
A Scalable Distributed Concolic Testing Approach

Moonzoo Kim, Yunho Kim
Department of Computer Science

KAIST, South Korea
moonzoo@cs.kaist.ac.kr, kimyunho@kaist.ac.kr

Gregg Rothermel
Department of Computer Science and Engineering

University of Nebraska - Lincoln
grother@cse.unl.edu

Abstract—Although testing is a standard method for im-
proving the quality of software, conventional testing methods
often fail to detect faults. Concolic testing attempts to remedy
this by automatically generating test cases to explore execution
paths in a program under test, helping testers achieve greater
coverage of program behavior in a more automated fashion.
Concolic testing, however, consumes a significant amount of
computing time to explore execution paths, which is an obstacle
toward its practical application. In this paper we describe
a distributed concolic testing framework that utilizes large
numbers of computing nodes to generate test cases in a scalable
manner. We present the results of an empirical study that shows
that the proposed framework can achieve a several orders-of-
magnitude increase in test case generation speed compared to
the original concolic approach, and also demonstrates clear
potential for scalability.

I. INTRODUCTION

Dynamic testing is a de-facto standard method for improv-
ing the quality of software in industry. Conventional testing
methods, however, often fail to detect faults in programs.
One reason for this is that a program can have an enormous
number of different execution paths due to conditional and
loop statements. Thus, it is practically infeasible for a test
engineer to manually create test cases sufficient to detect
subtle bugs in specific execution paths. In addition, it is a
technically challenging task to generate effective test cases
in an automated manner.

To address such limitations, concolic (CONCrete + sym-
bOLIC) [1] testing (also known as dynamic symbolic ex-
ecution [2] and white-box fuzzing [3]) combines concrete
dynamic analysis and static symbolic analysis to automat-
ically generate test cases to explore execution paths of a
program, to achieve full path coverage (or at least, coverage
of paths up to some bound). Concolic testing can be effective
for generating test cases; however, it also can consume a
significant amount of time exploring execution paths, and
this is an obstacle toward its practical application [4].

In this paper we present the Scalable COncolic testing
for REliability (SCORE) framework; a test case generation
approach aimed at addressing the limitations caused by the
heavy computational cost of concolic testing. The SCORE
framework employs a distributed concolic algorithm that can
utilize a large number of computing nodes in a scalable
manner so as to achieve:

• a linear increase in the speed of test case generation as
the number of distributed nodes increases;

• low communication overhead among distributed nodes.
The SCORE framework can utilize computing nodes in

P2P networks or cloud computing platforms. In doing so,
SCORE can potentially generate test cases significantly
faster than traditional concolic testing as more computing
nodes are employed in the testing task.

To investigate the effectiveness and scalability of the
SCORE framework, we conducted a controlled experiment
in which we applied the framework to several C programs,
using numbers of Amazon EC2 nodes ranging up to 256.
Our results show that SCORE can greatly increase the
effectiveness of test case generation, and that it is scalable
as the numbers of nodes utilized increases.

The rest of the paper is organized as follows. Section II
describes related work. Section III describes the SCORE
framework. Section IV presents our empirical study, and
Section V discusses observations from the study. Section VI
concludes and discusses future work.

II. RELATED WORK

The core idea behind concolic testing is to obtain sym-
bolic path formulas from concrete executions and solve them
to generate test cases by using constraint solvers. Various
concolic testing tools have been implemented to realize
this core idea (see [5] for a survey). Existing tools can
be classified in terms of the approach they use to extract
symbolic path formulas from concrete executions.

The first approach for extracting symbolic path formulas is
to use modified virtual machines. The concolic testing tools
that use this approach are implemented as modified virtual
machines on which target programs execute. An advantage
of this approach is that the tools can exploit all execution
information at run-time, since the virtual machine possesses
all necessary information. PEX [2] targets C# programs that
are compiled into Microsoft .Net binaries, KLEE [6] targets
LLVM [7] binaries, and jFuzz [8] targets Java bytecode on
top of Java PathFinder [9], [10].

The second approach for extracting symbolic path for-
mulas is to instrument the target source code to insert
probes that extract formulas from concrete executions at
run-time. Compared to the first approach, this approach is

more light-weight, because adding probes is simpler than
modifying virtual machines. Tools that use this approach
include CUTE [1], DART [11], and CREST [12], which
operate on C programs, and jCUTE [13], which operates on
Java programs. SCORE uses this approach.

Because concolic testing has been studied for a relatively
short period of time, there has been little research on
employing distributed platforms to improve the scalability
of concolic testing techniques. Staats et al. [14] propose
a static partitioning technique for parallelizing symbolic
execution that uses pre-conditions/prefixes of symbolic exe-
cutions to partition the symbolic execution tree. They have
implemented the technique on top of Java PathFinder [9]
using the Symbolic PathFinder extension [10]. A limitation
of this approach is that the resulting partitioned symbolic
execution trees are not well-balanced, because the technique
statically partitions a symbolic execution tree based only on
its prefixes. Thus, some nodes may finish exploring symbolic
execution paths quickly and become idle while other nodes
take long times to complete exploration, which degrades
overall performance.

