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Abstract

Flash memory has become virtually indispensable in
most mobile devices. In order for mobile devices to operate
successfully, it is essential that the flash memory be con-
trolled correctly through the device driver software. How-
ever, as is typical for embedded software, conventional test-
ing methods often fail to detect hidden flaws in the complex
device driver software. This deficiency incurs significant de-
velopment and operation overheads to the manufacturers.

Model checking techniques have been proposed to com-
pensate for the weaknesses of conventional testing meth-
ods through exhaustive analyses. These techniques, how-
ever, require significant manual efforts to create an abstract
target model and, thus, are not widely applied in indus-
try. In this project, we applied a model checking tech-
nique based on a Boolean satisfiability (SAT) solver. One
advantage of SAT-based model checking is that a target C
code can be analyzed directly without an abstract model,
thereby enabling automated and bit-level accurate verifica-
tion. In this project, we have applied CBMC, a SAT-based
software model checker, to the unit testing of the Samsung
OneNANDTM device driver. Through this project, we de-
tected several bugs that had not been discovered previously.

1 Introduction

Among the various storage platforms available, flash
memory has become the most popular choice for mobile
devices. Thus, in order for mobile devices to successfully
provide services to users, it is essential that the device driver
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of the flash memory operates correctly. However, as is typi-
cal of embedded software, conventional testing methods of-
ten fail to detect hidden bugs in the complex device driver
software. This deficiency incurs significant overheads to the
manufacturers.

Conventional testing has limitations in verifying whether
a target software satisfies a given requirement specification,
since testing does not provide complete coverage. Fur-
thermore, it requires significant human effort to generate
effective test cases that provide a certain degree of state-
ment/branch coverage. As a result, subtle bugs are hard to
detect by testing and can cause significant overheads after
the target software is deployed. In addition, even after de-
tecting a violation, debugging requires much human effort
to step-by-step replay and analyze what lead to the scenario
where the violation occurred. These limitations were man-
ifest in the development of flash software for Samsung’s
OneNANDTM flash memory [1]. For example, a multi-
sector read function was added to flash software to optimize
the reading speed (see Section 5.3); however, this function
caused numerous errors despite extensive testing and de-
bugging efforts, to the extent that the developers seriously
considered removing the feature.

Model checking techniques [12] have been proposed to
compensate for the aforementioned weaknesses of the con-
ventional testing methods by automatically exploring the
entire state space of an abstract target model. In addition, if
a violation is detected, a model checker generates a concrete
counter example through which the bug can be conveniently
identified.

However, model checking techniques are not widely ap-
plied in industry since a gap exists between the target soft-
ware and its abstracted model. To apply model checking,
significant additional efforts are required to create an ab-
stract target model, which is not affordable for most indus-
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trial software projects. However, software model checkers
with automated abstraction capabilities [9, 18] often result
in inaccurate analyses due to limited abstraction capabili-
ties. Thus, these weaknesses of model checkers hinder the
adoption of model checking techniques as main stream ver-
ification and validation (V&V) methods.

In this project, we applied a SAT-based model checker,
the C bounded model checker (CBMC) [10], to find subtle
bugs in the Samsung’s OneNANDTM device driver. CBMC
directly analyzes a C program without an abstract model
and provides accurate analysis results. Through this project,
we have demonstrated that a model checker can be used
as an automated and productive unit testing tool, which in-
creases the reliability of an embedded C program as well as
the productivity of software testing in an industry setting.

2 Overview of the OneNANDTM Flash Device
Driver

2.1 Overview of the Device Driver Soft-
ware for OneNANDTM Flash Memory

There are two types of flash memories: NAND and
NOR. NAND flash has a higher density and thus is typi-
cally used as a storage medium. NOR flash is typically used
to store software binaries, because it can execute software
in place (XIP), whereas NAND cannot. OneNANDTM is
a single chip comprising a NOR flash interface, a NAND
flash controller logic, a NAND flash array, and a small inter-
nal RAM. OneNANDTM provides a NOR interface through
its internal RAM. When an application executes a program
in OneNANDTM , the corresponding page of the program is
loaded into the RAM in OneNANDTM using demand pag-
ing manager (DPM) for XIP.

