to detect, since the
probability of detecting bc through testing is extremely low (e.g. 7×10−8 = 1/1416960
when 6 logical sectors are distributed over 5 PUs (see Table 1)). Therefore, although bc

is not a realistic bug, the effectiveness of concolic testing can be shown more clearly by
detecting bc.

4.2 Experiments with a Constraint-based Environment Model

Constraint-based Environment Model As described in Section 2.2, a test case for
MSR is a configuration of SAMs and PUs (see Figure 3). MSR assumes randomly
written logical data on PUs and a corresponding SAM records the actual location of
each LS. Unfortunately, however, the writing is not purely random, but is subject to
several constraint rules; the following are some of the representative rules applied to
the random writing. For example, the last two rules can be enforced by the constraints
in Figure 4.

1. One PU is mapped to at most one LU.
2. If the ith LS is written in the kth sector of the jth PU, then the (i mod m)th offset

of the jth SAM is valid and indicates the PS number k, where m is the number of
sectors per unit (4 in our experiments).

3. The PS number of the ith LS must be written in only one of the (i mod m)th offsets
of the SAM tables for the PUs mapped to the b i

mcth LU.

∀i, j, k (LS[i] = PU [j].sect[k] → (SAM [j].valid[i mod m] = true

& SAM [j].offset[i mod m] = k

& ∀p.(SAM [p].valid[i mod m] = false)

where p 6= j and PU [p] is mapped tob i

m
cth LU))

Fig. 4. Environment constraints for MSR

If a given configuration of SAMs and PUs satisfies the constraints, this configuration
is valid; invalid, otherwise. It is important to check whether a given test case is valid
or not, since an invalid test case may produce an incorrect testing result. Therefore, for
accurate unit testing, it is essential to provide a precise environment model to feed valid
test cases only.

To enforce the constraint-based environment model on the test cases, all ele-
ments of the SAM tables and PUs are declared to be analyzed symbolically through
CREST unsigned char(PU[i].sect[j]) and CREST unsigned char(
SAM[i].offset[j]) statements for all valid i and j. Then, a test driver/environment
model checks whether concrete values assigned by CREST to those variables satisfy
the constraints in Figure 4. If not, the execution terminates immediately without testing
MSR. Note that these constraints are encoded as if statements in nested loops handling
universally quantified i, j, k, and p, which results in a complex environment model.

Experimental Results Due to a time limitation, we could perform 4 experiments with
4 to 5 PUs with 5 to 6 LSes. The total numbers of test cases generated and the ratios
of the valid test cases over the total test cases are depicted in Figure 5. For example,
CREST generated a total of 5.6× 105 test cases for 4 PUs with 5 LSes, and only 61248
test cases (around 11% of the total test cases) among them were valid. Note that the
numbers of the valid test cases for these 4 experiments are equal to the numbers of
all possible configurations of the SAMs and PUs (see Table 1). This means that the
concolic testing covers all possible execution scenarios of MSR. 2 Consequently, all
injected bugs b11 to b33 as well as bc were detected; most of them were detected in a
few seconds through the first few hundred test cases.

The performance of the concolic testing is shown in Figure 6. For example, CREST
took 2594 seconds for the experiments with 4 PUs and 5 LSes. The amount of time to

2 We tried to perform the same experiments with CUTE (32 bit binary) [22] but failed; CUTE
crashed after consuming 4 gigabytes of memory at the constraint solving step at the third
iteration. We could not continue the experiments with CUTE, since neither the source code
nor user support was available.

Fig. 5. Generated test cases with constraint-based environment model

analyze MSR increases exponentially in terms of the number of PUs and LSes. Fig-
ure 6(a) shows that CREST is several hundred times slower than CBMC. Figure 6.(b)
shows that symbolic execution, Yices, and system execution (e.g. launching a target pro-
gram) take around 40%, 40%, and 20% of the total execution time. However, all experi-
ments use around 10 megabytes of memory only, since the DFS search in CREST needs
only a small amount of information regarding the previous execution path, not the whole
execution tree. In comparison, CBMC consumed 40 megabytes and 89 megabytes for 4
PUs with 5 LSes and 5 PUs with 6 LSes, respectively. Therefore, the memory bottleneck
problem associated with model checking does not exist for concolic testing.