In contrast, King [15], ParSym [16], and Cloud9 [17]
utilize dynamic partitioning of target program executions.
King’s master’s thesis [15] describes a distributed symbolic
execution framework for Java [18]. King populates a queue
of symbolic execution subtrees dynamically, but the resulting
speedup decreases as the number of nodes increases beyond
six. ParSym [16] uses a central server that collects test cases
generated from nodes and distributes the test cases to the
other nodes whose queues are empty. ParSym demonstrates
speedup on grep 2.2 and a binary tree program on up to 512
nodes, but fails to achieve linear speedup (e.g., achieving a
speedup of 13 times on 128 nodes but a speedup of only
6 times on 512 nodes on grep). Cloud9 [17] is a testing
service framework based on parallel symbolic execution
techniques implemented on KLEE. Cloud9 uses dynamic
partitioning to ensure that the job queue lengths of all nodes
stay within a given range and shows linear speed-up as
the number of nodes increases up to 48. Similar to these
techniques, SCORE distributes test cases among multiple
nodes in a dynamic on-demand manner (Section III-B) and
achieves linear speed-up on up to 256 nodes (Section IV-E).
Note that Cloud9 and SCORE utilize different parallelization
techniques. In Cloud9, when an execution meets a branch
containing symbolic values, two parallel executions are
forked with a corresponding clone of the program state and
distributed to nodes to continue (Cloud9 can obtain parallel
executions since Cloud9 operates as a virtual machine). In
contrast, SCORE generates whole executions one by one by
negating symbolic branch conditions in a systematic manner
while preventing redundant test cases (Section III-A).

In our own preliminary work [19], we created a proof-of-
concept implementation of a distributed concolic algorithm
and conducted a case study on a single program, running

on up to 16 nodes. In this work, we have redesigned the
communication protocol for that approach and implemented
a fully developed distributed concolic testing framework.
We describe the results of this effort, and present results
of a controlled experiment examining the effectiveness and
scalability of the framework on up to 256 nodes.

III. THE SCORE FRAMEWORK

We now describe the SCORE framework, beginning with
a description of the distributed concolic algorithm (Sec-
tion III-A), followed by details on communications between
nodes (Section III-B). Section III-C then discusses our
implementation of the framework.

A. Distributed Concolic Algorithm

Algorithm 1 describes how to generate test cases on a
single node in the SCORE framework. We assume that there
exists one startup node that runs DstrConcolic(startup)
with startup as true (line 1). This startup node running
DstrConcolic() generates a test case pair (tc1,neg limit1)
where tc1 is a random value and neg limit1 = 1 (lines 6-7).
The other non-startup nodes running DstrConcolic(false)
wait until they receive test case pairs from other nodes
(lines 9-11).

Next, a node begins generating further test case pairs from
a test case pair (tc,neg limit) in the queue qtc (lines 14-
33). First, the algorithm removes (tc,neg limit) from qtc
(line 15) and obtains a symbolic path formula ϕi (line 19)
from the concrete execution on tc (line 17). Then, the
algorithm generates further symbolic path formulas ψis by
negating path conditions (i.e., c1, c2, ..., c|ϕi|) of ϕi one by
one in decreasing order through the while loop (lines 21-
32). 1 These ψis are solved by a SMT solver (line 25) and
a corresponding solution to ψi is stored in qtc as a new test
case pair (tci+1, j + 1) (line 27).

If qtc is empty (exiting the loop of lines 14-33) and
the qtcs of all distributed nodes are empty, the algorithm
terminates (line 39). Otherwise (i.e., there is another node
n′′ that has test cases), a current node n requests test cases
from n′′ (line 35) and receives test cases from n′′ (line 36).
The received test cases are then added into qtc (line 37) and
the algorithm continues from line 13.

Note that Algorithm 1 traverses all possible execution
paths and does not generate redundant test cases (test cases
that cover the same path) with the assumption that ϕi truly
reflects pathi and Solve(ψi) can solve ψi. 2 More detail on

1The use of neg limiti for tci prevents the algorithm from generating
redundant test cases. neg limiti is an index to the path condition (PC) in
ϕi beyond which PCs should not be negated (lines 21-23) (i.e., ck should
not be negated for k < neg limiti), where ϕi is a symbolic path formula
obtained from an execution path on tci (line 19).

2In practice, a program P may contain complex arithmetic or binary
library calls that cannot be reasoned about by SMT solvers. Thus, Algo-
rithm 1 generates symbolic path formulas without such conditions, and in
these cases this may result in redundant test cases.

2

Input:
startup: a flag to indicate whether a current node n
is a startup node or not.
Output:
TCn: a set of test cases generated at a current node
n (i.e., tci+1s of line 25)

1 DstrConcolic(startup) {
2 qtc = ∅; // a queue containing (tc, neg limit)s
3 TCn = ∅; // a set of generated test cases
4 i = 1;
5 if startup then
6 tc1 = random value; // initial test case
7 Add (tc1, 1) to qtc;
8 else
9 Send a request for test cases to n′;

10 Receive (tc, neg limit)s from n′;
11 Add (tc, neg limit)s to qtc;
12 end
13 while true do
14 while | qtc |> 0 do
15 Remove (tc, neg limit) from qtc;
16 // Concrete execution
17 pathi = an execution path on tc;
18 // Obtain a symbolic path formula ϕi
19 ϕi = a symbolic path formula of pathi (i.e.,

c1 ∧ c2 ∧ ... ∧ c|ϕi|) ;
20 j =| ϕi |;
21 while j >= neg limit do
22 // Generate ψi for the next input values
23 ψi = c1 ∧ ... ∧ cj−1 ∧ ¬cj ;
24 // Select the next input values
25 tci+1 = Solve(ψi);
26 if tci+1 is not NULL then
27 Add (tci+1, j + 1) to qtc;
28 TCn = TCn ∪ {tci+1};
29 i = i+ 1;
30 end
31 j = j − 1;
32 end
33 end
34 if there is a test case in another node n′′ then
35 Send a request for test cases to n′′;
36 Receive (tc, neg limit)s from n′′;
37 Add (tc, neg limit)s to qtc;
38 else
39 Halt; // no test cases exist in all nodes
40 end
41 end
42 }

Algorithm 1: Distributed concolic algorithm

Algorithm 1 including a comparison between the original
concolic algorithm and Algorithm 1 and the proofs of the
algorithm’s traversal of all possible execution paths and its
unique test case generation are described in our technical
report [20].