Unified storage platform (USP) is a software solution for
OneNANDTM based mobile embedded systems. Figure 1
presents an overview of USP: it manages both code storage
and data storage. USP allows applications to store and re-
trieve data on OneNANDTM through a file system. USP
contains a flash translation layer (FTL) through which data
and programs in the OneNANDTM device are accessed.
FTL consists of three layers: a sector translation layer
(STL), a block management layer (BML), and a low-level
device driver layer (LLD). Generic I/O requests from appli-
cations are fulfilled through the file system, STL, BML, and
LLD, in that order. A prioritized read request for executing
a program is made by DPM and this request goes directly to
BML. Although USP allows concurrent I/O requests from
multiple applications through STL, BML operations must
be executed sequentially, not concurrently. For this purpose,
BML uses a binary semaphore to coordinate concurrent I/O
requests from STL. Furthermore, a prioritized read request
from DPM can preempt generic I/O operations requested

by STL. Thus, it is important to guarantee the correctness
of the I/O operations in concurrent settings. In this project,
we analyzed FTL and DPM components of USP.
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Figure 1. Overview of USP

2.2 Overview of the Logical-to-Physical
Sector Translation

A NAND flash device consists of a set of pages that are
grouped into blocks. A unit can be equal to a block or mul-
tiple blocks. Each page contains a set of sectors. When
new data is written to the flash memory, rather than directly
overwriting old data, the data is written on empty physical
sectors and the physical sectors that contain the old data are
marked as invalid. Since the empty physical sectors may
reside in separate physical units, one logical unit (LU) con-
taining data is mapped to a linked list of physical units (PU).
STL manages the mapping from the logical sectors (LS)
to the physical sectors (PS). This mapping information is
stored in a sector allocation map (SAM), which returns the
corresponding PS offset from a given LS offset. Each PU
has its own SAM.

Figure 2 illustrates the mapping from logical sectors to
physical sectors where one unit contains four sectors. Sup-
pose that a user writes LS0 of LU7. An empty physical unit
PU1 is then assigned to LU7, and LS0 is written into the
PS0 of PU1 (SAM1[0]=0). The user continues to write the
LS1 of LU7, and the LS1 is subsequently stored into the
PS1 of PU1 (SAM1[1]=1). The user then updates LS1 and
LS0 in order, which results in SAM1[1]=2 and SAM1[0]=3.
Finally, the user adds the LS2 of LU7, which adds a new
empty physical unit PU4 to LU7 and yields SAM4[2]=0.
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Figure 2. Mapping from logical sectors to
physical sectors

3 Overview of the SAT-based Model Check-
ing Technology

3.1 Boolean Satisfiability Problem

A Boolean satisfiability problem (SAT) verifies whether
a propositional variable assignment σ that makes a given
Boolean formula φ evaluate to true (i.e. ∃σ.σ(φ) = true)
exists. SAT is a canonical NP-complete problem and has
received intensive theoretical treatment. Despite its theo-
retical complexity, SAT finds applications in many fields
including AI planning, circuit testing, and software model
checking, since the structured formulas generated from real
world problems are successfully solved by SAT solvers
in many cases. The modern SAT solvers, such as Min-
iSAT [11] and Chaff [17], exploit various heuristics [15]
and can solve a large SAT formula containing millions of
variables and clauses in a modest time [2].

3.2 Translation from a C Code to a SAT
Formula

To use a SAT solver as a bounded model checker [6] to
verify whether a given C code (C) satisfies a requirement
property (R), it is necessary to translate both C and R into
Boolean formulas φC and φR, respectively. A SAT solver
then determines whether φC ∧¬φR is satisfiable: if the for-
mula is satisfiable, it means that C violates R; if not, C
satisfies R with respect to the bound.

A brief sketch of the translation process is as fol-
lows [10]. We assume that a given C program is already
preprocessed. First, the C program is transformed through

the following steps:

• break, continue, and return statements are re-
placed by semantically equivalent goto statements.