Fig. 6. Analysis time with constraint-based environment model

4.3 Experiments with an Explicit Environment Model

Explicit Environment Model As we have seen from Figure 5(b), the constraint-based
environment model generated too many invalid test cases. Thus, we decided to use an
explicit environment model that generates test cases explicitly by selecting a PU and
its sector to contain the l th logical sector (PU[i].sect[j]=LS[l]) and setting the
corresponding SAM accordingly (SAM[i].offset[l]=j). Therefore, most of the
generated test cases satisfy the constraints between SAMs and PUs.

However, since CREST cannot support accessing array elements through a symbolic
array index variable, we have to modify assignments of SAMs and PUs in the environ-
ment model so that these assignments access array elements through constants, not in-
dex variables. This workaround solution is depicted in Figure 7. idxPU and idxSect,
which indicate the physical location of the ith logical sector data (LS[i]), are de-
clared to be handled symbolically (lines 3 and 4). In the explicit environment model,
the switch statements starting at line 9 and line 10/17 respectively handle idxPU and
idxSect case by case. Note that, although this explicit environment model does not
generate many invalid test cases, it increases the total number of execution paths due to
these additional switch statements.

01:for (i=0; i< NUM_LS; i++){
02: unsigned char idxPU, idxSect;
03: CREST_unsigned_char(idxPU);
04: CREST_unsigned_char(idxSect);
05: ...
06: //The switch statements encode the following two statements:
07: // PU[idxPu].sect[idxSect]= LS[i];
08: // SAM[idxPu].sect[i]= idxSect;
09: switch(idxPU){
10: case 0: switch(idxSect) {
11: case 0: PU[0].sect[0] = LS[i];
12: SAM[0].offset[i] = idxSect; break;
13: case 1: PU[idxPU].sect[1] = LS[i];
14: SAM[0].offset[i] = idxSect; break;
15: ... }
16: break;
17: case 1: switch(idxSect) {
18: ...

Fig. 7. Explicit environment model for MSR

Experimental Results Due to a time limitation, we could perform only 4 experiments
with 4 to 5 PUs with 5 to 6 LSes with the explicit environment model. The total numbers
of test cases generated and the ratios of the valid test cases over the total test cases are
depicted in Figure 8. For example, CREST generated a total of 105 test cases for 4

PUs with 5 LSes, 61248 test cases (around 60% of the total test cases) among them
being valid. Thus, the explicit environment model generates test cases more efficiently
compared to the constraint-based model. Similar to the experiments with the constraint-
based model, the numbers of valid test cases for these 4 set of experiments are equal
to the numbers of all possible configurations of the SAMs and PUs (see Table 1). All
injected bugs b11 to b33 and bc were detected, but within fewer test cases; most of them
were detected in 3 seconds through the first 50 test cases.

Fig. 8. Statistics on the generated test cases with explicit environment model

The performance of the concolic testing approach with the explicit environment
model is depicted in Figure 9. For example, CREST took 1203 seconds for the experi-
ments with 4 PUs and 5 LSes. Although the concolic testing with the explicit model is
twofold faster than the testing with the constraint-based model, it is still a hundred times
slower compared to CBMC (see Figure 6). Yices takes around 75% of the total execu-
tion time, since invalid test cases are significantly reduced, which thus decreases the
portion of symbolic execution time and system execution time. Note that the symbolic
execution path formulas for invalid test cases are very short and are solved quickly.
Therefore, improvement of the SMT solver is an important issue with regard to the
success of concolic testing.

5 Discussion

In this section, several issues are discussed on the basis of our experience of applying
concolic testing to MSR.

5.1 Weaknesses of Concolic Testing

Although our hypothesis H1 is accepted through the empirical study (i.e. the concolic
testing method demonstrates capability of detecting bugs through high coverage), H2 is

Fig. 9. Analysis time with explicit environment model

rejected (i.e. its performance on MSR is worse than the performance of model checking
MSR by CBMC (see Figure 6 and Figure 9)). This poor performance was caused by
several steps of the concolic testing algorithm (see Section 3).