B. Communication between Nodes

Figure 1 illustrates the communication among nodes in
the SCORE framework. SCORE operates on distributed
computing nodes where one node operates as a server and
the other nodes operate as clients. In addition, one client
is designated as a startup client, which initiates distributed
concolic testing (lines 5-7 in Algorithm 1).

Server

Node ni nj …

Status IDLE BUSY

Client ni Client nj

(1) EMPTY (2) REQ(ni)(4’) ACK

(3) Transfer

test cases w/

neg_limits

qtc
qtc

(4) ACK

Figure 1. Communication among clients and the server

We assume that all clients are connected to the server
properly and the network does not lose or corrupt its mes-
sages, neither change message delivery order. There are five
different control packets sent between a server and clients
to coordinate distributed clients that generate test cases.

• An EMPTY packet is sent to the server from a client ni
that has no test case pair in its qtc.

• A REQ packet is sent from the server to a client nj that
has test case pairs and that is not currently serving any
REQ packet.

• An ACK packet is sent from nj that receives a REQ
packet and has transferred test case pairs to ni that sent
an EMPTY packet to the server. In a similar manner, an
ACK packet is sent from ni that sent an EMPTY to the
server after ni receives test case pairs.

• A NACK packet is sent from nj that has received a
REQ packet and could not transfer test case pairs, since
|qtc| ≤ 1.

• A STOP packet is sent from the server to clients when
every client has no test case pair (i.e., the distributed
concolic testing process is completed).

To identify which client has test case pairs to transfer,
the server maintains a status table of all clients. From the
viewpoint of the server, the status of a client must be one
of the following:

3

• IDLE when | qtc |= 0. IDLE indicates that the client
has no test case pairs to execute.

• BUSY when | qtc |> 0 and the client is not serving a
request from the server. BUSY indicates that the client
is ready to provide test case pairs to another client.

• SERVING_REQ when the client is serving a request
from the server. In other words, the client received a
REQ but has not yet sent an ACK or NACK to the server.
SERVING_REQ indicates that the client is not currently
able to send test case pairs to another client.

By tracking control messages between the server and the
client, the server knows the status of clients. If the server
receives EMPTY from a client, then the client has no test case
pairs (IDLE). If the server receives an ACK from a client nj
that sent test case pairs to ni, then the server considers the
status of nj to be BUSY. In a similar manner, if the server
receives an ACK from a client ni, then the server considers
the status of ni to be BUSY. If the server has sent REQ to
a client and has not yet received an ACK or NACK, then the
state of the client is SERVING_REQ.

Figure 1 illustrates the following scenario. When the
server receives EMPTY from a client ni, it searches the client
status table and finds a client nj whose status is BUSY.
Then, it sends REQ to nj with destination ni. If nj has m
test case pairs (i.e., | qtc |= m), it sends ⌊m/2⌋ test case
pairs to ni and then sends ACK to the server. Client ni also
sends ACK to the server after it receives test case pairs. If
client nj has one or zero test case pairs, it sends NACK
to the server. Then, the server tries another client whose
status is BUSY in a round-robin manner. If no client is in
BUSY state, the server waits until at least one client enters
the BUSY state. If all clients are IDLE, the server sends a
STOP message to the clients, and the distributed concolic
algorithm terminates. When clients receive a STOP from
the server, the clients transfer generated test cases, covered
path/branch information, and statistics on testing activities
(e.g., total time, number of test cases generated, number of
symbolic formulas generated, etc) to the server.

Note that communication between clients ni and nj oc-
curs only when qtc of ni is empty. Because qtc is non-empty
for most of the testing time, 3 the number of communications
is small compared to the number of test cases generated.
Furthermore, test case pairs are directly transferred between
clients without causing heavy load on the server. Otherwise,
the server would become a bottleneck.

C. The SCORE Implementation

The SCORE framework is implemented to operate on
distributed computers connected through TCP/IP networks.

3A client generates and stores multiple new test case pairs in qtc
(lines 21-32 of Algorithm 1) by removing one test case pair from qtc
(line 15 of Algorithm 1), except when the client targets leaves of an
execution tree.

Thus, SCORE can operate on a large number of com-
puting nodes such as on a cloud computing platform or
any computers connected through the internet. The SCORE
framework uses CREST 0.1.1 [12] (an open-source concolic
testing tool) to instrument a target C program and to obtain
symbolic formulas from concrete execution paths at run-
time. It uses Yices 1.0.24 [21] as an internal constraint solver
for solving symbolic path formulas. However, the current
SCORE implementation handles only linear-integer arith-
metic statements symbolically (other statements are handled
using concrete values), since CREST supports only linear-
integer arithmetic statements. We plan to upgrade SCORE
to support bit-vector theory to alleviate this limitation. The
SCORE framework is written in C/C++ and contains 7000
lines of code with 18 classes and 215 functions.

For n clients, the server creates n threads, each of which
communicates with one client. To minimize communica-
tion overhead, each client is implemented as two separate
threads. One thread generates and stores test case pairs in
qtc through the distributed concolic algorithm while the other
thread handles communication with other nodes such as
receiving test case pairs into qtc or sending test case pairs
from qtc to another node per request. All communications in
the SCORE framework are implemented using TCP sockets,
since the framework may be deployed on a large scale
computing platform where communication might not be
reliable. In addition to the communication between clients
and the server described in Section III-B, as logs, clients
periodically report to the server the current status of testing
activities such as the number of test cases generated, the
size of qtc, the number of test cases received from another
node, and so forth. Each client stores testing outcomes
such as test cases generated, covered branches, and covered
execution paths on the local hard disk. When the testing
process terminates or a user sends a command to stop the
concolic testing, these outcomes are collected by the server
automatically.