• switch statements are transformed into semantically
equivalent if and goto statements.

• for and do while statements are replaced by
equivalent while statements.

• Function calls are inlined and side effects such as ++
are replaced with equivalent statements using new aux-
iliary variables.

The loop statements are then unwound. The while
loops are unwound using the following transformation n
times:

while(e) stm⇒ if(e) {stm; while(e) stm}

After unwinding the loop n times, the remaining while
loop is replaced by an unwinding assertion assert(!e)
that guarantees that the program does not execute more iter-
ations. If the unwinding assertion is violated, n is increased
until the unwinding bound is sufficiently large. Note that
this bound n is only an upper bound of the loop iteration
and does not need to be the exact number of iterations.

Finally, the transformed C program consists of only
nested if, assignments, assertions, labels, and goto state-
ments. This C program is transformed into a static single as-
signment (SSA) form. Figure 3(b) illustrates the SSA form
of the C program. This SSA program is converted into cor-
responding bit-vector equations and the final Boolean for-
mula is a conjunction of all these bit-vector equations. For
example, Figure 3(c) illustrates a Boolean conjunction of
the SSA statements; however, they are not converted into
bit-vector equations yet. We know that Figure 3(a) vio-
lates assert(x<3), since φC ∧ ¬φR is satisfiable by σ
such that σ(x0) = 1, σ(x1) = 1, σ(x2) = 2, σ(x3) =
3, σ(x4) = 3, σ(y0) = 0.

3.3 The C Bounded Model Checker
(CBMC)

CBMC [10] is a bounded model checker for ANSI-C de-
veloped at CMU. CBMC receives a C program as its input
and analyzes all C statements (e.g. pointer arithmetics, ar-
rays, structs, function calls, etc.) with bit-level accuracy. A
requirement property is written as an assert statement in a
target C program. The loop unwinding bound n is given
explicitly as a command line parameter. If φC ∧ ¬φR is
satisfiable, CBMC generates a counter example that shows
a step-by-step execution leading to the violation of the re-
quirement property.
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+x=x+y;

if (x!=1)x=2;

else x=x+2;

assert(x<3);

x1=x0+y0;

if (x1!=1)x2=2;

else x3=x1+2;

x4=(x1!=1)?x2:x3;( ); 4 ( 1 ) 2 3;

assert(x4<3);

(a) A target C program (b) The corresponding  

SSA  statements

C x1=x0+y0 x2=2 x3=x1+2

(x1!=1 x4=x2) (x1=1 x4=x3)

R x4 < 3 

( ) Th di B l f l d(c) The corresponding Boolean formulas C and R

(not in bit-vector representation)

Figure 3. Example of translating a C program
into a Boolean formula

One distinct feature of the CBMC based analysis, com-
pared with testing, is its capability of handling non-
deterministic values, which are useful in modeling un-
expected user inputs, a range of values as a whole, or
return values of undefined functions. Using this fea-
ture, CBMC can conveniently analyze all execution sce-
narios of a target C program. For example, if we ana-
lyze adder(unsigned char x, unsigned char
y) {...} function, CBMC symbolically analyzes all
65536(= 2562) possible cases. If we provide an explicit
constraint CPROVER assume(x==1), the total number
of cases to analyze is reduced to 256, since only y has a non-
deterministic value ranging from 0 to 255. This capability
of analyzing non-deterministic values helps the unit testing
of C functions by reducing the manual effort to explicitly
generate test cases (see Section 5).

4 Project Overview

4.1 Overall Project Plan

Our team consisted of two professors, one graduate stu-
dent, and one senior engineer from Samsung Electronics.
We worked on this verification project for six months. We
spent the first three months reviewing the USP design doc-
uments and code to become familiarized with USP and
OneNANDTM flash. Most parts of USP were written in C
and a small portion of USP was written in ARM assembler.
The source codes of FTL and DPM were roughly 30000
lines long.