First, for a target program with a complex environmental model such as MSR, the
concolic testing wastes a large amount of time to generate invalid test cases. In the ex-
periments with the constraint-based environment model and the explicit environment
model, around 90% and 45% of the total test cases generated were invalid respectively
(see Figure 5 and Figure 8). Considering a unit under testing often has preconditions
or constraints enforced by its interacting components, the concolic testing framework
should provide an efficient way to control the generation of concrete input values so as
to generate only valid test cases. Second, concolic execution (see steps 2 and 3 of the
algorithm in Section 3) causes high overhead, since each original C statement is supple-
mented with a probe reflecting a concrete execution in a symbolic manner; around 40%
and 15% of the total execution times were spent for the concolic executions with the
constraint-based model and the explicit model, respectively (see Figure 6 and Figure 9).
Note that the original MSR code takes less than 0.1% of the concolic execution time.
Lastly, the performance of the constraint solver Yices was slow, although the path for-
mulas of MSR are conjunctions of only linear arithmetic conditions and can be solved
rapidly by many efficient algorithms [21]. Therefore, from our experiments, we can
conclude that CREST needs to be improved for practical usage.

5.2 Importance of an Environment Model

Through the various experiments carried out to analyze MSR, including conventional
testing [16], concolic testing, and model checking [15], we found that it is important to
build an accurate and efficient environment model for the analysis of a flash file sys-
tem. Also, it was found that different analysis techniques can commonly use the same
environment model. For example, the constraint-based environmental model (see Sec-
tion 4.2) was originally designed for model checking through CBMC and used as is with
only nominal modification. Similarly, the explicit environmental model was originally

designed for model checking through SPIN [11]. We used this environmental model for
SPIN with slight modification due to the limitation of CREST (i.e., array index vari-
ables are not symbolically handled). Furthermore, the design of the environment model
substantially affects the analysis performance (see Section 4.2 and Section 4.3).

Considering the importance of an environment model in unit testing, the claim of
automated test case generation by concolic testing is only partially true, since an expe-
rienced user has to build an environment model.

5.3 Comparison with Model Checking

Concolic testing can be considered as a light-weight model checking method, since it
generates all test cases corresponding to all possible execution paths. However, these
two different analysis techniques have as many different characteristics as common
characteristics. Table 2 compares these techniques briefly based on our experience, al-
though this comparison result might not be applicable to other target programs.

In general, model checking provides better accuracy, since the coverage of concolic
testing may not be complete if a target program contains complex statements that can-
not be solved by a constraint solver (note that this was not the case for MSR). Also,
constraint solvers used for concolic testing are not sufficiently advanced to manipu-
late symbolic execution path formulas efficiently. However, in terms of applicability,
concolic testing has notable advantages, since it can analyze a target program with un-
derlying binary libraries as it is, without manual abstraction, which is necessary for
model checking.

Accuracy Analysis Memory User Applicability
speed usage effort

Concolic testing High Slower Low Middle High
Model checking Highest Slow High High Low

Table 2. Comparison of concolic testing and model checking

5.4 Hard Characteristics of MSR for Concolic Testing

It was found that MSR is a hard instance for concolic testing. Concolic testing can
efficiently analyze programs whose data domain can be significantly abstracted. For
example, concolic testing can analyze binary search programs or sort programs quickly.
The data domain of MSR (especially SAMs), however, cannot be abstracted, since every
different value in every single element of SAMs leads to a unique execution path. Thus,
as shown in Section 4.2 and Section 4.3, the total number of valid test cases generated
is exactly the same as the number of all possible configurations of the PUs and SAMs
(see Table 1). In other words, in the analysis of MSR, concolic testing is burdened by
as much complexity as model checking. The same difficulty in analysis of MSR applies
to model checking and a scalability issue remains.

6 Conclusion and Future Work

We reported our experience of applying a concolic testing method to analyze the MSR
code, a complex unit of a flash file system, and analyzed the strengths and weaknesses of
the approach empirically. Although several goals of the concolic testing method could
be achieved through the experiments (e.g., automated test case generation, high cov-
erage, and detection of bugs), CREST suffered from a few limitations including slow
analysis speed and lack of support for array index variables. We expect that CREST
will be able to overcome these limitations in the near future.