IV. EMPIRICAL STUDY

There are two overall methodologies that we could use to
empirically study the SCORE framework. The first method-
ology involves empirically comparing SCORE to other ap-
proaches for parallelizing dynamic symbolic execution such
as those of Staats et al. [14], King [15], ParSym [16]
and Cloud9 [17], discussed in Section II. At this time,
however, such a comparison would be difficult, because
Staats’ approach is implemented only for Java, and the other
approaches are not available in implemented form. More-
over, comparisons of implementations created in different
contexts pose many threats to internal validity in terms of
ensuring the comparability of techniques.

The second methodology we can use to assess SCORE
involves comparing the framework to baseline approaches
that allow direct assessment of the benefits of SCORE’s

4

distributed aspects. For example, we can compare SCORE to
the original concolic testing approach applied on distributed
nodes. If this comparison does not show that SCORE is
effective and scalable, then the results obviate the need to
perform expensive implementations of other techniques. We
thus chose this approach.

The SCORE framework is meant to increase the effective-
ness of concolic testing at generating potentially useful test
inputs by distributing workload over large numbers of client
nodes. However, the efficiency of distributed algorithms
tends to decrease as the number of client nodes increases due
to redundant computations, overhead related to increasing
communications, and unbalanced workloads. These issues
impact the scalability of these algorithms. The degree to
which the framework can achieve these attributes on real
workloads, however, must be assessed empirically.

To provide such an assessment, we designed an empirical
study addressing the following research questions:

• RQ1: To what extent does the SCORE framework
increase the effectiveness of test case generation?

• RQ2: To what extent does the SCORE framework
achieve scalability?

A. Target Benchmark Programs

As objects of study, we selected six programs (see Table I)
from the SIR repository [22], including three of the Siemens
programs [23], and three non-trivial real-world programs
(grep 2.0, sed 1.17, and vim 5.0). We selected these
programs because they were written in C and thus can be
processed by our tools, and because they do not utilize in-
tensive numbers of non-linear integer arithmetic statements.

Table I
EXPERIMENT OBJECTS

Program Functions LOC Branches Test cases
grep 126 12562 3768 808
ptok1 19 725 284 4140
ptok2 24 569 168 4140
repl 2 563 210 5543
sed 70 8678 2690 389
vim 3049 111227 33486 975

To perform concolic testing on these programs, we needed
to decide what sizes of inputs to utilize for symbolic
variables. To make a realistic decision, we reviewed all of the
test cases provided for each program in the SIR repository.
We selected symbolic input sizes as the maximum size of
the 90% of the smallest test cases in the SIR repository,
since there is often a large gap between that size and the
sizes of the remaining 10% of the test cases. Table II shows
the sizes of symbolic inputs chosen for each program.

We provided two symbolic options for grep, because
grep uses three different algorithms for pattern matching
based on a given option. Also, 90% of the test cases for
grep in the SIR repository contain two or fewer options;
for an option with an argument, we assigned one symbolic

Table II
SIZE OF SYMBOLIC INPUTS (BYTES)

grep ptok1 ptok2 repl sed vim
pattern target target from to target com- script

text text text mand
21 82 82 23 28 64 148 76

character as a corresponding argument. Finally, for grep
and sed, we chose to use target text files provided in the
SIR repository as concrete inputs rather than to generate file
contents symbolically, because meaningful files are too large
(greater than 100k) to treat as symbolic input.

B. Variables and Measures

To address our research questions, our experiment manip-
ulated two independent variables:
IV1: Test case generation technique

To investigate RQ1 we study two techniques: the
distributed algorithm implemented in the SCORE
framework, and the non-distributed concolic testing
algorithm [12]. Further, to facilitate comparisons we
apply the non-distributed (baseline) algorithm in two
ways: (1) running a single instance of the algorithm
on a single node, and (2) running multiple instances,
one on each client node, with different random seeds,
and aggregating results from each node in the end.
The former approach lets us assess the effectiveness of
SCORE relative to current practice, while the latter lets
us assess whether the particular parallelization solution
used by SCORE is more effective than the naive
approach of simply running the original algorithm on
the same number of nodes.

IV2: Client number level
To investigate scalability issues such as those posed by
RQ2, as well as to examine technique effectiveness
over a wide range of distribution settings, we need
to apply techniques using different numbers of client
nodes. We chose to use client number levels 1, 64,
128, 192, and 256.

To measure effectiveness and scalability we selected five
dependent variables. The first variable tracks effectiveness
in terms of numbers of test cases that can be generated in
a given time. An issue that arises in this context, however,
concerns redundancy. As explained earlier, in the context
of concolic testing, where test cases are generated to cover
paths, test cases that cover the same paths are redundant.
In theory, neither the SCORE algorithm nor the original
concolic algorithm can generate redundant test cases. [20]
However, limitations in concolic algorithms or limitations
in symbolic execution engines can lead in practice to cases
where redundancy does occur. Since the different techniques
that we compare may differ in terms of the number of
redundant test cases that they create, a fair comparison of
their effectiveness must exclude redundant test cases. Thus,

5

our first dependent variable focuses on creation of non-
redundant test cases.

DV1: Number of non-redundant test cases generated in
time τ
We chose τ = 5 minutes, because exploratory studies
with smaller and larger times suggested that increases
beyond 5 minutes had negligible effects on results.