The goal of this project was to increase the reliability of
USP by finding hidden bugs that had not been detected. For
this purpose, it was not enough to check the pre-defined API
interface rules as found in other research [4, 7]. Instead,
we needed to verify the functional correctness which can

assure conformance to the given high-level requirements.
Thus, we needed to identify the properties to verify first,
and the identification of such code-level properties required
significant effort, since it requires complete knowledge of
the high-level design and requirements of the target system,
low-level implementation, and mapping between the design
and the implementation. Although most formal verification
research assumes that these properties are given from some-
where, we must define these properties by ourselves in the
real world. We spent two months defining the code-level
properties based on the given high-level requirements.

To this end, we applied a top-down approach to iden-
tify the code-level properties to verify from the high-level
requirements (see Figure 4). First, we selected the target
requirements from the USP documents. USP has a set of
elaborated design documents as follows:

• Software requirement specifications (SRS)

• Architecture design specifications (ADS)

• Detailed design specifications (DDS)

– DPM, STL, BML, and LLD DDS’s

SRS contains both functional and non-functional re-
quirement specifications with priorities. We selected three
functional requirements with very high priorities (see Sec-
tion 4.2). Then, from the selected functional requirements,
we investigated the relevant ADS, DDS, and corresponding
C codes to specify concrete code-level properties (see Sec-
tion 4.3). We inserted these code-level properties into the
target C files as assert statements and analyzed those C
files to verify whether the inserted assert statements are
violated or not using CBMC (see Section 5).

4.2 High-level Requirements

The SRS document specifies 13 functional requirements
and 18 non-functional requirements for USP. Each require-
ment specifies its own priority. There were three functional
requirements that have “very high” priorities as follows:

• Support prioritized read operation

In order to execute a program, DPM loads a code page
into the internal RAM when a page fault exception oc-
curs. Since the fault latency should be minimized, FTL
should serve a read request from DPM prior to generic
requests from a file system. This prioritized read re-
quest can preempt a generic I/O operation and the pre-
empted operation can be resumed later.

• Concurrency handling

There are two types of concurrent behaviors in USP.
The first behavior is concurrency among multiple
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generic I/O operations; the second is concurrency be-
tween generic I/O operations and a prioritized read op-
eration. USP should handle these two types of con-
current behaviors correctly, i.e. it should avoid a race
condition or deadlock through synchronization mech-
anisms such as semaphores and locks.

• Manage sectors

A file system assumes that the flash memory is com-
posed of contiguous logical sectors. Thus, FTL pro-
vides logical-to-physical mapping, i.e. multiple logical
sectors are written over the distributed physical sectors
and these distributed physical sectors should be read
back correctly.

We concentrated on verifying the above three require-
ments and analyzing the relevant structures described in
ADS. For example, as depicted in Figure 4, a functional re-
quirement on a prioritized read operation is related to the
page fault handling mechanisms, which are described in
ADS. Again, such page fault handling mechanisms (e.g.
page fault handling while a device is being programmed)
are elaborated in the related DDS documents.

4.3 Low-level Properties

From the ADS document, we determined which DDS
documents were related to the ADS description relevant

to the three high-level requirements. The DDS documents
contain elaborated sequence diagrams of various execution
scenarios for the structures described in ADS. For exam-
ple, as depicted in Figure 4, we reviewed the details of the
DPM DDS and LLD DDS that are relevant to the page fault
handling mechanism while a device is being programmed.
In the LLD DDS, for example, concrete sequence diagrams
for fault handling while a device is being programmed are
described (see Figure 5).

MMU
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Handler

Page Cache 

Management
BML LLD : OneNAND: OneNAND 

DeviceDevice

If there is a free frame, 
go to Step6.

1: issue page fault exception

2: request a free frame in page cache

3: find a free frame

4: find a victim page
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7: find a location where the page is  stored in OneNAND device

8: request read operation

9: request read operation

5: page out the victim page

6: return the free fram

13: check if the device is ready

11: request the ready/busy status

12: return the ready/busy status

10: Set the Preempted flag 

In case of busy status 
because of program

ti

15: check the NeedToSave flag

16: request the operation status

17: return the operation status

operation

14: wait until the device is ready

17: return the operation status

18: store the status

Figure 5. Sequence diagram of page fault
handling while a device is being programmed

USP allows a prioritized read operation to preempt the
generic operations currently being executed. Thus, the sta-
tus of a preempted operation should be saved and when the
preempting prioritized read operation is completed, the sta-
tus should be restored in order to resume the preempted op-
eration. These saving and restoring operations are imple-
mented in PriRead(), which handles the prioritized read
operations. Step 18 in Figure 5 highlights the saving opera-
tion.