As future study, we plan to build a flash file system model that can be used by
file-system-dependent applications in a concolic testing framework. One inspiring re-
lated work was carried out by Microsoft [17], where an intelligent mock object (an
environment model in our terminology) for a file system was developed to test target
applications in the PEX framework [19]. The mock file system automatically generates
various possible test cases necessary to test applications, which can save significant
effort to test file-system-dependent applications.

Acknowledgments

We would like to thank Hotae Kim at Samsung Electronics and Prof. Yunja Choi at
Kyungpook National University for their valuable discussion on the environment mod-
els for flash file systems.

References

1. CREST - automatic test generation tool for C. http://code.google.com/p/crest/.
2. Samsung OneNAND fusion memory. http://www.samsung.com/global/business/

semiconductor/products/fusionmemory/Products OneNAND.html.
3. SMT-LIB: The satisfiability module theories library.

http://combination.cs.uiowa.edu/smtlib/.
4. A.Butterfield, L.Freitas, and J.Woodcock. Mechanising a formal model of flash memory.

Science of Computer Programming, 74(4), Feb 2009.
5. C.Cadar, D.Dunbar, and D.Engler. KLEE: Unassisted and automatic generation of high-

coverage tests for complex systems programs. In Operating System Design and Implemen-
tation (OSDI), 2008.

6. B. Dutertre and L. Moura. A fast linear-arithmetic solver for DPLL(T). In Computer Aided
Verification (CAV), 2006.

7. E.Clarke, , D.Kroening, and F.Lerda. A tool for checking ANSI-C programs. In Kurt Jensen
and Andreas Podelski, editors, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer Science, pages 168–
176. Springer, 2004.

8. E.Kang and D.Jackson. Formal modeling and analysis of a flash filesystem in alloy. In
Abstract state machines, B and Z, 2008.

9. E.M.Clarke, O.Grumberg, and D.A.Peled. Model Checking. MIT Press, January 2000.
10. M.A. Ferreira, S.S. Silva, and J.N. Oliveira. Verifying intel flash file system core specifica-

tion. In 4th VDM-Overture Workshop, 2008.

11. G. J. Holzmann. The Spin Model Checker. Wiley, New York, 2003.
12. J.Burnim and K.Sen. Heuristics for scalable dynamic test generation. Technical Report

UCB/EECS-2008-123, EECS Department, University of California, Berkeley, Sep 2008.
13. J.C.King. Symbolic execution and program testing. Communications of the ACM, 19(7),

1976.
14. J.H.Andrews, L.C.Briand, and Y.Labiche. Is mutation an appropriate tool for testing experi-

ments? In International Conference on Software Engineering, 2005.
15. M. Kim, Y. Choi, Y. Kim, and H. Kim. Formal verification of a flash memory device driver

- an experience report. In SPIN Workshop, 2008.
16. M.Kim, Y.Kim, Y.Choi, and H.Kim. Pre-testing flash device driver through model checking

techniques. In IEEE Int. Conf. on Software Testing, Verification and Validation, 2008.
17. M.Marri, T.Xie, N.Tillmann, J.de Halleux, and W.Schulte. An empirical study of testing

file-system-dependent software with mock objects. In Automation of Software Test, 2009.
18. N.Een and N.Sorensson. An extensible sat-solver. In SAT 2003, 2003.
19. N.Tillmann and W.Schulte. Parameterized unit tests. In European Software Engineering

Conference/Foundations of Software Engineering, 2005.
20. P.Godefroid, N.Klarlund, and K.Sen. Dart: Directed automated random testing. In Program-

ming Language Design and Implementation (PLDI), 2005.
21. S.Berezin, V.Ganesh, and D.L.Dill. An online proof-producing decision procedure for mixed

integer linear arithmetic. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2003.

22. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In European
Software Engineering Conference/Foundations of Software Engineering, 2005.

23. W.Visser, C.S.Pasareanu, and S.Khurshid. Test input generation with Java PathFinder. In
International Symposium on Software Testing and Analysis, 2004.