To track scalability we use four variables, each of which
represents a different important aspect of performance in the
context of distributed algorithms.

DV2: Number of communicated messages
We measured the total number of messages communi-
cated between nodes (both server and client).

DV3: Communication overhead in terms of waiting time
We measured the elapsed waiting time between lines
34 and 37 of Algorithm 1 due to empty qtc, for each
client node.

DV4: Workload assigned to each client
We measured the number of test cases generated by
each client node.

DV5: Efficiency of the SCORE framework
We measured the efficiency of the framework by cal-
culating its effectiveness ratios (i.e., # of test cases
generated by SCORE over # of test cases generated by
the non-distributed concolic algorithm) over the number
of clients, effectiveness ratio

of clients nodes .

C. Experiment Operation

For each target program, we executed the non-distributed
CREST algorithm and the distributed SCORE algorithm on
each of the five client number levels. To control for potential
differences in runs due to the randomization inherent in the
techniques, we repeated this process 30 times.

To count the non-redundant test cases in a generated
test suite, we stored the sequence of branch IDs Bi =
[bi1 , bi2 , ...bin] that were executed on each test case tci.
Then, we used a SHA512(Bi) as a representative hash value
for each Bi, because the total number and size of Bis are
large (e.g., we had a total of 0.8 million Bis consuming 500
gigabytes for VIM on 256 nodes). In our experimental runs,
the number of hash collisions was negligible. As a sample,
we compared all Bis directly in one entire set of technique
runs on 256 nodes, and found no hash value collisions.
Finally, we compared SHA512(Bi) values with each other
to remove redundant test cases, keeping exactly one test case
from each set of test cases that execute identical paths.

All experiments were performed on the Amazon EC2
cloud computing platform [24]. The server of the SCORE
framework ran on a virtual node that had seven gigabytes of
memory and eight CPU cores of 20 ECU computing power
in total (1 ECU is equivalent to a 1Ghz Xeon processor).
Each client ran on a virtual node that was equipped with
1.7 of gigabytes memory and two CPU cores of 5 ECU in

total. The server and clients ran on Fedora Core Linux 8. All
virtual nodes are connected through a 1 gigabps Ethernet.

D. Threats to Validity

The primary threat to external validity for our study
involves the representativeness of our object programs, since
we have examined only six C programs (although three
of them are real-world applications). Furthermore, we have
chosen programs that are amenable to concolic testing, and
thus, do not reveal cases in which program characteristics
might hinder that approach. As a second threat, we have
employed only the CREST tool as an example of an original
concolic algorithm implementation; results obtained with
other implementations may differ. A third threat to validity
is the limited power of the underlying symbolic execution
engine used in SCORE. Currently, SCORE handles only
linear-integer arithmetic (LIA) statements. A symbolic exe-
cution engine using a more powerful solver (e.g., a bit-vector
solver) could cover execution paths that cannot be covered
using an LIA solver, but with decreased test case generation
speed due to the presence of more complex symbolic path
formulas. Thus, results could differ in such cases. We be-
lieve, however, that the use of a more powerful solver would
not affect assessments of the scalability of SCORE, because
SCORE’s scalability is primarily affected by communication
cost, and SCORE’s communication protocol is independent
of the SMT solver.

The primary threat to internal validity is possible faults
in the implementation of our algorithms and in tools we
use to collect metrics. We controlled for this threat through
extensive functional testing of our tools. A second threat
pertains to differences in the implementations compared; we
limited this threat by using the same underlying concolic test
case generation tool in all cases.

Where construct validity is concerned, there are other met-
rics that could be pertinent to the effects studied. In partic-
ular, as an effectiveness measure we consider only numbers
of non-redundant test cases generated (which correlates with
path coverage achieved). In contrast, studies of Cloud9 [17]
relied on statement coverage as an effectiveness measure.
We believe, however, that our effectiveness measure is more
appropriate for assessing concolic testing, since concolic
testing targets path coverage, not statement or branch cover-
age. As another potential metric for assessing effectiveness,
numbers of faults detected could also be considered. To
measure scalability, the time required to reach a fixed level of
statement/branch coverage or the time consumed to explore
an execution subtree in a k-depth bound completely can also
be considered. These metrics, however, have weaknesses.
First, concolic testing may not be able to generate test
cases to reach a given fixed level of coverage. In addition,
it is difficult to accurately estimate the time required to
reach a fixed level of coverage in advance, causing difficulty
for experiment design. Yet another metric for scalability in

6

terms of workload distribution, also employed in [17], is to
measure the number of target program instructions executed
per node. This might be a valid performance indicator for
parallel algorithms in general, but when the goal of such
algorithms is test case generation, we believe that it is not
the best measure.

E. Results and Analysis

We now present and analyze our results, per research
question.

1) RQ1: To what extent does SCORE increase the ef-
fectiveness of concolic testing?: We begin by comparing
SCORE to the non-distributed algorithm run on a single
node. Table III displays the mean total numbers of non-
redundant test cases generated by both the non-distributed
and distributed algorithms, for each of the object programs,
per client number level, across all 30 runs of the algorithm
at that level. As the table shows, the number of test cases
generated by SCORE increased substantially as the number
of client nodes increased.