To check the correctness of Step 18, i.e. whether or not
the current status of a preempted generic operation was ac-
tually saved, we inserted the following assert statement
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at line 494 of PriRead():

assert(!(pstInfo->bNeedToSave) || saved)

pstInfo and bNeedToSave are the original program
variables and saved is a newly added variable for verifica-
tion purposes, which indicates whether the status has been
saved. In a similar manner, we defined 43 code-level prop-
erties regarding the three high-level requirements.

5 Unit Testing through CBMC

5.1 Prioritized Read Operation

A prioritized read operation is implemented in the
PriRead() function in the LLD layer. This function is
234 lines long and has 21 independent paths in its control
flow graph. Thus, to achieve full path coverage, a user must
generate at least 21 different test cases. This test case gen-
eration for path coverage is a difficult and time consuming
task, since a human tester must analyze the target code to
determine which input data exercises which path. Instead,
we used CBMC to automatically test all value combinations
of the function parameters and global data that satisfy the
explicit user-defined constraints.

For example, a function parameter nDev of
PriRead(), which indicates a physical device num-
ber, can be 0 to 7 according to the OneNANDTM hardware
specification. Thus, the following constraint statement was
added to the head of PriRead():

CPROVER assume(0<=nDev && nDev<=7)

which restricts the possible range of nDev to between 0 and
7 in the analysis performed by CBMC. In addition, another
function parameter nPbn, which indicates a physical block
number, obtains its maximal value according to the type of
NAND device. This constraint is given as follows:

(!(NANDspec[nDev].nDID==SML)||nPbn<256) &&

(!(NANDspec[nDev].nDID==LRG)||nPbn<2048)

CBMC uses not only all possible values of func-
tion parameters, but also the global data being used by
PriRead(). For example, a global data SHDC contains
a shared context for each OneNANDTM device and it is re-
trieved by PriRead(). Based on the LLD design docu-
ment, several constraints can be specified. The following
constraint is one such example, indicating that the number
of physical sectors per single unit should be equal to the
multiplication of the number of blocks per unit, the number
of pages per block, and the number of sectors per page.

SHDC.nPhySctsPerUnit==SHPC.nBlksPerUnit

* SHVC.nPgsPerBlk * SHVC.nSctsPerPg

With such constraints, CBMC translates PriRead()
into a SAT formula containing one million Boolean vari-
ables and 1340 clauses. Despite the large computa-
tional cost due to the exhaustive analysis, CBMC analyzed
PriRead() and found a violation in 8 seconds after con-
suming 325 megabytes of memory.1 CBMC found that the
code-level property described in Section 4.3 was violated
and a counter example was generated as shown in Figure 6.
The counter example describes that PriRead() does not
save the current status of an erase operation (see lines 9-
12 of Figure 6), when the erase operation is preempted by
a prioritized read operation. Note that line 3 of Figure 6
indicates that the current operation is an erase operation,
because bEraseCmd is assigned as 1.

01:...
02:State 14 file LLD.c line 408 function PriRead thread 0
03: LLD::PriRead::1::bEraseCmd=1
04:State 15 file LLD.c line 412 function PriRead thread 0
05: LLD::PriRead::1::1::2::nWaitingTimeOut=(assignment removed)
06:State 17 file LLD.c line 412 function PriRead thread 0
07: LLD::PriRead::1::1::2::nWaitingTimeOut=(assignment removed)
08:...
09:Violated property:
10: file LLD.c line 424 function PriRead
11: assertion !(_Bool)pstInfo->bNeedToSave || (_Bool)saved
12:VERIFICATION FAILED

Figure 6. A counter example violating
assert(!(pstInfo->bNeedToSave)||saved)

5.2 Concurrency Handling

5.2.1 BML Semaphore Usage Pattern

Although USP allows concurrent I/O requests through STL,
BML does not execute a new BML generic operation while
another BML generic operation is running (i.e. the BML
operations must be executed sequentially, not concurrently).
For this purpose, BML uses a binary semaphore to coordi-
nate concurrent I/O requests from STL. The standard re-
quirements for a binary semaphore are as follows:

• Every semaphore acquire operation
(OAM AcquireSM()) should be followed by a
semaphore release operation (OAM ReleaseSM()).

• Every function should return with a semaphore re-
leased unless the semaphore operation creates an error.

Fourteen BML functions that use the BML semaphore
exist. Each function is 220 lines long on average and its cy-
clomatic complexity is 13 on average. We inserted an inte-
ger variable smp to indicate the status of the semaphore and

1All experiments presented in this paper were performed on a worksta-
tion equipped with 3 Ghz Xeon and 32 gigabytes memory running 64 bit
Fedora Linux 7. We used CBMC version 2.6 with MiniSAT 1.1.4 [11].
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simple codes to decrease/increase smp at the corresponding
semaphore operations in these 14 BML functions. We veri-
fied the following two properties:

• 0 ≤smp≤ 1 at every semaphore operation.

• smp==1 when a function using the semaphore returns
unless a semaphore error occurs.

CBMC concluded that all 14 BML functions satisfy the
above two properties. CBMC took 10 seconds while con-
suming 300 megabytes of memory on average to analyze
each function.

5.2.2 Handling Semaphore Exception

The BML semaphore operation might cause an excep-
tion depending on the hardware status. Once such BML
semaphore exception occurs, USP cannot operate correctly
unless a re-initialization is forced by a file system. All BML
functions that use the BML semaphore immediately re-
turn BML ACQUIRE SM ERR or BML RELEASE SM ERR
to its caller when a semaphore operation raises an ex-
ception. This error flag should be propagated through a
call-chain to a topmost STL function, which should re-
turn STL CRITICAL ERR to the file system. Figure 7
presents a partial call graph of the topmost STL functions
(depicted in the leftmost area of Figure 7) that eventually
call OAM AcquireSM().

We verified whether the topmost STL functions such
as STL Write() always returned STL CRITICAL ERR
if OAM AcquireSM() called by the STL functions
raises an exception. For example, to verify whether
STL Write() always returns STL CRITICAL ERR
in the event of a BML semaphore exception, CBMC
should analyze nine levels of the call graph, namely
STL Write() → SM WriteSectors() →
KeepBoundsOfDepth()→ PartialMerge() →
ConstructSAM()→ LoadSam()→ GetSInfo()
→ BML Read()→ OAM AcquireSM().

We added a global variable SMerr to indicate when
a semaphore exception is raised. Then, we could verify
whether the semaphore exception had been correctly propa-
gated to the file system by verifying the return value nErr
of the topmost STL functions. This property was checked
by the following assert statement inserted before the
return statement of the topmost STL functions:

assert(!(SMerr==1)||nErr==STL CRITICAL ERR)

We analyzed STL write() (84 lines) first.
In the analysis, however, all sub-functions of
STL write() (e.g. SM WriteSectors()(104
lines), KeepBoundsOfDepth()(31 lines), etc.) should

be analyzed together, which further increases the complex-
ity of the analysis. To reduce the analysis complexity, we
began the analysis by setting the loop unwinding bound
to 2 and ignoring the unwinding assertions, which meant
that CBMC analyzed the scenarios where all loop bodies
were executed only once or passed. In this setting, a
violation is detected in 97 seconds with 616 megabytes of
memory consumed. After reviewing the counter example,
we found that the violation was real and a sub-function
GetSInfo() had a bug. When GetSInfo() called
BML Read(), GetSInfo() may not have checked the
return flag of BML Read(). As a result, GetSInfo()
failed to recognize the exception raised in BML Read()
and did not propagate the exception to LoadSam()
and up to STL Write(). Therefore, all topmost STL
functions that called GetSInfo() may not have properly
handled the BML semaphore exception.