Table III
TOTAL # OF NON-REDUNDANT TESTS GENERATED PER CLIENT

NUMBER LEVEL, NON-DISTRIBUTED AND DISTRIBUTED ALGORITHMS

CREST SCORE
1 1 64 128 192 256

grep 961 997 76612 134503 260244 322345
ptok1 2315 2385 135842 289335 429770 559250
ptok2 29340 29118 1184348 2310901 3490055 4553864
repl 25784 26181 723430 1416901 2242355 2978568
sed 16550 16679 592491 1137879 1701740 2262199
vim 2378 2390 50914 98964 140141 189038

Figure 2 illustrates the effectiveness (i.e., number of
non-redundant test cases generated) increase achieved by
SCORE as the client number level increased, in a manner
that compares the two algorithms. The figure compares
effectiveness results obtained by the distributed algorithm
at all five client number levels to the results obtained by the
non-distributed algorithm on a single node, per program, in
terms of the ratio of numbers of test cases generated by
each. Effectiveness appears to increase linearly with client
number level, but the rate of increase does vary per program.

To assess whether the observed differences in perfor-
mance were statistically significantly different, we applied
Wilcoxon tests [25] to the effectiveness data achieved at each
client number level, per program, by SCORE and the non-
distributed algorithm, with α = 0.05 as confidence level. In
every case above client number level 1 the differences were
statistically significant.

It is worth noting that the effectiveness ratio for grep at
client number level 256 is greater (i.e., 335.4 = 322345/961)
than the number of client nodes. We believe that the reason
for this is that the average length of the symbolic path
formulas analyzed to generate 961 test cases by one client

of clients

Ratio

of

effecti-

veness

Figure 2. Ratio of effectiveness between non-distributed and distributed
algorithms, per client number level

node using the non-distributed algorithm was larger than
the average length of the symbolic path formulas analyzed
to generate the 322345 test cases by 256 client nodes using
the distributed algorithm. The relatively low effectiveness
ratio (i.e., 79.5 = 189038/2378) for vim at client number
level 256 can be explained similarly.

Note also that the numbers of test cases generated by the
non-distributed algorithm and SCORE did differ when the
algorithms were each run on one node (see the second and
third columns of Table III), because the test cases generated
by the algorithms on any given run can differ. However,
the magnitude of the difference in performance is relatively
small, ranging from 0.5% (on vim) to 1.5% (on repl).

We next compare SCORE to the use of the non-distributed
algorithm on the same numbers of client nodes. Table IV
shows the mean numbers of non-redundant test cases gen-
erated by SCORE (S) and multiple runs of CREST (MC)
across the 30 runs performed in each case, as well as the
ratios between those means.

Table IV
NUMBERS OF NON-REDUNDANT TEST CASES

of grep ptok1 ptok2 repl sed vim
nodes

64 S 76612 135842 1184348 723430 592491 50914
MC 22718 47484 656797 339735 442816 2539

S/MC 3.37 2.86 1.80 2.13 1.34 20.05
128 S 134503 289335 2310901 1416901 1137879 98964

MC 42875 86125 1193297 614645 829558 3164
S/MC 3.14 3.36 1.94 2.31 1.37 31.28

192 S 260244 429770 3490055 2242355 1701740 140141
MC 58247 122410 1654794 794858 1195363 3758

S/MC 4.47 3.51 2.11 2.82 1.42 37.29
256 S 322345 559250 4553864 2978568 2262199 189038

MC 75449 147003 2085353 906482 1455585 3886
S/MC 4.27 3.80 2.18 3.29 1.55 48.65

As the data shows, the number of test cases generated
by SCORE ranged from 34% (sed on 64 nodes) to 4765%
(vim on 256 nodes) more than the number generated by
multiple CREST runs. In addition, the S/MC ratios have
a tendency to increase over the number of nodes utilized.
For example, for ptok1, the ratios increase from 2.86 on

7

64 nodes to 3.80 on 256 nodes. (The only cases in which
the ratios do not increase involve grep, going from 64 to
128 and 192 to 256 nodes). We conjecture that the reason
for this S/MC increase over increasing number of client
nodes is that the diversity effect obtained from initial random
input becomes, compared to SCORE, relatively weaker as
the number of client nodes increases. Again, Wilcoxon tests
applied to the effectiveness data achieved at each client
number level, per program, by SCORE and by the non-
distributed algorithm, using α = 0.05 as the confidence
level, showed that in every case the differences were statis-
tically significant. SCORE thus increases effectiveness more
than the simple approach of running multiple instances of
the non-distributed concolic algorithm.

2) RQ2: To what extent does the SCORE framework
achieve scalability?: Table V shows the number of com-
municated messages (left) and the communication overhead
(right) for the distributed algorithm, for each object pro-
gram, for client number levels greater than 1. The number
of communications is small compared to the number of
generated non-redundant test cases. For example, using 64
client nodes on grep resulted in 3391 messages being
communicated between client nodes and server, which is
equivalent to 53 (3391/64) messages per client node. In other
words, each client node communicates 53 messages while
generating 1197 (76612/64) test cases. Vim communicates
more messages per generated non-redundant test case (e.g.,
12.36% on 64 nodes) than the other programs; this is because
vim contains more complex statements and external binary
libraries than the other programs do. Consequently, SCORE
often fails to generate further test cases for vim and obtains
an empty qtc more frequently than on the other programs.