5.3 Multi-sector Read (MSR) Operation

5.3.1 Overview of MSR

USP provides a mechanism to simultaneously read as many
multiple sectors as possible in order to improve the read-
ing speed. Due to the non-trivial traversal of data structures
for the logical-to-physical sector mapping (see Section 2.2),
the function for MSR is 157 lines long and highly com-
plex, having four-level nested loops. When MSR finishes
the reading operation, the content of the read buffer should
correspond to the original data in the flash memory.

Due to the complexity of the nested loops, MSR has a
notorious bug history, to the extent that the developers se-
riously considered removing the feature. For example, if
MSR was designed incorrectly, MSR may have read the
data of Figure 8(b) incorrectly when PU0, PU1, and PU2
were mapped to LU0 in order, and PU3 and PU4 were
mapped to LU1 in order, because the data were not dis-
tributed over the PS’s in order.
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Figure 7. A partial call graph of the topmost STL functions using the BML semaphore

5.3.2 Test Environment for MSR

MSR assumes randomly written logical data on PUs, and a
corresponding SAM records the actual location of each LS.
The writing of data to read is, however, not purely random.
This means that a test/operational environment should be
created so that a logical relation is maintained between the
SAMs and the PUs, as shown in Figure 8. In this analysis
task, we created a test environment for MSR by specifying
the constraints representing this relationship. For example,
some of the rules describing a valid environment are as fol-
lows:

1. For each logical sector, at least one physical sector that
has the same value exists.

2. If the ith LS is written in the kth sector of the jth PU,
then the (i mod m)th offset of the jth SAM is valid
and indicates the PS number k, where m is the number
of sectors per unit.

3. The PS number of the ith LS must be written in only
one of the (i mod m)th offsets of the SAM tables for
the PUs mapped to the b i

mcth LU.

For example, the last two rules can be specified by the
following invariants. 2

∀i, j, k (logical sectors[i] = PU [j].sect[k]) →
(SAM [j].valid[i mod m] = true &
SAM [j].offset[i mod m] = k &
∀p.(SAM [p].valid[i mod m] = false)

where p 6= j and PU [p] is mapped tob i

m
cth LU)

2These invariants allow spurious value combinations in SAMs, to re-
duce the complexity of imposing invariants. However, this weakening
of invariants does not produce false positives when verifying the require-
ments.

Note that the total number of SAM and PU configura-
tions increases exponentially as the size of the logical sec-
tors or the number of PUs increases. For example, for data
that is six sectors long and distributed over 10 PUs, 2.7×108

distinct test scenarios exist. Thus, it is necessary to limit the
size of the test environment within a reasonable range. For
the number of loop unwindings, the upper bound of each
loop can be calculated from the algorithm of MSR and a
given configuration of SAMs and PUs.

5.3.3 Testing Results

We tested MSR for data that was 5 to 8 sectors long and
distributed over 5 to 10 PUs. Through the CBMC experi-
ments, no violations were detected. Note that the test en-
vironment generated all possible scenarios and CBMC an-
alyzes all generated scenarios. Therefore, compared with
randomized testing, this exhaustive analysis capability can
provide a higher confidence of the correctness of MSR. The
experimental results are illustrated in Figure 9. For exam-
ple, it took 1471 seconds to test all 2.7 × 108 scenarios for
data that was six sectors long and distributed over 10 PUs.
For each of the experiments, 200 to 700 megabytes of mem-
ory were consumed. For more details on the analysis of
MSR, see [16].

6 Lessons Learned

6.1 Software Model Checker as an Effec-
tive Unit Testing Tool

Model checking techniques have been used as a means
to improve the reliability of computing systems by detect-
ing subtle flaws. However, due to the state explosion prob-
lem [13] and the gap between the target program and the
abstract model, model checkers have not been widely used
as software validation tools.

Through this project, however, we found that a SAT-
based model checker can overcome these weaknesses.
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Figure 9. Time complexity of the MSR analy-
sis

CBMC eliminates the overheads required to create an ab-
stract formal model, since it can directly analyze a C pro-
gram. In addition, CBMC can analyze units of codes while
consuming only a modest amount of time and memory, al-
though an entire program cannot be analyzed as a whole and
the binary libraries used by the target program cannot be an-
alyzed. Furthermore, a CBMC based analysis can be more
convenient than actual testing, since CBMC does not re-
quire any test harnesses except the environment constraints.
In addition, a counter example generated by CBMC serves
as an effective debugging aid.

Finally, as demonstrated in Section 5, a CBMC based
analysis can detect subtle hidden bugs that are hard to de-
tect through conventional testing. Therefore, a SAT-based
model checker can be used as an effective unit test tool, as
it can provide a high confidence of the code quality with
modest overheads.

6.2 Benefits of Constraint-based Exhaus-
tive Testing

Although active research on model based testing has
been undertaken [20], the generation of test cases adequate
for various test criteria [21] still requires significant human
effort. In this project, we avoided this laborious task of ex-
plicit test case generation. Instead, we mechanically tested
all possible execution scenarios that satisfied the environ-
mental constraints. This approach was successful for unit
testing of USP; exhaustive unit testing consumed only mod-
est amounts of time and memory and found hidden bugs.

In addition, even when a set of explicitly generated test
cases reaches a complete statement coverage or branch cov-
erage, the absence of error is still not guaranteed, since dif-
ferent input values generate different outputs, even in the
same execution path (e.g. overflow error, divide-by-zero

error, etc.). Therefore, for unit testing, this exhaustive anal-
ysis with constraints can produce a greater confidence in
the correctness of the target code while requiring a reduced
amount of human effort.

6.3 Advantages of a SAT-based Model
Checker

Several research projects that apply model checking
techniques to directly verify C programs without abstract
models exist [14, 8, 19]. Software model checkers such
as Blast [9] and SLAM [18] use various abstraction tech-
niques, such as counter example based abstraction refine-
ment (CEGAR), to alleviate the state space explosion prob-
lem. However, these approaches suffer from excessive ab-
straction and limitations of underlying decision theories.
Consequently, the analysis results can be inaccurate or the
analysis may halt unexpectedly due to a failure to find the
proper predicates. For example, we performed the same
analysis tasks using Blast as we did with CBMC. Blast pro-
duced correct results for the analysis of the BML semaphore
usage pattern (see Section 5.2.1); however, Blast unexpect-
edly halted the analysis of PriRead() (see Section 5.1),
because it failed to find the proper predicates. Furthermore,
we could not expect Blast to analyze MSR correctly, since
Blast has a very limited analysis capability in array opera-
tions.

CBMC, however, produced accurate analysis results be-
cause it transformed a target C program into a SAT for-
mula without abstraction. Then, this formula was solved
efficiently by an underlying SAT solver with the help of ad-
vanced heuristics. One difficulty of the SAT based model
checking is obtaining the upper bounds for the loop un-
windings. Although this problem is difficult to solve in
general, a user can obtain a good approximation for the un-
winding upper bounds after reviewing the target program.
In this project, we could obtain the unwinding bounds from
the DDS documents and the target code without much diffi-
culty.

7 Conclusions and Future Work

In this project, we successfully applied a SAT-based soft-
ware model checker, CBMC, to detect bugs in the device
driver software for Samsung’s OneNANDTM flash memory.
These bugs included incomplete handling of the semaphore
exceptions and a logical bug that did not store the current
status of an erase operation that was preempted by a prior-
itized read operation. These bugs had not been previously
detected by Samsung. In addition, we established confi-
dence in the correctness of the complex multi-sector read
function, although complete verification on a large size flash
was not established.
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It must be noted that the current model checking tech-
nology is not yet scalable to verify an entire C program [3].
However, it is still beneficial to use a SAT-based model
checker to test units of a target program as demonstrated in
this project. Samsung highly valued the project results and,
for the next project, we plan to analyze a flash file system to
verify data consistency at the event of random power-offs.
We also plan to apply the Satisfiability Modulo Theories
(SMT) solver [5] instead of a SAT solver to exploit efficient
decision procedures, as this can reduce the huge bit-vector
equations generated from a target C code.
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