Table V
STATISTICS ON COMMUNICATION

of total messages and Comm. overhead (%)
the ratios of # of msgs/# of TCs
64 128 192 256 64 128 192 256

grep 3391 5363 6897 6900 0.10 0.21 0.24 0.21
(4.43%) (3.99%) (2.65%) (2.14%)

ptok1 1604 2467 3874 4009 0.06 0.11 0.15 0.13
(1.18%) (0.85%) (0.90%) (0.72%)

ptok2 1598 1836 3118 3098 0.07 0.14 0.13 0.15
(0.13%) (0.08%) (0.09%) (0.07%)

repl 1569 1780 3601 2980 0.07 0.14 0.18 0.13
(0.22%) (0.13%) (0.16%) (0.10%)

sed 2655 3317 4449 4607 0.12 0.21 0.23 0.18
(0.45%) (0.29%) (0.26%) (0.20%)

vim 6295 11238 14183 14742 0.52 0.73 0.79 0.74
(12.36%) (11.36%) (10.12%) (7.80%)

Note that the ratio of number of messages over generated
non-redundant test cases usually decreases as the number of
client nodes increases. For example, the ratios over the four
client number levels on grep are 4.43%, 3.99%, 2.65%,
and 2.14%, respectively (see the numbers in parentheses in
Table V). This is because except for the startup client, clients
begin with an empty qtc and need to communicate to obtain
initial test cases, but following the initial communication

much fewer subsequent communications are needed. We
designed a simple communication protocol (at the cost of
boot-up time overhead). Suppose that there are 64 clients,
n1, ...n64, and n1 has one test case but the other clients have
no test cases. Initially, n2 sends EMPTY to the server. Then, a
corresponding server thread sends REQ to n1 and n1 sends
back NACK to the server thread. Consequently, the server
thread sends REQ to n1 again and creates many REQ-NACK
messages until n1 has more than one test case or no test
case (this worst-case scenario occurs only during the short
boot-up time – less than 1 second – since |qtc| > 1 most of
the time). At the same time, the other 62 clients (n3, ...n64)
send EMPTY packets to the server. However, corresponding
server threads (thus, also the 62 clients) will block, since n1
is in SERVING_REQ state to serve n2. For 256 clients, more
clients (i.e., 254 clients) will block in the same manner, thus
creating relatively fewer REQ-NACK messages per clients.

As shown on the right side of the table, total commu-
nication overhead was less than 0.3% of total execution
time, except on vim where it ranged up to 0.8%. Since
generating a new test case (including concolic execution
and solving symbolic path formulas) takes much more time
than communication, the overhead of waiting time including
communication time is negligible.

Figure 3 presents boxplots showing workload distributions
for all six object programs. The horizontal axes indicate
client number levels, and the vertical axes indicate workload
(number of test cases generated per client node). The central
50% of the data points (those denoted by the box) exhibit
relatively small variance, and results do not vary widely as
client number levels increase. This provides further evidence
of scalability.

Finally, Table VI depicts the efficiency (i.e.,
effectiveness ratio

of clients) of the SCORE framework across different
client number levels, per program. The efficiency of the
distributed algorithm does not decrease, but remains almost
constant over different client number levels. For example,
the efficiencies for ptok1 are 0.92, 0.98, 0.97, and 0.94
for 64, 128, 192, and 256 clients, respectively.

Table VI
EFFICIENCY OF CLIENTS AT GENERATING TEST CASES

effectiveness ratio
of clients

64 128 192 256

grep 1.25 1.09 1.41 1.31
ptok1 0.92 0.98 0.97 0.94
ptok2 0.63 0.62 0.62 0.61
repl 0.44 0.43 0.45 0.45
sed 0.56 0.54 0.54 0.53
vim 0.33 0.33 0.31 0.31

V. DISCUSSION

Fault Detection: We have not yet evaluated the fault-
detection capabilities of our distributed approach to concolic
test generation. However through our testing, we did detect

8

Figure 3. Distribution of numbers of test cases generated at each client node for the six object programs

a fault in grep 2.0 that made the program run in an infinite
loop without generating output. This problem occurred when
SCORE executed grep with a symbolic pattern containing
‘\n’ as the first character and the -F option (i.e., using the
‘fixed string matcher’). This fault was not detected by the
SIR test cases. Also this fault is difficult to detect using
manually created test cases, because it causes a failure only
when such exceptional inputs are used. As a consequence,
the fault had gone uncorrected for several years (until grep
2.4 was released).

Concolic Testing for Branch Coverage : In our experiment
we generated test cases for path coverage, because path
coverage is the target coverage of concolic testing. However,
since branch coverage is more common in industrial practice,
we also measured the percentages of branches covered in our
study; we report these in Table VII. The branch coverages
achieved did not increase much (and in two cases on ptok2,
they decreased) as the number of clients used increased. We
believe that this is a result of the concolic testing approach’s
focus on path coverage, which allow it to continue to explore
new paths even though they do not cover new branches.

Table VII
BRANCH COVERAGE ACHIEVED (%)

1 64 128 192 256 SIR
grep 24.1 44.1 44.0 45.0 46.3 50.3
ptok1 72.7 77.1 77.4 76.4 77.7 93.6
ptok2 78.7 81.3 80.4 81.8 81.5 98.2
repl 40.5 74.4 79.5 77.0 82.1 93.9
sed 21.7 25.4 27.0 27.9 27.8 47.3
vim 9.1 15.4 17.3 18.5 18.9 35.8

Note also that the branch coverages achieved in our
experiment are lower than those achieved by the manually
generated test cases in the SIR repository (rightmost column
of the table). We believe that this too is related to the focus
of the concolic approach on path coverage, though it may
also be due to difficulties in solving constraints related to
paths that reach particular branches. Nonetheless, given that
the test cases for grep, sed, and vim found in the SIR
repository were built over several weeks by students of the
third author, and that the test cases for the other subjects
were built from large pools of tests provided by the authors

of [23], the mechanically achieved branch coverage attained
by running SCORE for five minutes has value.

Limitations of Concolic Testing in Practice: As discussed
earlier, concolic testing tools suffer from the limitations
related to unavailability of library code, and the limitations
of symbolic execution engines. Thus, in practice, concolic
testing may not achieve full path coverage and may generate
redundant test cases. To help examine this issue, Figure 4
shows the ratios of non-redundant test cases to total test
cases generated for SCORE (S) (left) and multiple CREST
runs (MC) (right).

R
a
ti
o
o
f
n
o
n
re
d
.
T
C
s/
g
e
n
.
T
C
s

Figure 4. Ratios of non-redundant TCs over generated TCs

The ratios for SCORE are stable over increasing numbers
of nodes but vary on different programs, since redundant test
cases are generated when execution paths contain complex
statements or external library calls. For example, ptok2
and replace (lines overlap in Figure 4) do not exhibit
redundant test cases, but around 75% of the test cases
generated for vim are redundant. This is because vim
contains many uses of complex pointer arithmetic and uses
external libraries to manipulate text strings. In contrast, the
ratios for multiple CREST runs are lower than those for
SCORE. In addition, the ratios decrease over increasing
numbers of nodes. For example, on sed the ratios decrease
from 0.42 (64 nodes) to 0.36 (256 nodes).

An additional limitation involves test oracles. Generating
enormous numbers of test cases carries with it the com-
plication that oracles are required for these test cases. In
cases where oracles must be generated on a per test-case
basis (e.g., creating “expected outputs” for each test case),
this may involve excessive effort. Note that this problem

9

arises with any large-scale automated test case generation
effort. Therefore, to utilize automated test case generation
frameworks to generate large numbers of test cases, we need
to use oracle approaches whose cost is not proportional to
the number of test cases. For example, we can utilize oracles
that can be automated such as detecting system crashes and
exceptional behavior or monitoring behavior for violations of
user-given assert statements, which succeed in detecting
many faults [3], [6], [11].

VI. CONCLUSION AND FUTURE WORK

We have developed the SCORE framework to decrease
the cost of concolic testing by utilizing a large number
of distributed computing nodes. The framework enables
distributed nodes to generate test cases independently, and
in so doing it achieves scalability. We demonstrated the
increased effectiveness of the framework, as well as its
scalability, through an empirical study of several programs
from the SIR repository. As future work, we intend to apply
SCORE to additional applications, to analyze advantages and
weakness of the framework in practice. Also, we plan to add
fault-tolerant capability to SCORE.

REFERENCES

[1] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit
testing engine for C,” in European Software Engineering
Conference/Foundations of Software Engineering, 2005.

[2] N. Tillmann and W. Schulte, “Parameterized unit tests,” in
European Software Engineering Conference/Foundations of
Software Engineering, 2005.

[3] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated
whitebox fuzz testing,” in Network and Distributed Systems
Security, 2008.

[4] M. Kim and Y. Kim, “Concolic testing of the multi-sector
read operation for flash memory file system,” in Brazilian
Symposium on Formal Methods, 2009.

[5] C. Pasareanu and W. Visser, “A survey of new trends in sym-
bolic execution for software testing and analysis,” Software
Tools for Technology Transfer, vol. 11, no. 4, pp. 339–353,
2009.

[6] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in Operating System Design and Imple-
mentation, 2008.

[7] C. Lattner and V. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in Intl. Symp.
on Code Generation and Optimization, 2004.

[8] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun,
“jFuzz: A concolic whitebox fuzzer for Java,” in NASA
Formal Methods Symposium, 2009.

[9] W. Visser, K. Havelund, G. Brat, and S. Park, “Model
checking programs,” in Automated Software Engineering,
Sep. 2000.

[10] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level
symbolic execution and system-level concrete execution for
testing nasa software,” in International Symposium on Soft-
ware Testing and Analysis, 2008.

[11] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed au-
tomated random testing,” in Programming Language Design
and Implementation, 2005.

[12] J. Burnim and K. Sen, “Heuristics for scalable dynamic
test generation,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2008-123, Sep 2008.

[13] K. Sen and G. Agha, “CUTE and jCUTE : Concolic unit
testing and explicit path model-checking tools,” in Computer
Aided Verification, 2006.

[14] M. Staats and C. Pasareanu, “Parallel symbolic execution
for structural test generation,” in International Symposium on
Software Testing and Analysis, 2010.

[15] A. King, “Distributed parallel symbolic execution,” Kansas
State University, Tech. Rep., 2009, MS thesis.

[16] J. H. Siddiqui and S. Khurshid, “ParSym: Parallel Symbolic
Execution,” in International Conference on Software Technol-
ogy and Engineering, 2010.

[17] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel sym-
bolic execution for automated real-world software testing,” in
6th ACM SIGOPS/EuroSys, 2011.

[18] X. Deng, J. Lee, and Robby, “Bogor/kiasan: A k-bounded
symbolic execution for checking strong heap properties of
open systems,” in Automated Software Engineering, 2006.

[19] Y. Kim, M. Kim, and N. Dang, “Scalable distributed concolic
testing: a case study on a flash storage platform,” in Intl. Conf.
on Theoretical Aspects of Computing, 2010.

[20] M. Kim, Y. Kim, and G. Rothermel, “Uniqueness of
the paths explored by the distributed concolic algo-
rithm,” KAIST, Tech. Rep., 2011, http://pswlab.kaist.ac.kr/
publications/unique-proof.pdf.

[21] B. Dutertre and L. Moura, “A fast linear-arithmetic solver for
DPLL(T),” in Computer Aided Verification, 2006.

[22] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact.” Empirical Software Engineering
Journal, vol. 10, no. 4, pp. 405–435, 2005.

[23] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments of the effectiveness of dataflow- and controlflow-
based test adequacy criteria,” in International Conference on
Software Engineering, 1994, pp. 191–200.

[24] “Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.
amazon.com/ec2/.

[25] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

10

